
Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 1

AI-Driven Software Engineering – The Role of Conceptual
Modeling

Hans-Georg Fill*,a, Jordi Cabotb, Wolfgang Maassc, Marten van Sinderend

a University of Fribourg, Research Group Digitalization and Information Systems, Boulevard de Pérolles 90, 1700 Fribourg,
Switzerland
b Luxembourg Institute of Science and Technology and University of Luxembourg, Luxembourg
c Saarland University and German Research Center for Artificial Intelligence (DFKI), Germany
d University of Twente, Netherlands

Communicated by Peter Fettke. Received 2023-11-02. Accepted after 1 revision on 2023-12-05.

The following discussion paper summarizes the
results of a panel discussion conducted on July
10, 2023 at the International Conference on Soft-
ware Technologies (ICSOFT) in Rome, Italy. The
panelists included Jordi Cabot from Luxembourg
Institute of Science and Technology, Luxembourg,
Wolfgang Maass from University of Saarland, Ger-
many, and Marten van Sinderen from University
of Twente, Netherlands. The panel was moderated
by Hans-Georg Fill from University of Fribourg,
Switzerland.

1 Introduction
Hans-Georg Fill

The application of artificial intelligence (AI) tech-
niques to software engineering has a long his-
tory (Rich and Waters 1988). Researchers have
long sought to provide programmers with human-
like assistants to make their work more efficient
and potentially automate the coding process. In
the early stages of these attempts, conceptual mod-
eling has been used for capturing and organizing
knowledge in symbolic form, which could be ulti-
mately fueled into knowledge bases and processed
by machines (Mylopoulos et al. 1997). One of
the main goals of conceptual modeling is however
to enhance human understanding and communi-
cation in order to aid with the implementation

* Corresponding author.
E-mail. hans-georg.fill@unifr.ch

of software systems (Mylopoulos 1992). While
conceptual modeling is still being heavily used
until today, for example in requirements engineer-
ing, software design and development, as well
as in process and quality management and au-
diting (Brambilla et al. 2017; Dieste et al. 2001;
Fettke 2009; Härer and Fill 2020; Michael et al.
2023; Muff et al. 2022; Sandkuhl et al. 2018), it
may be questioned whether it is still necessary
to manually create, organize and interpret such
models in today’s AI world.

The uprise of sub-symbolic knowledge repre-
sentation approaches in the form of machine learn-
ing (ML) and deep learning (DL) in particular, led
to a focus on data-driven AI approaches (LeCun
et al. 2015). The reason behind these develop-
ments were the emergence of massive computing
power, the collection of enormous data sets, as
well as advances in algorithms (Kaynak 2021).
Most recently, the invention of the Transformer
neural network architecture and its application to
language processing in the form of large language
models (LLM) has sparked another surge in AI
development (OpenAI 2023; Vaswani et al. 2017).

These developments led to numerous ideas
and approaches on how data-based AI techniques
could change the way how software is being cre-
ated (Ma et al. 2023). Instead of using the tradi-
tional approach of expressing knowledge about
software in the form of conceptual models, LLM-
based approaches are currently being proposed

http://dx.doi.org/10.18417/emisa.19.1
hans-georg.fill@unifr.ch


International Journal of Conceptual Modeling
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1

2 Hans-Georg Fill, Jordi Cabot, Wolfgang Maass, Marten van Sinderen

for all steps in the development life-cycle. This
includes for example the use of natural language
prompts for the elicitation and step-wise refine-
ment of requirements, automated software design
and code generation, or the improvement of code
quality or refactoring (Ma et al. 2023; White et al.
2023). Even conceptual models themselves may
be created or interpreted in this way without re-
quiring an interaction with a traditional modeling
tool (Cámara et al. 2023; Fill et al. 2023).

The question thus arises as to what can be
expected from these novel AI methods for the
field of software engineering and what limitations
these methods may pose. Further, it needs to
be investigated which role conceptual modeling
will play in the future in these new processes and
what developers, users, and contractors of future
software systems should be trained on to achieve
the maximum benefits.

2 AI, Data Models, and Data
Jordi Cabot

Jordi Cabot emphasized the importance of the data,
and the associated data models, in an AI-driven
world.

In the last decade, we have witnessed an ex-
plosion of research on new architectures, training
methods, fine-tuning strategies, etc. for machine
learning. But we are now entering a new phase
where all these new approaches are becoming a
commodity. Platforms like HuggingFace1 do an
outstanding job in making all the latest results
accessible to everyone.

Therefore, using the latest ML architectures
alone is not a competitive advantage anymore. In-
stead, companies need to turn their attention to the
data used for training the ML models. Better data
turns into better ML. This is why all companies
are turning their attention to data. Data and data
models are back in fashion and problems like data
annotation, data mining, data composition, etc.
now in an ML context, must be revisited.

We can see that the golden triangle resulting
from the interweaving of data, conceptual models

1 https://huggingface.co/

and AI reinforces each of them. For instance, let’s
see a relevant scenario as a representative of each
combination:

• Data + AI → Models. We can use AI tech-
niques to infer the data models representing
the structure of the dataset and the behavioral
models that could be used to Create/Read/Up-
date/Delete instances of the dataset.

• Data + Models→AI. Properly annotated data –
including ethical aspects (Giner-Miguelez et al.
2023) – can improve the quality of AI compo-
nents trained on such data.

• AI + Models → Data. We can use AI tech-
niques to synthesize new data compliant with a
certain model structure.

As we will also discuss in Sect. 5, these scenar-
ios impose new requirements for the conceptual
modeling field. In this new AI age, models are
not a static element in the development process,
but they become dynamic as they often need to
change and evolve to remain aligned with the data
(and the data drifts). They are also partial (as they
may represent only parts of the data) and uncertain
(as we may not be completely sure of how accu-
rate they are, e. g. when they are automatically
inferred).

But despite these challenges, conceptual models
remain a key asset. A good example of this is the
promotion of the common European data spaces2
to facilitate the data exchange among partners

within a data domain. This exchange requires
the partners to agree on a unified conceptual data
model to ensure interoperability.

And let’s not forget, ML models are also mod-
els.3 This means that the conceptual modeling
community has the chance to bring their expertise
to the AI world, helping the AI community to
improve the way they represent, transform, reuse
and deploy ML artifacts. Looking forward to see-
ing how we can bring AI-based engineering to a
whole new level thanks to our decades of expertise
in conceptual modeling.

2 https://gaia-x.eu/what-is-gaia-x/deliverables/data-spaces/
3 "Everything is a model" (Bézivin 2005)

http://dx.doi.org/10.18417/emisa.19.1
https://huggingface.co/
https://gaia-x.eu/what-is-gaia-x/deliverables/data-spaces/


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 3

3 AI for Humans vs. AI for AI
Wolfgang Maaß

Large software companies, such as Microsoft and
Google, recognized early on that AI-based lan-
guage models are excellent for supporting software
developers. This is particularly significant against
the backdrop of a global skills shortage. Powerful
AI models, such as GPT4 and PaLM, show that AI
models are increasingly becoming necessary tools
for software developers. For example, Github
Copilot is a fine-tuned GPT3 model trained on
54 million public Github repositories (Barke et al.
2023). The performance of DeepMind’s Alpha-
Code system ranked in the top 54.3% among 5000
human programmers on the competitive program-
ming platform Codeforces (Li et al. 2022).

The qualitative study by (Barke et al. 2023)
suggests two distinct modes supported by the use
of an LLM-based software development system
(LLM-SE):

1. Acceleration Mode: the programmer knows
what to do next and uses LLM-SE system to get
to the goal faster.

2. Exploration Mode: the programmer is unsure
how to proceed and uses LLM-SE system to
explore options.

Feature-based explanatory approaches provide in-
formation on the importance of individual data at-
tributes on predictions. Afterward, data attributes
can be examined with respect to their importance,
but also with respect to possible errors, such as
biases in particular. However, this is mostly far
away from the language of a domain expert, so
that predictions of an AI model are very difficult
to make.

Very large models, such as GPT4, Falcon 180B,
Llama 2, and PaLM 2, span many domains and
are particularly used for supporting software de-
velopment. But these models are also used for
conceptual designs, creation of visualizations, and
providing explanations. Experiments show that
the performance of software engineers who use
LLM-based software development can increase

significantly (Peng et al. 2023). This develop-
ment gives reason to assume that very large ML
models will be used for a wide area of software
development, testing, and deployment tasks so
that software engineers will more focus on the
creative parts of software engineering including
requirements engineering. With meta-learning
capabilities (Schmidhuber 1993), ML models will
also learn to self-refine and extend their software
engineering capabilities.

Traditionally, conceptual modeling is one of
the first phases of software development, when
software engineers design and discuss potential
solutions. Conceptual models are thereby devel-
oped as knowledge structuring artifacts to sup-
port the exchange of knowledge between involved
persons and ultimately to develop a situational
consensus. In contrast, AI models are created
precisely with minimal use of a-priori represen-
tations and computational assumptions to avoid
"hand-engineering" (Battaglia et al. 2018). At the
same time, large AI models are black boxes, so
results cannot be understood directly in terms of
their origins and reasons. This leads to intensive
research into explainable AI (Adadi and Berrada
2018). Since LLM models tend to fabricate facts,
explanations are all the more important. Feature-
based explanatory approaches provide information
on the importance of individual data attributes on
predictions. Afterward, data attributes can be ex-
amined with respect to their importance, but also
with respect to possible errors, such as biases in
particular. However, this is mostly far away from
the language of a domain expert, so predictions
of an AI model are very difficult to make from a
domain expert’s viewpoint.

Thus, on the one hand, a conceptual phase is
omitted, but on the other hand, a knowledge and
understanding gap in the use of AI models arises.
This results in a new role for conceptual modeling
in the usage phase of AI-based information sys-
tems as part of an AI explanation component that
transforms the predictive behavior of ML mod-
els into conceptual structures in the language of
domain experts (Maass et al. 2022a,b).

http://dx.doi.org/10.18417/emisa.19.1


International Journal of Conceptual Modeling
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1

4 Hans-Georg Fill, Jordi Cabot, Wolfgang Maass, Marten van Sinderen

Future applications of conceptual modeling
include:

1. Developing a domain understanding of the
predictive behavior of ML (Machine Learning)
models

2. Identifying potentials for optimizing ML mod-
els

3. Reviewing biases and legal frameworks
4. Increasing the re-usability of ML models
5. Identifying potentials for further development
6. Accelerating and optimizing development pro-

cesses of AI (Artificial Intelligence)-based in-
formation systems.

In summary, the traditional use of conceptual
models will be temporarily maintained to develop
classic components such as user interfaces, mid-
dleware, and database functions. However, the
implementation of business logic in software is
already being replaced by AI models. Against
this backdrop, the use of conceptual models is
sustainably changing from a designing function
to an explanatory function.

4 Patterns for AI
Marten van Sinderen

We consider AI-driven software engineering as
a subset of data-driven software engineering
(DDSE), and we consider (traditional) conceptual
modeling as the cornerstone of model-driven
software engineering (MDSE). In this section, we
discuss the characteristics of DDSE and MDSE
and the relevance of both approaches with the aim
of uncovering patterns that may prove useful in
answering the question of what role conceptual
modeling could play in AI-driven software engi-
neering, and related questions formulated at the
end of Sect. 1.

DDSE emphasizes the use of data to generate
prediction models that are used in data-driven
decision-making to improve efficiency of software
development processes.

Technology advances related to networking and
sensing started the explosion of digital data, of-
ten referred to as the big data movement (McAfee
and Brynjolfsson 2012). Companies readily recog-
nized the potential of data-driven decision-making
that could turn them into data-driven organizations
with improved performance. However, it was the
rapid progress in parallel computing and machine
learning (ML) that enabled practical applications
and gave a powerful push to automated analysis
and decision-making based on big data (Fradkov
2020).

With ML, complex prediction models can be
learned from training data, without the need for
programming based on a premeditated design.
Applying these prediction models to input data
allows for fast and accurate decision-making
within the area of application for which the ML
algorithm and model were optimized. That said,
it is important to realize that ML has important
application prerequisites and severe limitations
when applied outside the boundaries of the
training set (Carbone 2022). Specifically, the
training data should be representative for the
domain of application and should be sufficient in
quantity and quality. The interpolation function
that is used to fit the training data and generate
the prediction model should be appropriate for
the application at hand, which requires good
prior knowledge of the application domain. Fur-
thermore, the input data to which the model is
applied should be within the interpolation window,
representing phenomena that are within the range
of expectations based on prior knowledge of the
domain. If these conditions are not met, problems
can arise that lead to unreliable predictions and
risky decision-making. Especially in the social
domain, such conditions are hard to control
and guarantee, and therefore mistakes are easily
made (Kleinberg et al. 2016). As can be observed
from these characterizations, DDSE rests on
generating descriptions of regularities found in
training data in order to make predictions driven
by unseen data, without providing explanations of
why these regularities exist and why predictions

http://dx.doi.org/10.18417/emisa.19.1


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 5

Data-driven Software Engineering Model-driven Software Engineering
Data as starting point Concepts as starting point
Complex prediction models can be learned auto-
matically

Complex prescriptive models can be built with
domain specialists

Models are as good as the data Models are as good as the specialists’ understanding
of the domain

Models are weak on rare situations, due to scarcity
of data

Models are abstractions, do not necessarily account
for conditions of practice

Models are interpolations of what happened, with-
out explanation why something happened and why
interpolation makes sense

Models are conceptualizations of our understanding,
and have to be proven with future data

Table 1: Data-driven Software Engineering (DDSE) and Model-Driven Software Engineering (MDSE) side-by-side

can be trusted (Guizzardi et al. 2023).

MDSE emphasizes the use of concepts to create
explanatory and prescriptive models that are
central artifacts to improve the effectiveness of
software development processes.

Many model-based approaches for the design
of software systems have been proposed in the lit-
erature, particularly aimed at establishing a shared
understanding of the system under design and
allowing control over the design project (Da Silva
2015; Mylopoulos 1992). Among these were
also approaches that emphasized the distinction
between a design model conceived through its do-
main concepts and a model representation in terms
of modeling language elements (Van Sinderen et al.
1992). However, the term model-driven software
engineering came in fashion after OMG intro-
duced the Model Driven Architecture approach as
a method to get more value from models in the
software engineering process, using defined levels
of abstraction, model transformations and meta-
modeling (Kent 2002; Sendall and Kozaczynski
2003). Nowadays, the term is used more loosely to
indicate any software engineering approach that
uses models as central artifacts in a controlled
step-wise software engineering process.

MDSE starts with the creation of a concep-
tual model that captures goal-relevant features of
a software system in terms of domain concepts,

such that stakeholders can understand, communi-
cate, and discuss the system under design. This
model is typically the result of a laborious process
in which real-world aspects are conceptualized
by a team of professionals. It presents a con-
solidated view, constrained by human cognitive
abilities and language expressivity. The model is
abstract (ignoring details not deemed relevant so
far), explanatory (the interaction of features can
be understood in relation to goals), and prescrip-
tive (serves as a specification for more detailed
models) (Robinson et al. 2015). In the remaining
design process, more detailed models are derived
in orderly steps, possibly using semi-automated
transformations, until a straightforward mapping
onto software code is within reach. The data that
is generated by testing and evaluating the real-
ized software system can subsequently be used
to validate and evolve the (reusable) models. In
short, MDSE is based on handcrafting a model
of desirable features in terms of domain concepts,
as explicit descriptions of regularities in the real
world, in order to develop software systems that
can be explained in terms of domain concepts and
justified with reference to stakeholder goals and
decisions. Tab. 1 summarizes the characteristics
of DDSE and MDSE side-by-side.

In order to further illustrate the different nature
of the data-driven and model-driven approaches,
we can use the following example of human knowl-
edge acquisition as an analogy: Suppose a person

http://dx.doi.org/10.18417/emisa.19.1


International Journal of Conceptual Modeling
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1

6 Hans-Georg Fill, Jordi Cabot, Wolfgang Maass, Marten van Sinderen

Consequences DDSE Consequences MDSE
Achieves impressive results when interpolating
between historical facts (represented by training
data), but cannot generalize beyond these facts

Provides a general grounding in real-world seman-
tics, but goal-driven design choices have to be
confirmed by future facts (represented by data from
testing, validation, and evaluation)

Software generation for prediction and decision-
making based on training data and generic predic-
tion models

Software development requires considerable human
expertise and effort

Prediction models provide no explanation, results
cannot connected to domain goals

Conceptual models allow understanding in terms
of domain concepts

Applications can be problematic in ethical/respon-
sible software systems

Applications allow consideration of human and
societal values

Table 2: Consequences of Data-driven Software Engineering (DDSE) and Model-Driven Software Engineering
(MDSE) Characteristics

wants to start driving a car, and therefore has to
acquire the knowledge for making decisions in
traffic situations, including hazard recognition,
traffic rules and understanding the traffic. Two
extreme approaches can be distinguished:

• Learn from observing car traffic behavior, and
• Learn from theory lessons and instructions.

With the first approach, numerous observations
need to be done and properly memorized, each
relating to how a car behaves in a certain situation.
Given a sufficient number of observations, certain
patterns will emerge, such as in which situations
a car gives priority and in which situations it is
given priority. Once these patterns are internalized
by our learner, she can quickly act in situations
to which the patterns apply. This means that
she will act correctly and efficiently in common
situations since these are well represented by the
observations. However, there may be many rare
situations, for which no or few observations exist.
In these cases, there is a high risk of incorrect or
lacking actions, with possible negative effects.

With the second approach, the lessons and
instructions will give insights in which traffic
rules exist and why they are necessary for safe
driving. The rules collectively define how to
behave in any situation, given realistic assumptions
on the domain. Once the pupil has learned the

rules and passed the tests, she can act correctly
in all situations, including rare situations. This
means that the actions are effective, producing
the intended result, but not necessarily efficient,
because of lack of experience.

Of course, we want both: act quickly (efficient)
and act correctly (effective), so both approaches
are needed, combining experience-based knowl-
edge and theoretical knowledge. Luckily this is
the case in real life, where one must pass a the-
ory test for obtaining a driving license and can
improve skills by driving in practice. The analogy
between the first approach and SSDE, and between
the second approach and MDSE, though possibly
flawed in many respects, does highlight some key
points of DDSE and MDSE:

• DDSE helps to improve the efficiency of the
software development process by automatic gen-
eration of prediction models based on training
data, which can have impressive results, but
results may be unreliable if used in situations
for which the training data is not representative;

• MDSE builds on domain knowledge and helps
to develop software that effectively takes goals
(including human values) into account, trace-
able to the knowledge base and stakeholder
decisions, but development and maintenance
requires considerable human expertise and ef-
fort.

http://dx.doi.org/10.18417/emisa.19.1


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 7

In line with this, DDSE and MDSE are re-
spectively viewed as fast and slow strategies for
software development (Guizzardi et al. 2023),
bearing similarity to the thinking systems distin-
guished by Daniel Kahneman (Kahneman 2011).

Currently, we observe an increasing interest
in explainable AI (XAI), fueled by the grow-
ing awareness that many applications of AI/data-
driven software engineering require explanations
in order to avoid unfair outcomes. We expect that
ontology-based conceptual models will play an
important role here, in order to provide meaning
and clarification of the data and processes (e. g.,
of the ML pipeline) and to understand whether
outcomes can be trusted and decisions would be
fair and unbiased (Maass and Storey 2021).

We conclude that DDSE and MDSE are com-
plementary rather than alternative approaches to
software engineering: DDSE does not replace
MDSE, nor does it make traditional conceptual
modeling useless or redundant.The Tab. 2 sum-
marizes some of the major consequences of the
characteristics of DDSE and MDSE that underline
this conclusion.

5 Future Challenges and Opportunities
for Conceptual Modeling in AI

Following the summaries of the panel contribu-
tions from above, we can derive a number of
challenges and opportunities for conceptual mod-
eling in times of AI-driven software engineering.
First, it is our shared belief that conceptual mod-
eling could play a key role in all the aspects of
AI-driven software engineering mentioned above
- however, it yet has to find its role here – see
also the considerations expressed in (Fettke 2020)
on the relation of AI and modeling. In essence,
modeling has the potential to help in any disci-
pline, beyond software itself (Cabot and Vallecillo
2022; Fill et al. 2021). However, the use of con-
ceptual modeling is often impeded with several
challenges, including for example the large effort
in creating models by hand and thus the scala-
bility of modeling activities, the involvement of
non-experts in modeling, or a range of technical

challenges when using models in collaborative
settings (Bucchiarone et al. 2020; Sandkuhl et al.
2018).

The emergence of large language models
(LLMs) at a quality level of GPT-3 and GPT-
4 will offer new opportunities for all aspects of
developing software. In contrast to previous ap-
proaches that regarded for example the use of data
and artificial intelligence techniques for intelli-
gent modeling assistance (Burgueño et al. 2022;
Mussbacher et al. 2020), or AI in different stages
of software engineering (Barenkamp et al. 2020),
LLMs have the potential to enable more natural
interactions and can at the same time be flexibly
adapted to multiple scenarios.

To play this key role, we believe that there are
a number of open challenges that our community
should work on in the future. We describe some
of them:

• Finding the right level of abstraction for AI
concepts, such as different types of learning
and reasoning approaches, involved data sets,
representation formalisms, etc. Grady Booch
famously said that the entire history of soft-
ware engineering is one of rising levels of ab-
straction (Booch 2018). We need to agree on
the right domain-specific languages, notations,
model transformations, etc. to specify and ma-
nipulate the representations of AI concepts of
this new breed of AI-enhanced software sys-
tems.

• Modeling beyond data aspects. In AI systems,
there are other dimensions that are key to un-
derstanding the limitations of the system. In
particular, we believe that uncertainty model-
ing (Troya et al. 2021) should be considered a
first-level concern – as AI systems are full of
uncertainty at all levels, i. e. the data level and
the ML model level. And so, this uncertainty
propagates to the rest of the system. Conceptual
modeling languages should include uncertainty
primitives to properly model this aspect.

• Modeling for explainability of black-box AI
systems. Conceptual modeling and in partic-
ular ontologies are expected to play a major

http://dx.doi.org/10.18417/emisa.19.1


International Journal of Conceptual Modeling
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1

8 Hans-Georg Fill, Jordi Cabot, Wolfgang Maass, Marten van Sinderen

role in contributing to the explainability of AI
systems - see also the ongoing discussions in
the context of the AAAI-MAKE symposia (Pro-
ceedings of the AAAI 2021 Spring Symposium
on Combining Machine Learning and Knowl-
edge Engineering (AAAI-MAKE 2021), Stan-
ford University 2021; Proceedings of the AAAI
2022 Spring Symposium on Machine Learning
and Knowledge Engineering for Hybrid Intel-
ligence (AAAI-MAKE 2022), Stanford Uni-
versity 2022; Proceedings of the AAAI 2023
Spring Symposium on Challenges Requiring the
Combination of Machine Learning and Knowl-
edge Engineering (AAAI-MAKE 2023) 2023).
Thereby, conceptual models can contribute the
domain knowledge to facilitate the user-specific,
human understanding of explanations of black-
box models (Confalonieri et al. 2021). Espe-
cially the assumed performance-explainability
trade-off of current learning techniques – often
the most effective AI techniques are most diffi-
cult to explain – has to be considered (Gunning
and Aha 2019).

• Economic aspects of modeling. We know
that the adoption of modeling in companies
and organizations is a complex sociotechnical
problem (Hutchinson et al. 2014; Sandkuhl et
al. 2018). This is aggravated when looking
at the types of multidisciplinary teams behind
the development of AI systems. Therefore,
we need to propose new theories to emphasize
and calculate the value of modeling, especially
the ROI (return of investment) of modeling
practices and investigate how novel AI-driven
approaches may help in this regard (Fill et al.
2023).

• Intellectual property, ethical, and legal as-
pects. Data-driven approaches demand large
amounts of high-quality data for their training.
In this context, questions of ethics and intellec-
tual property in regard to the correct use of data
need to be investigated (Strowel 2023). This
applies in particular to potentially used mod-
els (Martinez et al. 2019) and the traceability of
configurations of machine learning pipelines in

terms of transparency of the provenance of data,
e. g. (Fill and Härer 2020), and the clarification
of results in terms of domain concepts, i. e. the
correct interpretability.

• Teaching data-driven and model-driven soft-
ware engineering. As both directions are not
disjoint but rather complement each other in
various ways, it becomes important to acknowl-
edge for this in teaching and thus adapt existing
computer science curricula (Rosenthal et al.
2023). This includes for example teaching ob-
jectives such as the efficient and effective use of
both techniques, the knowledge about trade-offs
in precision vs. human effort, or the limitations
in terms of ethical aspects.

References

Adadi A., Berrada M. (2018) Peeking inside the
black-box: a survey on explainable artificial in-
telligence (XAI). In: IEEE access 6, pp. 52138–
52160

Barenkamp M., Rebstadt J., Thomas O. (2020) Ap-
plications of AI in classical software engineering.
In: AI Perspectives 2(1), pp. 1–15

Barke S., James M. B., Polikarpova N. (2023)
Grounded copilot: How programmers interact with
code-generating models. In: Proceedings of the
ACM on Programming Languages 7(OOPSLA1),
pp. 85–111

Battaglia P. W., Hamrick J. B., Bapst V., Sanchez-
Gonzalez A., Zambaldi V., Malinowski M., Tac-
chetti A., Raposo D., Santoro A., Faulkner R.,
et al. (2018) Relational inductive biases, deep
learning, and graph networks. In: arXiv preprint
arXiv:1806.01261

Bézivin J. (2005) On the unification power of
models. In: Softw. Syst. Model. 4(2), pp. 171–188

Booch G. (2018) The history of software engineer-
ing. In: IEEE Software 35(5), pp. 108–114

Brambilla M., Cabot J., Wimmer M. (2017) Model-
driven software engineering in practice. Morgan
& Claypool Publishers

http://dx.doi.org/10.18417/emisa.19.1


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 9

Bucchiarone A., Cabot J., Paige R. F., Pierantonio
A. (2020) Grand challenges in model-driven en-
gineering: an analysis of the state of the research.
In: Softw. Syst. Model. 19(1), pp. 5–13
Burgueño L., Cabot J., Wimmer M., Zschaler S.
(2022) Guest editorial to the theme section on
AI-enhanced model-driven engineering. In: Softw.
Syst. Model. 21(3), pp. 963–965
Cabot J., Vallecillo A. (2022) Modeling should
be an independent scientific discipline. In: Softw.
Syst. Model. 21(6), pp. 2101–2107
Cámara J., Troya J., Burgueño L., Vallecillo A.
(2023) On the assessment of generative AI in mod-
eling tasks: an experience report with ChatGPT
and UML. In: Softw. Syst. Model. 22(3), pp. 781–
793
Carbone M. (2022) When not to use machine
learning: a perspective on potential and limitations.
In: MRS Bulletin 47, pp. 968–974
Confalonieri R., Weyde T., Besold T. R., del Prado
Martín F. M. (2021) Using ontologies to enhance
human understandability of global post-hoc expla-
nations of black-box models. In: Artif. Intell. 296,
p. 103471
Da Silva A. R. (2015) Model-driven engineering; a
survey supported by the unified conceptual model.
In: Computer language, Systems & Structures 43,
pp. 139–155
Dieste O., Juristo N., Moreno A. M., Pazos J.,
Sierra A. (2001) Conceptual modeling in software
engineering and knowledge engineering: Con-
cepts, Techniques and trends. In: Handbook of
Software Engineering and Knowledge Engineer-
ing: Volume I: Fundamentals. World Scientific,
pp. 733–766
Fettke P. (2009) How conceptual modeling is
used. In: Communications of the Association for
Information Systems 25(1), p. 43
Fettke P. (2020) Conceptual Modelling and Ar-
tificial Intelligence: Overview and research chal-
lenges from the perspective of predictive business
process management. In: Modellierung 2020, Vi-
enna, Austria Vol. 2542, pp. 157–164

Fill H., Fettke P., Köpke J. (2023) Conceptual
Modeling and Large Language Models: Impres-
sions From First Experiments With ChatGPT. In:
Enterp. Model. Inf. Syst. Archit. Int. J. Concept.
Model. 18, p. 3

Fill H., Härer F. (2020) Supporting Trust in Hy-
brid Intelligence Systems Using Blockchains. In:
Proceedings of the AAAI 2020 Spring Sympo-
sium on Combining Machine Learning and Knowl-
edge Engineering in Practice, AAAI-MAKE 2020.
CEUR-WS.org

Fill H., Härer F., Muff F., Curty S. (2021) Towards
Augmented Enterprise Models as Low-Code Inter-
faces to Digital Systems. In: Business Modeling
and Software Design - 11th International Sympo-
sium Vol. 422. Springer, pp. 343–352

Fradkov A. (2020) Early history of machine learn-
ing. In: IFAC PapersOnLine 53(2), pp. 1385–1390

Giner-Miguelez J., Gómez A., Cabot J. (2023)
A domain-specific language for describing ma-
chine learning datasets. In: Journal of Computer
Languages 76, p. 101209

Guizzardi G., Pastor O., Storey V. (2023) Thinking
fast and slow in software engineering. In: IEEE
Software 40(6) forthcoming, pp. 1–3

Gunning D., Aha D. W. (2019) DARPA’s Explain-
able Artificial Intelligence (XAI) Program. In: AI
Mag. 40(2), pp. 44–58

Härer F., Fill H. (2020) Past Trends and Future
Prospects in Conceptual Modeling - A Biblio-
metric Analysis. In: Conceptual Modeling - 39th
International Conference, ER 2020, Vienna, Aus-
tria, November 3-6, 2020, Proceedings. Lecture
Notes in Computer Science Vol. 12400. Springer,
pp. 34–47

Hutchinson J. E., Whittle J., Rouncefield M. (2014)
Model-driven engineering practices in industry:
Social, organizational and managerial factors that
lead to success or failure. In: Sci. Comput. Pro-
gram. 89, pp. 144–161

Kahneman D. (2011) Thinking, fast and slow.
Farrar, Straus and Giroux

http://dx.doi.org/10.18417/emisa.19.1


International Journal of Conceptual Modeling
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1

10 Hans-Georg Fill, Jordi Cabot, Wolfgang Maass, Marten van Sinderen

Kaynak O. (2021) The golden age of Artificial
Intelligence: Inaugural Editorial. In: Discover Ar-
tificial Intelligence 1, pp. 1–7

Kent S. (2002) Model driven engineering. In: In-
tegrated Formal Methods. Lecture Notes in Com-
puter Science Vol. 2335. Springer, pp. 286–298

Kleinberg J., Ludwig J., Mullainathan S. (2016)
A guide to solving social problems with machine
learning. In: Harvard Business Review Available
online: https://hbr.org/2016/12/a-guide-to-
solving-social-problems-with-machine-learning
(accessed on 13 September 2023)

LeCun Y., Bengio Y., Hinton G. (2015) Deep
learning. In: Nature 521(7553), pp. 436–444

Li Y., Choi D., Chung J., Kushman N., Schrit-
twieser J., Leblond R., Eccles T., Keeling J., Gi-
meno F., Dal Lago A., et al. (2022) Competition-
level code generation with alphacode. In: Science
378(6624), pp. 1092–1097

Ma W., Liu S., Wang W., Hu Q., Liu Y., Zhang C.,
Nie L., Liu Y. (2023) The Scope of ChatGPT in
Software Engineering: A Thorough Investigation.
In: (arXiv:2305.12138) arXiv:2305.12138 [cs]

Maass W., Castellanos A., Tremblay M. C., Lukya-
nenko R., Storey V. C. (2022a) AI Explainability:
Embedding Conceptual Models. In: Proceedings
of the 43rd International Conference on Informa-
tion Systems, ICIS 2022

Maass W., Castellanos A., Tremblay M. C., Lukya-
nenko R., Storey V. C. (2022b) Concept Superim-
position: Using Conceptual Modeling Method for
Explainable AI.. In: AAAI Spring Symposium:
MAKE, pp. 1–6

Maass W., Storey V. C. (2021) Pairing concep-
tual modeling with machine learning. In: Data &
Knowledge Engineering 134, p. 101909

Martinez S., Gerard S., Cabot J. (2019) On the
Need for Intellectual Property Protection in Model-
Driven Co-Engineering Processes. In: 24th Inter-
national Conference, EMMSAD 2019. Springer,
pp. 169–177

McAfee A., Brynjolfsson E. (2012) Big data: the
management revolution. In: Harvard Business Re-
view 90(10), pp. 60–68

Michael J., Bork D., Wimmer M., Mayr H. C.
(2023) Quo Vadis modeling? In: Software and
Systems Modeling

Muff F., Härer F., Fill H. (2022) Trends in Aca-
demic and Industrial Research on Business Process
Management - A Computational Literature Analy-
sis. In: 55th Hawaii International Conference on
System Sciences, HICSS 2022, pp. 1–10

Mussbacher G., Combemale B., Kienzle J.,
Abrahão S., Ali H., Bencomo N., Búr M., Bur-
gueño L., Engels G., Jeanjean P., Jézéquel J., Kühn
T., Mosser S., Sahraoui H. A., Syriani E., Varró D.,
Weyssow M. (2020) Opportunities in intelligent
modeling assistance. In: Softw. Syst. Model. 19(5),
pp. 1045–1053

Mylopoulos J. (1992) Conceptual modelling and
Telos In: Conceptual Modeling, Databases, and
CASE: An Integrated View of Information Sys-
tems Development John Wiley & Sons, Inc.,
pp. 49–68

Mylopoulos J., Borgida A., Yu E. (1997) Rep-
resenting software engineering knowledge. In:
Automated Software Engineering 4, pp. 291–317

OpenAI (2023) GPT-4 Technical Report. arXiv
preprint arXiv:2303.08774 [cs.CL]

Peng S., Kalliamvakou E., Cihon P., Demirer M.
(2023) The impact of ai on developer productivity:
Evidence from github copilot. In: arXiv preprint
arXiv:2302.06590

Proceedings of the AAAI 2021 Spring Symposium
on Combining Machine Learning and Knowledge
Engineering (AAAI-MAKE 2021), Stanford Uni-
versity. CEUR Workshop Proceedings Vol. 2846.
CEUR-WS.org

Proceedings of the AAAI 2022 Spring Symposium
on Machine Learning and Knowledge Engineer-
ing for Hybrid Intelligence (AAAI-MAKE 2022),
Stanford University. CEUR Workshop Proceed-
ings Vol. 3121. CEUR-WS.org

http://dx.doi.org/10.18417/emisa.19.1


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 1 (2024). DOI:10.18417/emisa.19.1
AI-Driven Software Engineering (Viewpoint) 11

Proceedings of the AAAI 2023 Spring Sympo-
sium on Challenges Requiring the Combination
of Machine Learning and Knowledge Engineering
(AAAI-MAKE 2023). CEUR Workshop Proceed-
ings Vol. 3433. CEUR-WS.org
Rich C., Waters R. C. (1988) The programmer’s
apprentice: A research overview. In: Computer
21(11), pp. 10–25
Robinson S., Arbez G., Birta L., Tolk A., Wag-
ner G. (2015) Conceptual modelling: definition,
purpose and benefits. In: 2015 Winter Simulation
Conference. IEEE, pp. 2812–2826
Rosenthal K., Strecker S., Asensio E. S., Snoeck
M. (2023) Guest Editorial to the Special Issue on
Teaching and Learning Conceptual Modeling. In:
Enterprise Modelling and Information Systems
Architectures (EMISAJ) – International Journal
of Conceptual Modeling 18
Sandkuhl K., Fill H., Hoppenbrouwers S., Krogstie
J., Matthes F., Opdahl A. L., Schwabe G., Uludag
Ö., Winter R. (2018) From Expert Discipline to
Common Practice: A Vision and Research Agenda
for Extending the Reach of Enterprise Modeling.
In: Bus. Inf. Syst. Eng. 60(1), pp. 69–80
Schmidhuber J. (1993) A neural network that
embeds its own meta-levels. In: IEEE International
Conference on Neural Networks. IEEE, pp. 407–
412
Sendall S., Kozaczynski W. (2003) Model driven
transformation: the heart and soul of model-driven
development. In: IEEE Software 20(5), pp. 42–45
Strowel A. (2023) ChatGPT and Generative AI
Tools: Theft of Intellectual Labor? In: IIC - In-
ternational Review of Intellectual Property and
Competition Law 54(4), pp. 491–494
Troya J., Moreno N., Bertoa M. F., Vallecillo
A. (2021) Uncertainty representation in software
models: a survey. In: Softw. Syst. Model. 20(4),
pp. 1183–1213
Van Sinderen M., Ferreira Pires L., Vissers C.
(1992) Protocol design and implementation using
formal methods. In: The Computer Journal 35(5),
pp. 478–491

Vaswani A., Shazeer N., Parmar N., Uszkoreit J.,
Jones L., Gomez A. N., Kaiser Ł., Polosukhin I.
(2017) Attention is All you Need. In: Advances in
Neural Information Processing Systems Vol. 30.
Curran

White J., Hays S., Fu Q., Spencer-Smith J.,
Schmidt D. C. (Mar. 2023) ChatGPT Prompt
Patterns for Improving Code Quality, Refactoring,
Requirements Elicitation, and Software Design.
In: (arXiv:2303.07839) arXiv:2303.07839 [cs]

http://dx.doi.org/10.18417/emisa.19.1

