
Supplementary Material for
HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning

for RGB-D 6DoF Object Pose Estimation

1. Details of Network

Figure 1 illustrates the architecture of HiPose. The network
comprises two branches, namely the RGB branch and the
point cloud branch. In the pre-stage of the RGB branch, a
cropped image with dimensions of 3×H×W is transformed
into RGB embedding with dimensions of 128×H/4×W/4.
Here, H and W represent the height and width of the input
cropped RGB image, respectively, and by default, both are
set to 256. On the other hand, the point cloud branch maps
an input with 9 channels, consisting of point coordinates,
color, and normal information, to a feature. The parameter
npts is set to 2730, which denotes the number of randomly
sampled valid input point clouds.

Each of these branches is constructed with intercon-
nected encoders and decoders, serving the fundamental pur-
pose of feature extraction, feature transformation, and fea-
ture fusion.

The process of feature extraction aims to extract high-
level features and adjust the channel dimension. In ac-
cordance with FFB6D [3], RandLA-Net [5] is employed
to handle point cloud features. Furthermore, pre-trained
ConvNeXt-B [6] and PSPNet [8] models are incorporated
into the encoder and decoder blocks.

Feature transformation refers to the conversion between
the features of the RGB branch and the point cloud branch,
facilitated through coordinate correspondence. Specifically,
as demonstrated in Figure 2, the point cloud branch feature
can be generated by aggregating features from the nearest
features in the RGB branch. Likewise, the RGB branch fea-
ture can be generated by interpolating the feature from the
point cloud branch. This enables bidirectional transforma-
tion between the features of the RGB branch and the point
cloud branch.

The process of feature fusion is executed using a Convo-
lutional Neural Network (CNN). The new RGB feature is
generated by concatenating the RGB feature with the trans-
formed RGB feature, and the same procedure is applied to
the depth feature. Further details regarding the feature fu-
sion process can be observed in Figure 3.

Finally, a straightforward convolution-based head is em-

points 4 6 8 10 20 30

500 iterations 88.7 89.0 89.0 89.1 89 88.7
1000 iterations 89.0 89.1 88.9 89.1 89.1 88.8
1500 iterations 89.0 89.1 89.1 89.1 88.9 88.8

Table 1. Test RANSAC+Kabsch parameters on LM-O [1]. We
tune the number of correspondences in each RANSAC iteration
and the number of RANSAC iterations with a maximum corre-
spondence points-pair distance of 2cm. The results are presented
with average recall of ADD(-S) in %. According to the table, us-
ing 10 correspondences in each RANSAC iteration yields the best
results. However, the results achievable with RANSAC+Kabsch
are inferior to those obtained with our hierarchical approach.

ployed to predict the visible mask and code for the selected
npts points.

2. Details of Open3D RANSAC+Kabsch
We use the registration ransac based on correspondence
function in Open3D[10] to solve the object pose with the
given correspondence. We tuned the number of corre-
spondences in each RANSAC iteration and the number
of RANSAC iterations. The results achievable with
RANSAC+Kabsch are inferior to those obtained with our
hierarchical approach, as showed in Table. 1.

3. Impact of ICP
The Iterative Closest Point algorithm (ICP) is commonly
employed as a refinement strategy, leveraging depth infor-
mation to align the estimated pose. We assess the impact
of ICP on both HiPose and ZebraPose, both of which are
trained solely with pbr images in Table. 2. For HiPose, we
provide a ground truth object mask to facilitate the appli-
cation of ICP. Surprisingly, ICP fails to yield any enhance-
ments and, in fact, worsens the outcome. In the case of
ZebraPose, a substantial improvement in the result is ob-
served. Nevertheless, once the pose achieves a satisfactory
level of accuracy, such as employing RANSAC Kabsch (re-
call greater than 87%), the incorporation of ICP does not

1

Experiment Setup ADD(-S) in %

ZebraPose (Trained only with pbr images) 63.5
ZebraPose (pbr) + ICP 83.9
ZebraPose (pbr) + RANSAC Kabsch 87.0
ZebraPose (pbr) + RANSAC Kabsch + ICP 87.0

HiPose (ours) 89.6
HiPose + ICP refinement (with ground truth object mask) 89.3

Table 2. Evaluate the impact of ICP. We assess the impact of ICP
on both HiPose and ZebraPose, both of which are trained solely
with pbr images. We observed that once the pose achieves a satis-
factory level of accuracy, the incorporation of ICP does not lead to
betterment.

lead to betterment. This circumstance may be attributed to
insufficient accuracy in the depth map.

4. Impact of noisy depth

Experiment Setup ADD(-S) in %

HiPose (ours) 89.6

Depth with Zero Mean Gaussian Noise with Sigma 0.01 89.0
Random drop 20% points in Depth Map 89.5

Table 3. Evaluate the impact of noisy depth. When introducing
noise or randomly omitting data points in the depth map, HiPose
still performs admirably under such circumstances.

During training, we augmented the depth maps with
Gaussian noise and randomly dropped pixels, to make the
network less sensitive to the noise. Coincidentally, the 3
evaluated datasets are captured with different depth sensors,
showing that HiPose is robust to different noise levels. We
perform additional experiments in Table. 3, showing that
HiPose is quite robust to missing measurements in the depth
map. However, inaccurate measurements do slightly affect
performance.

5. Details of YCB-V results
We summarized the per-object results on the YCB-V
dataset [7] in Table 4. As presented in the table, we out-
perform other approaches on most test objects.

6. Qualitative Results
We present quantitative results on the LM-O [1], YCB-
V [7], and T-LESS [4] datasets in Figure 4, Figure 5, and
Figure 6, respectively. We rendered the object into the im-
age using the estimated pose. It is clear to see that the con-
tour of the rendered object aligns seamlessly with the real
object in the image, demonstrating the accuracy of our es-
timated pose. Furthermore, it is evident that our proposed
HiPose performs well with texture-less objects and can han-
dle occlusion effectively.

References
[1] Eric Brachmann, Frank Michel, Alexander Krull,

Michael Ying Yang, Stefan Gumhold, and Carsten Rother.
Uncertainty-driven 6d pose estimation of objects and
scenes from a single rgb image. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3364–3372, 2016. 1, 2, 5

[2] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11632–11641, 2020. 3

[3] Yisheng He, Haibin Huang, Haoqiang Fan, Qifeng Chen, and
Jian Sun. Ffb6d: A full flow bidirectional fusion network for
6d pose estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3003–3013, 2021. 1, 3

[4] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas,
Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-
d dataset for 6d pose estimation of texture-less objects. In
2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 880–888. IEEE, 2017. 2, 7

[5] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11108–
11117, 2020. 1, 4

[6] Zhuang Liu, Hanzi Mao, Chaozheng Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11966–11976, 2022. 1,
4

[7] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. 2018. 2, 6

[8] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 1, 4

[9] Jun Zhou, Kai Chen, Linlin Xu, Qi Dou, and Jing Qin.
Deep fusion transformer network with weighted vector-wise
keypoints voting for robust 6d object pose estimation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13967–13977, 2023. 3

[10] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018. 1

Method PVN3D [2] FFB6D [3] DFTr [9] Ours

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can 96.0 80.5 96.3 80.6 97.0 92.3 96.4 86.2
003 cracker box 96.1 94.8 96.3 94.6 95.9 93.9 97.7 96.7
004 sugar box 97.4 96.3 97.6 96.6 97.1 95.5 98.2 97.1
005 tomato soup can 96.2 88.5 95.6 89.6 95.6 92.6 97.0 95.1
006 mustard bottle 97.5 96.2 97.8 97.0 97.6 96.3 98.4 96.9
007 tuna fish can 96.0 89.3 96.8 88.9 97.3 94.5 97.8 96.2
008 pudding box 97.1 95.7 97.1 94.6 97.4 95.7 98.8 98.1
009 gelatin box 97.7 96.1 98.1 96.9 97.6 96.3 98.9 97.8
010 potted meat can 93.3 88.6 94.7 88.1 95.9 92.1 93.5 83.4
011 banana 96.6 93.7 97.2 94.9 97.1 95.0 98.6 96.3
019 pitcher base 97.4 96.5 97.6 96.9 96.0 93.1 96.8 93.2
021 bleach cleanser 96.0 93.2 96.8 94.8 96.8 94.9 97.1 94.0
024 bowl* 90.2 90.2 96.3 96.3 96.9 96.9 98.0 98.0
025 mug 97.6 95.4 97.3 94.2 97.6 94.9 98.2 95.7
035 power drill 96.7 95.1 97.2 95.9 96.9 95.2 98.3 97.4
036 wood block* 90.4 90.4 92.6 92.6 96.2 96.2 97.0 97.0
037 scissors 96.7 92.7 97.7 95.7 97.2 93.3 98.3 96.8
040 large marker 96.7 91.8 96.6 89.1 96.9 92.7 98.6 94.3
051 large clamp* 93.6 93.6 96.8 96.8 96.3 96.3 95.9 95.9
052 extra large clamp* 88.4 88.4 96.0 96.0 96.4 96.4 95.6 95.6
061 foam brick* 96.8 96.8 97.3 97.3 97.3 97.3 98.6 98.6
mean 95.5 91.8 96.6 92.7 96.7 94.4 97.5 95.3

Table 4. Comparison with State of the Art on YCB-V. We report the Average Recall w.r.t AUC of ADD(-S) and AUC of ADD-S in %
and compare with state of the art. (*) denotes symmetric objects.

rgb [bsz,3,H,W] xyzRGBnorm [bsz,9,npts]

CNNPreStages rndlaPreStages

downsample downsample

point->rgbrgb->point

[bsz,128,H/4,W/4] [bsz,8,npts,1]

[bsz,64,npts/4,1][bsz,128,H/4,W/4]

[bsz,128,npts/16,1][bsz,256,H/8,W/8]

[bsz,512,H/16,W/16] [bsz,256,npts/64,1]

[bsz,1024,H/16,W/16] [bsz,512,npts/256,1]

[bsz,256,npts/64,1][bsz,256,H/8,W/8]

upsample upsample

point->rgbrgb->point

[bsz,64,H/4,W/4] [bsz,128,npts/16,1]

[bsz,64,H/4,W/4] [bsz,64,npts/4,1]

[bsz,64,npts][bsz,64,npts]

prediction head

mask
[bsz,1,npts]

code
[bsz,16,npts]

encode stage

decode stage

concat

fuse

p2r_fuse_layers r2p_fuse_layers

fuse

p2r_fuse_layers r2p_fuse_layers

Figure 1. Network Architecture : The network comprises four
encoder blocks and four decoder blocks. Each block performs up-
sampling or downsampling of the input, processes the RGB and
point features, and subsequently merges them except the last de-
coder block. In the RGB image branch, we employ ConvNeXt
blocks [6] as the encoders and PSPNet blocks [8] as the decoders.
As for the point cloud branch, we utilize modules derived from
Randla [5]. Here, ’bsz’ refers to the batch size, ’npts’ denotes the
number of points, and ’H/W’ represents the height and width of
the image.

p2r_pre_layers

Conv2d,1×1,s=1

BatchNorm2d

ReLU

p_emb [bsz,C1,npts,1]

p2r_emb [bsz,C2,h0,w0]

nearest_interpolation

[bsz,C2,npts,1]

p2r_neighbor_index
 [bsz,h0*w0,1]

r2p_pre_layers

Conv2d,1×1,s=1

BatchNorm2d

ReLU

sample

rgb_emb [bsz,C1,h0,w0]

r2p_neighbor_index
 [bsz,npts,1]

[bsz,C1,npts,1]

r2p_emb[bsz,C2,npts,1]

Figure 2. The upper block represents the conversion of RGB
features to point features, denoted by r2p emb, while the bot-
tom block illustrates the conversion of point features to RGB
features, denoted by p2r emb. r2p neighbor index indicates
the index of the closest pixel for each point feature, similar for
p2r neighbor index.

[bsz,c1,h0,w0]
rgb_emb

[bsz,c2,h0,w0]
p2r_emb

Conv2d,1×1,s=1

BatchNorm2d

ReLU

rgb_emb [bsz,c3,h0,w0]

p2r_fuse_layers

[bsz,c2,n,1]
r2p_emb

Conv2d,1×1,s=1

BatchNorm2d

ReLU

p_emb [bsz,c3,n,1]

r2p_fuse_layers

[bsz,c1,n,1]
p_emb

r2p_fuse_layers

p_emb p2r_embrgb_embr2p_emb

p2r_fuse_layers

rgb_emb p_emb
(a)

(b) (c)

Figure 3. (a) The feature flow of the fuse block. (b) This block
serves the purpose of fusing RGB feature rgb emb and point-to-
RGB feature p2r emb. (c) This block is responsible for fusing
point feature pemb and RGB-to-point feature r2p emb.

Figure 4. Qualitative Results on LM-O [1].

Figure 5. Qualitative Results on YCB-V [7].

Figure 6. Qualitative Results on T-LESS [4].

	. Details of Network
	. Details of Open3D RANSAC+Kabsch
	. Impact of ICP
	. Impact of noisy depth
	. Details of YCB-V results
	. Qualitative Results

