
Enhancing Development of Modular
Application-Specific Configurable Space Robots

H. Wiedemann1, M. Schilling2, P. Chowdhury1, W. Brinkmann2, I.
Kien1, J. Li1, M. Langosz2 and E. Michelson2

1University of Bremen, Robotics Research Group, Robert-Hooke-Str. 1, D-28359 Bremen
2German Research Center for Artificial Intelligence, Robotic Innovation Center,
Robert-Hooke-Str. 1, D-28359 Bremen

E-mail: moritz.schilling@dfki.de

Abstract. In many space activities, existing robotic systems are highly mission-specific and
cannot be reused. On the other hand, there are several highly modular system designs, that lack
the specialized hardware, yet. The MODKOM (Modular Components as Building Blocks for
Application-specific Configurable Space Robots) project, aims to create a toolbox that allows to
configure and recombine a robot for certain tasks, out of specialized and standardized building
blocks; this also includes commercial off-the-shelf components. Therefore, MODKOM also focuses
on providing a software framework to compose and configure such systems. Based on the proposed
system modeling, all entities (hard- & software) can be represented, handled, and also be stored
to reuse sub-systems. By providing adequate (graphical) user interfaces and thereby lowering the
need for manually-typed files, this process is simplified benefiting accessibility to non-experts.
First tests in parallel projects show already the reduced necessity for manual configuration work
and thus, a decrease in mistakes in formerly error-prone tasks. MODKOM also provides a set
of modular hardware building blocks, which will be used in the upcoming final demonstration
scenario to evaluate the advances made.

1. Introduction
Due to the challenging environment, robotic systems are crucial for space applications. In the
past, space missions had few different mission goals, therefore highly specialized robots were
used for the tasks. As complexity increases in planned space missions, modularity becomes more
important.

Different levels of modularity have already been implemented in various spacecraft like
the International Space Station, the Multimission Modular Spacecraft, or the Reconfigurable
Operational Spacecraft for Science and Exploration [1]. By using standardized and easily
replaceable units interconnected by multifunctional interfaces, serviceability and reusability
are enabled [2]. Also for planetary rovers there are some concepts, like the modular robotic
system presented by Hancher et al. (2006) [3], where many similar elements form one functional
unit. Also other works as reviewed by Brunete et al. (2017) [4] show a likewise granularity
and have been developed from scratch to be that modular, e.g. the SUPERBOT [5]. For such
systems that rely on few building blocks Tosun et al. (2017) proposed already a computer-aided
compositional design tool [6]. However, if even static shapes have to be formed from many
actuated parts, complexity for control increases tremendously. Also integration of commercial



2

off-the-shelf (COTS) components becomes more difficult. As there is already a vast amount
of robot parts from many different manufacturers, integrating those components in a toolbox
instead of starting from scratch saves development work.

Therefore, in the proposed project the central aspect of the developed modular toolkit is to
find a level of granularity of the modules that allows making use of existing COTS parts (see [7]).
This encompasses not only the character and topology of the modules, but also the connectivity
between them. By providing multi-functional interfaces (i.e. electrical, mechanical, data) and, if
necessary adapters, this connectivity is also provided for COTS components.

Once added to this toolkit, systems can be composed out of atomic components as well as
already composed subsystems. Specifically, this means that modular subsystems are scalable to a
certain degree and according to the mission requirements.

To tackle the complexity issue of creating such systems, this paper presents methods and tools
to support the user as much as possible to facilitate creation and operation of modular systems.
Frameworks like Robot Operating System (ROS) [8] and Robot Construction Kit (ROCK) [9],
which manage the interoperability of different software components, serve as foundation. The
ROCK framework is highly designed based on such a modeling approach. It already supports the
definition of a dataflow by a graph based representation of its software components. Moreover,
ROCK uses Autoproj as package manager which allows various version control systems and
sources for dependencies, what makes it easy to include third party software. Therefore, in the
first implementation of the building block system the ROCK framework is used as backend to
deploy and execute the final runtime software.

This paper presents the current state, developed methods and the first results of the project
on enhancing the development of modular robots.

2. Software Framework
As the framework shall be able to handle components of all domains (mechanical, electrical,
software etc.), appropriate system modeling is required as backbone of this approach. Based
on these models all operations the user may perform in the frontend, e.g. the graphical user
interfaces (GUI), are executed. By rendering the information stored in the system model to the
necessary files, the created robot design can finally be deployed.

2.1. System Modeling
The modeling layer is the cornerstone of the entire software framework. It consists of the xtypes-
generator, the xtypes, and the xdbi libraries and tools. The xtypes-generator defines the
XType base class (an entity storing properties and relations to other XTypes) and the template
specification out of which derived, project-specific XType implementations can be generated. As
a result, a system of interdependent XTypes forms a labeled graph.

The xtypes library uses the XTypes base class to implement the following classes which
are necessary for modeling enitities in robotic systems (see Fig. 1): In general terms, this can
be divided into parts and their connections. InterfaceModels describe the general type of a
connection from one part two another, while its instance, the Interface, specifies the connection
possibilities of a part. Similarly, a ComponentModel defines the general type of a part and a
Component is its specialized and configured instance in a network of parts with connections.
Those networks form then again a new ComponentModel whose instances can be reused in
other networks. Both, ComponentModels and Components can have Interfaces. Also they might
have DynamicInterfaces, which are basically Interfaces, but their name and existance depend
on the configuration of that Component. As soon as that, what a ComponentModel describes,
is realized a Module is created. This Module represents a digital-twin of the real instance. By
ExternalReferences, ComponentModels can be annotated with a reference where to find further
information about them, e.g. simulation models, manuals, etc.



3

Figure 1: Example of the composition of Components by their Interfaces to a new ComponentModel
of a mobile manipulator and finally its instantiation to a Module.

Relations defined on these derived XTypes store the dependencies between them. For example,
the instance-of relation between a Component and a ComponentModel specifies that the
Component has been instantiated from that ComponentModel. The connected-to relation between
Interfaces encodes the connectivity between Interfaces of Components inside a ComponentModel.
That relation would thus represent the flow of data/information between software components
in the software domain. Fig. 1 depicts an example of how the xtypes formalism can be used
to model a robotic leg consisting of multiple instances of a certain robotic joint. The part-of
relation specifies that a Component is part of some ComponentModel (whole).

XTypes also support the creation of abstract ComponentModels/Components, which enables
the creation of template ComponentModels in which the abstract Components later on can be
implemented by non-abstract Components. As ComponentModels can also have abstract ancestors
these abstracts can be used to help the user find matching Components when instantiating
templates.

To reuse components, persistently store and share the system design with other users, the xdbi
layer implements an interface to the so called XRock-database. The database serializes/deserializes
the XTypes and their adjacency lists (per relation) in a JSON format. It supports multiple
users, local and remote access (via REST API), as well as mixed applications in which multiple
databases can serve as information sources. Furthermore, it defines a set of functions for retrieval
of as well as the consistent storage of (sub)graphs from/into the database.

2.2. User Interfaces
Several GUIs have been implemented to facilitate designing and planning modular systems.
They shall help the user to visualize the different aspects of composing and configuring the
components. This way it’s not only made easier for non-expert users but also tedious tasks that
are error-prone, when doing them manually, are simplified. There are tools for adding new atomic
ComponentModels, assembling higher level ComponentModels, and configuring Components in
such Component networks.



4

The XDashboard is a web-interface that gives the user a central cross-platform entry to the
the different tools in the composition and configuration process. From this dashboard the user
can access the different user interfaces associated with the current development step.

With the goal of having the complete workflow in the XDashboard represented, external tools
like the XRock-GUI (Sec. 2.2.2) are highlighted according to the current step in the workflow and
can be launched from XDashboard. New and existing tools can also be modularly integrated, like
the Component Browser and the Deimos module (see Sec. 2.2.2). Those plugins are implemented
as their own Python module which can be dynamically loaded, allowing for an easy way to
integrate new tools.

The Component Browser acts as a high-level interface to an instance of a XTypes database.
Besides inspecting ComponentModels, their properties, and relations, as well as editing any of
these properties or relations, it also allows to combine existing ones to new, yet unsophisticated
ComponentModels without connections. Thereby it is already one of several methods to add new
building blocks.

2.2.1. Adding Building Blocks: Using the Atomic-model-GUI basically anything can be
represented, stored, and later edited again as ComponentModel by defining its properties and
interfaces. For some special cases this process is made easier by providing more specialized tools.

When a robotic part/system is not yet in the database, a proper representation of that
hardware has to be created first. Phobos [10] supports the user in annotating the pure kinematic
and visual robot model exported, e.g. from CAD (Computer-Aided Design) software, with all
necessary annotations, i.e. sensors, collision shapes, interfaces, etc. Phobos is an open-source
add-on to the open-source 3D modeling tool Blender, and thus allows the user to edit all this in
a 3D environment. Once done, the model can simply be added via xdbi using the respective
script included in the toolbox. This script collects all necessary information from the created
model to a new ComponentModel and stores it to the database.

In the ROCK framework, a single software component is called task. ROCK already provides
a model description of each task, which can be used by a command line (CL) tool to import it as
new ComponentModel via xdbi. Using these CL-tools, the maintenance of models in the database
can be automated. A CI-job (continuous integration) can run through a set of repositories
containing ROCK tasks, or hardware models respectively and call the appropriate CL-tools to
update the database. While versioning the created ComponentModels by release tags is possible,
mixing different versions of one software on the deployed system must be avoided.

2.2.2. Composing, Connecting and Configuring: The XRock-GUI is the main tool in the
MODKOM toolbox for creating, composing, connecting, and configuring Components inside a
new ComponentModel. It is a graphical user interface that has database access via the xrock-
io-library-plugin that wraps xdbi. In the viewport all Components with their Interfaces are
visualized as editable nodes where the user can view and edit the connections as edges between
them (see Fig. 2). The GUI ensures that only valid connections can be drawn. For each Component
the XRock-GUI can be used to edit its configuration, this includes the usage of global variables
that are resolved at deploy-time. This minimizes the work of manually editing thousands of lines
of configuration manually and ensuring everything is consistent.

When creating templates, abstract Components can be used and later they can be specialized
by their implementations. The Abstract-GUI-plugin can be used to define that one Component
implements another and how its interfaces realize the abstract ones.

To facilitate assembling hardware modules, the XDashboard also provides access to the
web-app Deimos. It allows three-dimensional composition of the parts of a ComponentModel,
helping the user to ensure correct orientation of the modules with respect to each other.



5

2.3. Deployment
When the user is done describing the designed system in one or more ComponentModels, these
can be deployed using CL-tools. These tools are yet specialized for the use with ROCK [9] and
Autoproj [11]. By just passing the respective ComponentModel, the tool will generate a buildconf1
including local package sets2 and also bundles3 the CND files (Component Network Description)
that define which ROCK-Tasks have to run and how they communicate. The buildconf including
that bundle can then be installed on the robotic system.

During the deployment progress several things happen: The CL-tool instantiates first all
Components to Modules. As next step, also simulation models of assembled hardware will be
assembled and provided. Then, all global variables are applied down through the tree of Modules,
including paths to the simulation models, or dependent configuration settings. As final step,
the CNDs and configuration files for the different ROCK-Tasks are exported. This automation
ensures that essential elements are integrated into the robot’s environment in an efficient and
consistent manner. The deployed CNDs can then be used to start-up the task corresponding to
the current robot configuration or mission goal [12].

3. Hardware Building Blocks
For the basic toolkit payload modules (PLM), base modules, and a modular manipulator arm
are developed; Hunter SE from AgileX is involved as one COTS component (see Fig. 1) These
individual subsystems can be combined with each other via the electro-mechanical interconnect
MODKOM (EMI-MOD). The MODKOM toolkit includes active and passive EMI-MODs [13].

The mentioned PLMs are housings with an EMI-MOD and are intended for specific applications,
like stereo camera, computation, and communication as well as environmental sensing or as power
module. Thereby, they can e.g. expand the scope of tasks of the rover and the base module. [14]

The base module is a core structure with removeable compartments containing a set of relevant
robotic sub-subsystems, like on-board computer, electrical power supply, and a communication
module. The top of the base module can be equipped with up to two passive EMI-MODs.

The modular manipulator is also equipped with two active EMI-MODs as end effectors. By
using the EMI-MOD, all mentioned systems can be combined with each other, also the Hunter
SE. A platform fitted with at least four EMI-MODs will be mounted on the rover Hunter SE
to provide the capability to interact with the other modules. With the help of the software
framework described in this paper, autonomous (re-)configuration between the systems involved
can be enabled by using the EMI-MOD. Other standard interconnects are also evaluated [15].

4. Markerless Visual Servoing for Docking
Online (re-)configuration requires reliable docking, that was performed by marker dependant
visual servoing in the past. To bypass unrecognizable markers, i.e. when covered with dirt or in
bad lighting conditions, markerless visual servoing is developed as an complementary approach.
Introducing the use of additional cameras and algorithms, machine learning methods such as 2D
object detection and 6D pose estimation are applied to detect the EMI-MOD passive side.

Pix2Pose [16] calculates the loss function using symmetric poses and predicts 3D coordinates
from cropped images containing relevant parts from the 2D detection model. The machine learning
pipeline is initially implemented in Python using the Perception for Autonomous Systems (PAZ)
library [17], acquiring inference for quaternions and translation vector information relative to
1 The buildconf is a configuration that describes for an Autoproj environment which package sets to include and
which software to build.
2 A package set describes where software repositories can be fetched and how to get their binary dependencies for
the respective operating system.
3 Bundles in Rock are collections of the files necessary to run the created setup, i.e. Component Network Description
files (.cnd), OroGen task configurations, Ruby scripts for components, etc. They can be version controlled.



6

the camera, then providing it via a ROCK task. First experiments to evaluate feasibility and
performance are carried out for the EMI-MOD on PLM.

Due to the absence of a PLM dataset, the training process employs a 3D PLM model from
the Pyrender library [18]. The dataset is created by extracting objects from rendered images and
blending them with various background images from the PASCAL Visual Object Classes dataset
(VOC) and simulated environments. Furthermore, the images undergo several augmentations,
like random occlusions, controlled blurring effects, and so on.

5. Dynamic Mission Planning
Modularization allows various module (re-)combinations, posing a combinatorical challenge in
planning domain of determining how and when to (re-)configure a system before and during a
space mission. TemPl [19] tackles this challenge by planning missions based on an ontological
organization model for modular robots, called MoreOrg. Dynamic mission planning allows for
online execution and knowledge updates during missions, enhancing flexibility in dealing with
failures, changing conditions, and hierarchical goals, implemented in three steps.

(i) Deployment of TemPl-Task. TemPl is a planning system for reconfigurable multi-robot
systems, available as a software Component Model for ROCK tasks, allowing easy integration
into robot software stacks and online use by the system itself. To optimize the TemPl-
task regarding performance and solution quality, methods such as A* and multi-objective
optimization of the cost function are investigated.

(ii) Development of Ontology-Editor-Task. To update the knowledge base (either
organization model or the mission constraints) during the mission, a second ROCK task is
developed, which utilizes a C++ implementation [19] of the OWL-API [20].

(iii) Integration of Ontology-Workflow to Software-Framework. An ontology workflow
was developed, that guides the framework user through the ontological modeling of composed
robots. A GUI was developed to link Components with ontological descriptions in an ontology-
database, ensuring efficient usage of the organization model through automated instantiations
and logic checks.

6. Current State & First Results
Fig. 2 shows an example application in the context of human-machine-interaction. In the scope
of the application the wheeled robot has to react on the behavior of the human. If the human
moves towards the legged robot, the wheeled robot predicts that the human wants to work on
the legged one and knows that tools from the shelf are required. So, it autonomously moves to
the shelf to pick up the tools and brings them to the human.

In this application the robot has to perform different behaviors, such as observing the human’s
intention, navigating through the hall, detecting object poses and manipulating/grasping them.
All single behaviors are modeled based on the XRock tooling purely via graphical user interfaces.
The move to behavior is partly presented in Fig. 2. Only two Components are used in the top-level
network, which are the drivers of the simulated robot and the move to behavior implementation.
This way, the simulated driver Component can be exchanged by the driver Component of the real
system without the need to modify the other layers of the software architecture. The move to
network consists ofComponents, too, which represent other layers of the software architecture
such as the navigation stack including a trajectory follower, obstacle detection, and avoidance. In
this specific architecture mapper and path planner Components are stored in another so called
“base” network.

Overall, five different behaviors are setup in the example application. Each behavior is
represented by a software component network with 20 different Components in average. A
single component network/behavior, represented in a human readable text file that is executed



7

KiMMI_FinalDemo_Move_To

SOFTWARE::KiMMI_FinalDemo_Move_To::v0.0.1

KiMMI_FinalDemo_Base:PathPlanner:start_pose_samples

: :base::samples: :RigidBodyState

KiMMI_FinalDemo_Navigation:PointcloudObstacleDetection:scan

::base::samples: :Pointcloud

KiMMI_FinalDemo_Navigation:MotionCmdCollisionDetection:motion_cmd

::base::commands::Motion2D

hunter_sim_mcs

SOFTWARE::hunter_sim_mcs::v0.0.1

hunter_simulation:hunter_ joints_arm:command

::base::samples: : J oints

hunter_simulation:hunter_ joints_gripper:command

::base::samples: : J oints

artemis_motion_controller:motion_command

::base::commands::Motion2D

hunter_simulation:CVRobotPose6D:orientation_samples

: :base::samples: :RigidBodyState

hunter_simulation:hunter_ joints_arm:status_samples

: :base::samples: : J oints

hunter_simulation:hunter_ joints_gripper:status_samples

: :base::samples: : J oints

hunter_simulation:mars_Camera:frame

::RTT::extras: :ReadOnlyPointer : :base: :samples: : frame::Frame >

hunter_simulation:mars_TOFCamera:pointcloud

::base::samples: :Pointcloud

hunter_simulation:RotatingLaserRangeFinder:pointcloud

::base::samples: :Pointcloud

KiMMI_FinalDemo_Navigation

SOFTWARE::KiMMI_FinalDemo_Navigation::v0.02

trajectory_ follower_sim:trajectory

: :std: :vector< : : trajectory_ follower: :SubTrajectory >

PointcloudObstacleDetection:scan

::base::samples: :Pointcloud

MotionCmdCollisionDetection:motion_cmd

::base::commands::Motion2D

KiMMI_FinalDemo_Base

SOFTWARE::KiMMI_FinalDemo_Base::v0.0.1

CVHumanPoseChange:human_pose

::base::samples: :RigidBodyState

PathPlanner:start_pose_samples

: :base::samples: :RigidBodyState

CVHumanPoseChange:twist

: :base::samples: :RigidBodyState

PathPlanner:detailedTrajectory2D

::std: :vector< : : trajectory_ follower: :SubTrajectory >

CVLocationOfInterest

SOFTWARE::cv_ location_of_ interest: :Task::v0.0.1

human_pose_change

::base::samples: :RigidBodyState

robot_world_transformation

::base::samples: :RigidBodyState

state

boost: : int32_t

location_of_ interest

: :kimmi_sf_ types::NamedVectorFloat

CVHumanPoseGT

SOFTWARE::relay: :Task::v0.0.1

pose_ in

: :base::samples: :RigidBodyState

state

boost: : int32_t

pose_out

: :base::samples: :RigidBodyState

PointcloudObstacleDetection

SOFTWARE::pointcloud_obstacle_detection::Task: :v0.0.1

scan

::base::samples: :Pointcloud

transformer_stream_aligner_status

: :aggregator: :StreamAlignerStatus

transformer_status

: : transformer: :TransformerStatus

detected_object_count

boost: : int32_t

roi_cloud

::base::samples: :Pointcloud

ground_points

: :base::samples: :Pointcloud

non_ground_points

: :base::samples: :Pointcloud

obstacles_OBB

::std: :vector< : :base: :samples: :OrientedBoundingBox >

state

boost: : int32_t

MotionCmdCollisionDetection

SOFTWARE::trajectory_ feasibility_checker: :MotionCmdCollisionDetection::v0.0.1

obstacles

: :std: :vector< ::base::samples: :OrientedBoundingBox >

input_cmd

::base::commands::Motion2D

emergency_stop

bool

collision_ imminent

bool

motion_cmd

::base::commands::Motion2D

future_pose

::base::samples: :RigidBodyState

debug_FL

::base::samples: :RigidBodyState

debug_FR

::base::samples: :RigidBodyState

debug_RL

::base::samples: :RigidBodyState

debug_RR

::base::samples: :RigidBodyState

state

boost: : int32_t

trajectory_ follower_sim

SOFTWARE::trajectory_ follower: :Task::v0.0.1

dynamic_objects

: :std: :vector< : :pointcloud_obstacle_detection::Box >

trajectory

: :std: :vector< : : trajectory_ follower: :SubTrajectory >

holonomic_trajectory

: : trajectory_ follower: :SubTrajectory

transformer_stream_aligner_status

: :aggregator: :StreamAlignerStatus

transformer_status

: : transformer: :TransformerStatus

motion_command

::base::commands::Motion2D

follower_data

::trajectory_ follower: :FollowerData

current_ trajectory

: :std: :vector< ::trajectory_ follower: :SubTrajectory >

state

boost: : int32_t

Move_To

Top-Level Network

Navigation

Figure 2: Example application setup based on the presented framework. Top/Image: A simulated
environment where a mobile robot has to support a human in a lab. Bottom/Graph: The different
layers of the modeled “move to” behavior, which is one of several robot behavior to perform in
this application. The highlighted Interfaces of one layer represent the Interfaces of the Component,
if used on a higher layer. The shown networks are snapshots of XRock-GUI.

by the ROCK runtime environment, covers approximately 1200 lines of network definitions
(tasks, connections, deployments, configurations and transformations). These text files were
generated and maintained manually, before the XRock-GUI and the toolbox were introduced.
However, some configuration sections still have to be written manually; for the behaviors of the
example application approximately 100-200 lines of text must still be processed manually. This
highly modular approach of designing the dataflow architecture reduces the overall complexity
for the user and allows to share solutions/networks between different applications and robots.
Additionally, due to the graphical user interfaces no syntax errors and almost no typos can be
made by the user when designing new component networks.

7. Discussion & Outlook
By applying the here described methods (see Sec. 6) to other currently running projects, the
amount of hand written ROCK task connections and configurations could already be reduced
immensely; and thereby, the progress became less prone to mistakes. Providing these tools,
MODKOM contributes to simplifying the development of space robots, especially modular ones.
Some of the presented libraries have already been published open-source (Phobos, xtypes-
generator, xtypes, xdbi, xrock-io-library)4. Publishing the yet missing tools is planned
later in the project, when their state has advanced. So, in the end the toolbox shall be publicly
available.

The next steps are extending the ComponentModels by further semantic relations amongst
each other, to better represent ontology relations, e.g. to which hardware a driver relates or similar.
This will also benefit integration with mission planning in TemPl. Furthermore, deployment tools
and process of the software stack has to be refined and tested on the robotic hardware.

Using the example of a planetary mission scenario, the here presented functionalities will
be put to test at the end of project. In this scenario a modular mobile robot shall reconfigure
4 They can be found as repositories here: https://github.com/dfki-ric



8

itself to adapt to different tasks like exploration and placing a sensor station. Thus, not only the
execution shall be evaluated but also how this robot can be designed, configured, assembled, and
comissioned [15].

In general, the modeling approach can be used for any framework where software modules
can be modeled by their interfaces and data exchange by connections between these interfaces.
The adaptation of the yet ROCK-specific implementations to other robotic frameworks like ROS
would be a possible subject to future projects.

Acknowledgements
The authors would like to thank the MODKOM and KiMMI-SF team and all supporting staff at University of
Bremen Robotics Research Group as well as DFKI Robotics Innovation Center. The work presented is part of the
project MODKOM and the current state was evaluated in project KiMMI-SF. Both are funded by the German
Space Agency (DLR) with federal funds of the Federal Ministry for Economic Affairs and Climate Action in
accordance with the parliamentary resolution of the German Parliament under grant no. 50RA2107 and 50RA2108
(MODKOM) and grant no. 50RA2021 and 50RA2022 (KiMMI-SF).

References
[1] Rossetti D, Keer B et al. 2015 Spacecraft Modularity for Serviceable Satellites AIAA SPACE 2015 Conference

and Exposition (Reston, Virginia: American Institute of Aeronautics and Astronautics) ISBN 978-1-62410-
334-6

[2] Post M A, Yan X T and Letier P 2021 Modularity for the future in space robotics: A review Acta Astronautica
189 530–547

[3] Hancher M D and Hornby G S 2006 A modular robotic system with applications to space exploration 2nd
IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT’06)
(IEEE) pp 8–pp

[4] Brunete A, Ranganath A et al. 2017 Current trends in reconfigurable modular robots design International
Journal of Advanced Robotic Systems 14 1729881417710457

[5] Salemi B, Moll M and Shen W M 2006 Superbot: A deployable, multi-functional, and modular self-
reconfigurable robotic system 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IEEE) pp 3636–3641

[6] Tosun T, Jing G et al. 2017 Robotics Research: Volume 1 (Springer) pp 237–252
[7] Sonsalla R U, Brinkmann W et al. 2022 Towards modular components as building blocks for application-

specific configurable space robots Proceedings of the 16th Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA 2022) (Leiden, Netherlands: ESA/ESTEC)

[8] Stanford Artificial Intelligence Laboratory et al Robotic operating system URL https://www.ros.org
[9] DFKI GmbH Robotics Innovation Center The robot construction kit. accessed on 20.09.2023 URL

http://www.rock-robotics.org
[10] von Szadkowski K and Reichel S 2020 Phobos: A tool for creating complex robot models Journal of Open

Source Software 5 1326
[11] Joyeux S autoproj. accessed on 20.09.2023 URL http://www.github.com/rock-core/autoproj
[12] Wirkus M, Arnold S and Berghöfer E 2020 Online reconfiguration of distributed robot control systems for

modular robot behavior implementation Journal of Intelligent & Robotic Systems 100(3) 1283–1308
[13] Brinkmann W, Yueksel M et al. 2023 Multifunctional interconnect for future modular planetary robots 74th

International Astronautical Congress (IAC)
[14] Brinkmann W, Cordes F et al. 2018 Modular Payload-Items for Payload-assembly and System Enhancement

for Future Planetary Missions 2018 IEEE Aerospace Conference (Big Sky, Montana, USA: IEEE Comput.
Soc. Press) pp 1–10

[15] Sonsalla R, Wiedemann H et al. 2022 Toolbox design to demonstrate application-specific configurable space
robots using modular components International Astronautical Congress, IAC 2022 (IAF)

[16] Park K, Patten T and Vincze M 2019 Pix2pose: Pixel-wise coordinate regression of objects for 6d pose
estimation Proceedings of the IEEE/CVF International Conference on Computer Vision pp 7668–7677

[17] Arriaga O, Valdenegro-Toro M et al. 2020 Perception for autonomous systems (paz) arXiv preprint
arXiv:2010.14541

[18] Matl M 2019 Pyrender. https://github.com/mmatl/pyrender
[19] Roehr T M 2022 Active exploitation of redundancies in reconfigurable multirobot systems IEEE Transactions

on Robotics 38 180–196
[20] Horridge M and Bechhofer S 2011 The owl api: A java api for owl ontologies Semantic web 2 11–21




