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Figure 1. (a)-(b) Comparative Overview of SSOD advancements: Sparse Semi-DETR’s major improvement lies in its Query Refinement
Module and Reliable Pseudo-label Filtering Module, significantly enhancing detection of small or obscured objects and reliability in complex
scenarios, surpassing all other methods as shown in the graph in (c).

Abstract

In this paper, we address the limitations of the DETR-
based semi-supervised object detection (SSOD) framework,
particularly focusing on the challenges posed by the quality
of object queries. In DETR-based SSOD, the one-to-one as-
signment strategy provides inaccurate pseudo-labels, while
the one-to-many assignments strategy leads to overlapping
predictions. These issues compromise training efficiency and
degrade model performance, especially in detecting small or
occluded objects. We introduce Sparse Semi-DETR, a novel
transformer-based, end-to-end semi-supervised object de-
tection solution to overcome these challenges. Sparse Semi-
DETR incorporates a Query Refinement Module to enhance
the quality of object queries, significantly improving detec-
tion capabilities for small and partially obscured objects.
Additionally, we integrate a Reliable Pseudo-Label Filter-
ing Module that selectively filters high-quality pseudo-labels,
thereby enhancing detection accuracy and consistency. On
the MS-COCO and Pascal VOC object detection benchmarks,
Sparse Semi-DETR achieves a significant improvement over
current state-of-the-art methods that highlight Sparse Semi-
DETR’s effectiveness in semi-supervised object detection,
particularly in challenging scenarios involving small or par-

tially obscured objects.

1. Introduction

Semi-Supervised Object Detection (SSOD) aims to improve
the effectiveness of fully supervised object detection through
the integration of abundant unlabeled data [3, 12, 15, 19, 28,
39, 49–52, 58]. It has applications in diverse fields, ranging
from autonomous vehicles [14, 20] to healthcare [31, 44],
where obtaining extensive labeled datasets is often impracti-
cal or cost-prohibitive [1].

Several SSOD methods [3, 12, 15, 19, 28, 39, 49–52, 58]
have been proposed. Two prevalent approaches in this do-
main are pseudo-labeling [27, 30, 39, 45, 50–52, 58] and
consistency-based regularization [3, 12, 15, 19, 28, 49].
STAC [39] introduced a simple multi-stage SSOD train-
ing method with pseudo-labeling and consistency training,
later simplified by a Teacher-Student framework for gen-
erating pseudo-labels [27]. Based on this framework, con-
siderable research efforts have been directed towards en-
hancing the quality of pseudo-labels [51, 58]. These tra-
ditional SSOD methods are built upon conventional detec-
tors like one-stage [33, 42] and two-stage [9, 35], which
involve various manually designed components such as an-



chor boxes and non-maximum suppression (NMS). Employ-
ing object detection methods in SSOD poses several poten-
tial challenges that must be carefully dealt with to obtain
reasonable performance. These factors include overfitting
of the labeled data [37], pseudo-label noise [10], bias in-
duced through label imbalance [17, 32], and poor detec-
tion performance on small objects [56]. Recently, DETR-
based [2, 16, 18, 25, 38, 55, 59] SSOD methods [46, 56]
remove the need for traditional components like NMS.

Even though DETR-based SSOD [46, 56] has progressed
remarkably, state-of-the-art methods possess some limita-
tions. (1) DETR-based SSOD methods perform poorly in
the detection of small objects, as shown in Figure 4. This is
because these methods don’t use multi-scale features [36]
like Feature Pyramid Networks (FPN) [22], which play an
important role in identifying smaller objects as in CNN-
based SSOD methods [3, 12, 15, 19, 28, 49, 51, 52, 58].
Although recent advancements in DETR-based object de-
tection [2, 16, 18, 25, 38, 55, 59] have improved the de-
tection of small objects, their SSOD adaptation is still un-
able to cater this challenge effectively [56]. (2) SSOD ap-
proaches [51, 52, 56, 58] rely on handcrafted post-processing
methods such as NMS [35]. This problem specifically ap-
pears in DETR-based SSOD when we use a large number of
object queries and the one-to-many assignment strategy [56].
In DETR-based SSOD methods, this problem is partially
solved using the one-to-one or hybrid (combination of one-to-
one and one-to-many) assignment strategy. However, the hy-
brid assignment strategy is preferred because the one-to-one
assignment strategy produces inaccurate pseudo-labels [46],
thus resulting in inefficient learning. Although the number of
duplicate bounding boxes is less in the hybrid strategy [56],
the amount is high enough to impact object detection perfor-
mance adversely, as depicted in Figure 5. (3) The pseudo-
label generation produces both high and low-quality labels.
The DETR-based SSOD methods lack an effective refine-
ment strategy for one-to-many assignments, which is crucial
for filtering out low-quality proposals.

To address the above mentioned issues, we propose en-
hancing the state-of-the-art DETR-based SSOD approach,
namely ’Sparse Semi-DETR’, presented in Figure 1 (b). Our
approach involves expanding its architecture by integrating
a couple of novel modules designed to mitigate the iden-
tified shortcomings. The key module among these is the
Query-Refinement module, as depicted in Figure 2 and
explained in Figure 3. This module significantly improves
the quality of the queries and reduces their numbers. The
proposed module uses the low-level features from the back-
bone and high-level features extracted directly from weakly
augmented images using ROI alignment [13]. Fusing these
features results in overcoming the first shortcoming, i.e., de-
tecting small and obscured objects, as shown in Figure 4. The
attention mechanism drives the aggregation of the features,

resulting in refined, high-quality features to carry forward.
To ensure the quality of the query features, the attention
mechanism is accompanied by a query-matching strategy
for filtering irrelevant queries. Thus, the Query Refinement
Module not only improves the quality of the queries but also
reduces their numbers, giving rise to efficient processing.
This module results in significantly fewer overlapping pro-
posals, improving the performance overall, thereby solving
the second limitation. Besides, we introduce a Reliable
Pseudo-Label Filtering Module, as illustrated in Figure 2,
inspired by Hybrid-DETR [16] to address the third limitation.
Employing this module significantly reduces the low-quality
pseudo-labels. Therefore, it further reduces the amount of
duplicate predictions that may still occur after the second
stage of the hybrid assignment strategy. Our approach pro-
vides better results than previous SSOD methods, as shown
in Figure 1 (c).

The key contributions of this work can be outlined as
follows:
1. We present Sparse Semi-DETR, a novel approach in semi-

supervised object detection, introducing two novel con-
tributions. To our knowledge, we are the first to examine
and propose query refinement and low-quality proposal
filtering for the one-to-many query assignment strategy.

2. We introduce a novel query refinement module designed
to improve object query features, particularly in complex
detection scenarios such as identifying small or partially
obscured objects. This enhancement not only boosts
performance but also aids in learning semantic feature
invariance among object queries.

3. We introduce a Reliable Pseudo-Label Filtering Module
specifically designed to reduce the effect of noisy pseudo-
labels. This module is designed to efficiently identify and
extract reliable pseudo boxes from unlabeled data using
augmented ground truths, enhancing the consistency of
the learning process.

4. Sparse Semi-DETR outperforms current state-of-the-art
methods on MS-COCO and Pascal VOC benchmarks.
With only 10% labeled data from MS-COCO using
ResNet-50 backbone, it achieves a 44.3 mAP, exceeding
prior baselines by 0.8 mAP. Additionally, when trained
on the complete COCO set with extra unlabeled data, it
further improves, rising from 49.2 to 51.3 mAP.

2. Related Work

2.1. Object Detection

Object detection identifies and locates objects in images or
videos. Deep learning-based object detection approaches
are typically categorized into two primary groups: two-stage
detectors [9, 35] and one-stage detectors [23, 26, 34, 42].
These methods depend on numerous heuristics, such as
generating anchors and NMS. Recently, DEtection TRans-



former (DETR) [2] considers object detection as a set pre-
diction problem, using transformer [43] to adeptly trans-
form sparse object candidates [40] into precise target objects.
Our Sparse Semi-DETR detects small or partially obscured
objects in the DETR-based SSOD setting. Notably, our
framework is compatible with various DETR-based detec-
tors [4, 5, 7, 8, 24, 29, 47, 48, 59], offering flexibility in
integration.

2.2. Semi-Supervised Object Detection

Most research in SSOD employs detectors categorized into
three types: one-stage, two-stage, and DETR-based systems.
One-stage STAC [39], an early SSOD, introduced a simple
training strategy combining pseudo-labeling and consistency
training, later streamlined by a student-teacher framework
for easier pseudo-label generation [27]. DSL [3] introduced
novel techniques including Adaptive Filtering, Aggregated
Teacher, and uncertainty-consistency-regularization for im-
proved generalization. Dense Teacher [57] introduced Dense
Pseudo-Labels (DPL) for richer information and a region
selection method to reduce noise.
Two-stage. Humble Teacher [41] uses soft labels and a
teacher ensemble to boost pseudo-label reliability, matching
other results. Instant-Teaching [58] creates pseudo anno-
tations from weak augmentations, treating them as ground
truth under strong augmentations with Mixup [54]. Unbi-
ased Teacher [27] tackles class imbalance in pseudo-labeling
with focal loss, focusing on underrepresented classes. Soft
Teacher [51] minimizes incorrect foreground proposal clas-
sification by applying teacher-provided confidence scores
to reduce classification loss. PseCo [19] enhances detector
performance by combining pseudo-labeling with label and
feature consistency methods, also using focal loss to address
class imbalance.
DETR-based. Omni-DETR [46] is designed for omni-
supervised detection and adapts to SSOD with a basic
pseudo-label filtering method. It employs the one-to-one
assignment strategy proposed in DETR [2], and encounters
challenges when dealing with inaccurate pseudo-bounding
boxes produced by the teacher network. These inaccura-
cies result in reduced performance, highlighting its limita-
tions. Semi-DETR [56] adopts a stage-wise strategy, em-
ploying a one-to-many matching strategy in the first stage
and switching to a one-to-one matching strategy in the sec-
ond stage. This approach provides NMS-free end-to-end
detection benefits but reduces performance compared to a
one-to-many assignment strategy. Moreover, omni-DETR
and Semi-DETR struggle to detect small or occluded objects.
Our work introduces an advanced query refinement module
that significantly refines object queries, enhancing training
efficiency and performance and leading to the detection of
small or densely packed objects in the DETR-based SSOD
framework.

3. Preliminary

In DETR-based SSOD, one-to-one assignment strategy, de-
noted by σ̂one2one, is achieved by applying Hungarian algo-
rithm between the predictions made by the student model and
the pseudo-labels provided by the teacher model as follows:

σ̂one2one = argmin
σ∈ξN

N∑
j

Lmatch

(
ŷtj , ŷ

s
σ(j)

)
(1)

where Lmatch

(
ŷtj , ŷ

s
σ(j)

)
is the matching cost between the

pseudo-labels ŷtj generated by the teacher network and the
predictions of the student network with index σ(j) and ξN is
the permutation of N elements. Semi-DETR [56] addresses
the issue of imprecise initial pseudo-labels by shifting from a
one-to-one to a one-to-many assignment strategy, increasing
the number of positive object queries to improve detection
accuracy:

σ̂one2many =

{
argmin
σj∈CN

M

M∑
k

Lmatch

(
ŷtj , ŷ

s
σj(k)

)}|ŷt|

j

(2)

where CM
N represents the combination of M and N , denot-

ing that a subset of M proposals is associated with each
pseudo box ŷtj . Semi-DETR initially adopts a one-to-many
assignment to improve label quality, then shifts to one-to-
one assignment for an NMS-free model. This approach
adopts a one-to-many assignment strategy aimed at boosting
performance, but it’s less effective with small or occluded
objects.

4. Sparse Semi-DETR

In semi-supervised learning, a collection of labeled data
denoted as Dl, where Dl = {xl

i, y
l
i}

Nl

i=1 is given, along
with a set of unlabeled data represented as Du, where
Du = {xu

i }
Nu
i=1. Here, Nl and Nu correspond to the number

of labeled and unlabeled data. The annotations yli for the
label data xl contain object labels and bounding box infor-
mation. The pipeline of the Sparse Semi-DETR framework
is depicted in Figure 2. It introduces a Query Refinement
Module for processing query features to enhance seman-
tic representation for complex detection scenarios, such as
identifying small or partially obscured objects. Addition-
ally, we integrate a Reliable Pseudo-Label Filtering Module
that selectively filters high-quality pseudo-labels, thereby
enhancing detection accuracy. For comparison purposes, we
employ DINO [55] with a ResNet-50 backbone. This section
gives a detailed overview of the modules of Sparse Semi-
DETR. We explain briefly our semi-supervised approach in
Appendix A1.1.



Figure 2. An overview of the Sparse Semi-DETR framework. It contains two networks: the student network and the teacher network.
Labeled data is used for student network training, employing a supervised loss. Unlabeled data is fed to the teacher network with weak
augmentation and the student network with strong augmentation. The teacher network takes unlabeled data to generate pseudo-labels. Here,
the query refinement module provides refined queries to avoid incorrect bipartite matching with teacher-generated pseudo-labels. For a
detailed overview of the query refinement module, see Figure 3. Furthermore, a Reliable Pseudo-label Filtering strategy is employed to filter
low-quality pseudo-labels progressively during training.

4.1. Query Refinement

Inspired by recent advancements in vision-based net-
works [11, 53], we introduce an innovative approach to
enhance object query features. For each unlabeled image
I ∈ RH×W×C , we extract query features Fs1 ∈ Rb×W1×256

from strongly augmented image I . Similarly, we extract
query features Ft1 from weakly augmented image I , also in
the same dimension. Subsequently, feature extraction from
the image backbones occurs. This results in the generation
of features Fs2 for the student and Ft2 for the teacher net-
work as Rb×W2×256. These features, encompassing both
label and bounding box details, vary with the batch size, as
indicated by b. The feature sets W1 and W2 differ in size,
with W2 being substantially larger than W1. We provide
a brief overview of each component of Query Refinement
Module as illustrated in Figure 3.

Query Refinement Module. In our approach, we handle
multi-scale features Ft1 and Ft2 with a focus on effective
aggregation. The finer details are encapsulated within the fea-
tures Ft1, while the features Ft2 encapsulate more abstract
elements such as shapes and patterns. Simple aggregation of
these features has been shown to degrade performance, as in-
dicated in Table 5e). To solve this issue, we implement dual
strategies to extract local and global information from high
and low-resolution features. High-resolution features are cru-
cial for detecting small objects. However, processing them
with attentional operations is computationally demanding.
To address this, we firstly convert the query label features
Ft2 ∈ (Rb×W2×256) into F ′

t2 ∈ (Rb×W2×16) by decreasing
the channel dimension, and retaining the original resolution

b ×W2. Then, we apply attentional mechanism on F ′
t2 to

calculate the attentional weights Wk+q in attention block as
follows:

Wk+q = F ′
k · F ′

q, (3)

W̄k+q =
exp(Wk+q)∑L
l=1 exp(Wk+q)

, (4)

where Wk+q is the attentional weights of F ′
k and F ′

q, and
W̄k+q is the normalized form of Wk+q. Using normalized
attention weights, we compute the enhanced queries repre-
sentation Q as follows:

Q = W̄k+q · F ′
v (5)

now we find the similarity between the attentional Ft2 fea-
tures and Ft1 features to obtain F ′

cs ∈ Rb×W1×16 from
Q ∈ Rb×W2×16 as follows:

F ′
cs =

∑n
i=l PlQl√∑n

l=1 P
2
l

√∑n
l=1 Q

2
l

(6)

where P and Q are Ft1 and attentional Ft2 features, respec-
tively. Then, we concatenate F ′

cs with P to obtain refined
query features. Interestingly, we observe a performance drop
when our feature refinement strategy is applied to strongly
augmented image features for the teacher network, as de-
tailed in Table 5b. However, we achieve optimal results by
concatenating strongly augmented image features and ap-
plying our refinement strategy to weakly augmented image
features. Consequently, we proceed by concatenating the
features Fs1 with Fs2, thereby obtaining the query features



Figure 3. Overview of the Query Refinement Module. The query
features from strong and weak augmented unlabeled images are
refined through the Query Refinement Module. It amplifies the se-
mantic representation of object queries and improves performance
for small objects. For the best view, zoom in.

rs. Note that rt, despite having a dimensional size equiv-
alent to F ′

cs + P , encapsulates substantially more intricate
representations. This improved performance is due to the
integration of high-resolution and low-resolution features.

Then, we form the decoder queries in the student-teacher
network by merging the teacher’s original queries qt with
refined queries rs, and the student’s original queries qs with
refined queries rt, respectively. This integration forms the
inputs for the decoder as follows:

ôt, ot = Dect([rs, qt], Et[A]) (7)
ôs, os = Decs([rt, qs], Es[A]) (8)

Where Es and Et refer to the encoded image features. ôs
and ôt indicate the decoded features of refined queries, while
os and ot represent the decoded features of original object
queries. Here, t is for teacher and s for student network.
Following DN-DETR [18], we use the attention mask A to
protect information leakage, ensuring the learning process’s
integrity.

4.2. Reliable Pseudo-Label Filtering Module

The one-to-many training strategy, while effective, causes
duplication prediction in the first stage. We introduce a
pseudo-label filtering module to address this and improve
the filtering of pseudo boxes rich in semantic content for re-
fined query learning. This module is designed to efficiently
identify and extract reliable pseudo boxes from unlabeled
data using augmented ground truths. We employ m groups
of ground truths ĝ = {ĝ1, ĝ2, . . . , ĝm} for one-to-many as-

signment strategy and select the top-k predictions as follows:

σ̂one2many =

{
argmin
σj∈CN

M

M∑
k

Lmatch

(
ŷtj , ĝ

s
σj(k)

)}|ŷt|

j

(9)

where CM
N represents the combination of M and N , denot-

ing that a subset of M proposals is associated with each
pseudo box ŷtj . Here, m is set to 6. Furthermore, we use
the remaining predictions to filter out duplicates in the top-k
predictions in the one-to-one matching branch. Through
this improved selection scheme, we achieve a performance
improvement of 0.4 mAP when m is set to 6, as shown in
Table 5a. However, we observe no significant benefits when
increasing m greater than 6, as detailed in Table 6a.

5. Experiments
5.1. Datasets

We evaluate our approach on the MS-COCO [21] and Pascal
VOC [6] datasets, benchmarking it against current SOTA
SSOD methods. Following [51, 56], Sparse Semi-DETR is
evaluated in three scenarios: COCO-Partial. We use 1%,
5%, 10% of train2017 as label data and rest as unlabeled
data. COCO-Full. We take train2017 as label data and
unlabel2017 as unlabel data. VOC. We take VOC2007
as label data and VOC2012 as unlabel data. Evaluation
metrics include AP50:95, AP50, and AP75 [51, 56].

5.2. Implementation Details

We set the quantity of DINO original object queries to 900.
For the setting hyperparameters, following [56] : (1) In the
COCO-Partial setting, we set the training iterations to 120k
with a labeled to unlabeled data ratio of 1:4. The first 60k
iterations adopt a one-to-many assignment strategy. (2) In
the COCO-Full setting, Sparse Semi-DETR is trained for
240k iterations with labeled to unlabeled data ratio of 1:1.
The first 120k iterations adopt a one-to-many assignment
strategy. (3) In the VOC setting, we train the network for
60k iterations with a labeled to unlabeled data ratio of 1:4.
The first 40k iterations adopt a one-to-many assignment
strategy. For all experiments, the filtering threshold σ value
is 0.4. We set the value of m to 6 and the value of k to
4. We provide complete implementation details for each
experiment in Appendix A1.2.

6. Results and Comparisons
We evaluate Sparse Semi-DETR and compare it against cur-
rent SOTA SSOD methods. Our results demonstrate the supe-
rior performance of Sparse Semi-DETR in these aspects: (1)
its effectiveness compared to both one-stage and two-stage
detectors, (2) its comparison with traditional DETR-based
detectors, and (3) its exceptional proficiency in accurately



Figure 4. Visual comparison of Sparse Semi-DETR with the two previous approaches on the COCO 10% label dataset. These results
highlight Sparse Semi-DETR’s capabilities, particularly in identifying small objects and those obscured by obstacles (as indicated by white
arrows) in the third-row images. For optimal clarity and detail, please zoom in.

detecting small and partially occluded objects. We provide
more results details in Appendix A1.3.

COCO-Partial benchmark. Sparse Semi-DETR outper-
forms the current SSOD methods in COCO-Partial across
all experiment settings, as demonstrated in Table 1. (1) We
compare our method to both one-stage and two-stage SSOD.
Sparse Semi-DETR surpasses Dense Teacher by 8.52, 7.79,
7.17 mAP on 1%, 5%, and 10% label data. It also outper-
forms PseCo by 8.47, 8.30, 8.24 mAP on 1%, 5%, and 10%
label data. Sparse Semi-DETR’s superior performance as a
semi-supervised object detector is achieved without needing
hand-crafted components commonly used in two-stage and
one-stage detectors. (2) When compared to DETR-based
detectors, Sparse Semi-DETR outperforms omni-DETR by
3.30, 3.10, and 3.00 mAP and beats Semi-DETR by 0.40,
0.70, 0.80 mAP on 1%, 5%, and 10% label data. (3) Sparse
Semi-DETR’s exceptional proficiency in precisely detect-
ing small and partially obscured objects is a standout fea-
ture. In Figure 4, we visually compare Sparse Semi-DETR
with the two preceding approaches using the COCO 10%
labeled dataset. These results demonstrate the impressive
capabilities of Sparse Semi-DETR, particularly in its ability
to identify small objects and objects concealed by obstacles,
as highlighted in the third-row images by the white arrows.
Table 2 exhibits a remarkable performance boost of Sparse
Semi-DETR on small objects. It surpasses the Semi-DETR
by 1.20, 0.90 and 1.70 mAP on small objects using 1%, 5%,
and 10% label data, respectively. It highlights the superior
efficiency and accuracy of Sparse Semi-DETR in detecting
smaller objects.

COCO-Full benchmark. In Table 4, when incorporating

additional unlabel2017 data, Sparse Semi-DETR demon-
strates a substantial improvement, achieving an impressive
2.1 mAP gain and reaching a total of 51.3 mAP. It surpasses
the performance of Dense Teacher, PseCo, and Semi-DETR
by 5.2, 5.2, and 0.9 mAP, respectively, highlighting the ef-
fectiveness of Sparse Semi-DETR.
Pascal VOC benchmark. Sparse Semi-DETR exhibits a
remarkable performance boost on the Pascal VOC bench-
mark, as shown in Table 3. It surpasses the supervised
baseline by 5.1 improvement on AP50 and by 5.91 impres-
sive increase on AP50:95. Furthermore, it outperforms all
previously single-stage, two-stage, and DETR-based SSOD
methods by a significant margin.

6.1. Ablation Studies

This section ablates the key design choices of Sparse Semi-
DETR. The experiments detailed in this section are executed
on the MS COCO dataset with 10% label data, employing
DINO as the primary detector.
Effect of Individual Component. We conduct three experi-
ments to assess the efficacy of each module of Sparse Semi-
DETR, as detailed in Table 5a. We employ Semi-DETR as
our baseline model. Notably, integrating each component
into Sparse Semi-DETR leads to consistent performance im-
provements. Specifically, adding the Query Refinement and
Pseudo-Label Filtering modules yields a significant increase
of 0.8 mAP. These results confirm that each component of
Sparse Semi-DETR enhances our model’s performance.
Effect of Query Refinement Module. We examine the im-
pact of the Query Refinement (QR) Module. In Table 5b,
we explore various QR combinations to determine the most



Methods Reference COCO-Partial

1% 5% 10%

FCOS [42] (Supervised) - 8.43 ± 0.03 17.01 ± 0.01 20.98 ± 0.01
DSL [3] CVPR22 22.03 ± 0.28 (+13.98) 30.87 ± 0.24 (+13.86) 36.22 ± 0.18 (+15.24)
Unbiased Teacher v2 [28] CVPR22 22.71 ± 0.42 (+14.28) 30.08 ± 0.04 (+13.07) 32.61 ± 0.03 (+11.63)
Dense Teacher [57] ECCV22 22.38 ± 0.31 (+13.95) 33.01 ± 0.14 (+16.00) 37.13 ± 0.12 (+16.15)

Faster RCNN [35] (Supervised) - 9.05 ± 0.16 18.47 ± 0.22 23.86 ± 0.81
Humble Teacher [41] CVPR22 16.96 ± 0.38 (+7.91) 27.70 ± 0.15 (+9.23) 31.61 ± 0.28 (+7.75)
Instant-Teaching [58] CVPR21 18.05 ± 0.15 (+9.00) 26.75 ± 0.05 (+8.28) 30.40 ± 0.05 (+6.54)
Soft Teacher [51] ICCV21 20.46 ± 0.39 (+11.41) 30.74 ± 0.08 (+12.27) 34.04 ± 0.14 (+10.18)
PseCo [19] ECCV22 22.43 ± 0.36 (+13.38) 32.50 ± 0.08 (+14.03) 36.06 ± 0.24 (+12.2)

DINO [55] (Supervised) - 18.00 ± 0.21 29.50 ± 0.16 35.00 ± 0.12
Omni-DETR [46] (DINO) CVPR22 27.60 (+9.60) 37.70(+8.20) 41.30 (+6.30)
Semi-DETR [56] (DINO) CVPR23 30.5 ± 0.30 (+12.50) 40.10 ± 0.15 (+10.6) 43.5 ± 0.10 (+8.5)
Sparse Semi-DETR - 30.9 ± 0.23 (+12.90) 40.8 ± 0.12 (+11.30) 44.3 ± 0.01 (+9.30)

Table 1. Comparing Sparse Semi-DETR with other approaches on COCO-Partial setting. The results are the average across all five
folds. Under the COCO-partial setting, FCOS serves as the baseline for one-stage detectors, Faster RCNN for two-stage detectors, and
DINO for transformer-based end-to-end detectors.

Methods Labels COCO-Partial

APS APM APL

Semi-DETR [56]
1% 13.6 31.2 40.8
5% 23.0 43.1 53.7

10% 25.2 46.8 58.0

Sparse Semi-DETR
1% 14.8 32.5 41.4
5% 23.9 44.2 54.2

10% 26.9 48.0 59.6

Table 2. Experimental results on COCO-
partial settings for small, medium, and
large objects. The results shown are the av-
erage across all five folds. We reproduce
Semi-DETR results using their source code.

Methods VOC12

AP50 AP50:95

FCOS [42] (Supervised) 71.36 45.52
DSL [3] 80.70 56.80
Dense Teacher [57] 79.89 55.87

Faster RCNN [35] (Supervised) 72.75 42.04
STAC [39] 77.45 44.64
HumbleTeacher [41] 80.94 53.04
Instant-Teaching [58] 79.20 50.00

DINO [55] (Supervised) 81.20 59.60
Semi-DETR [56] (DINO) 86.10 65.20
Sparse Semi-DETR 86.30 65.51

Table 3. Experimental results on Pas-
cal VOC protocol. Here, FCOS, Faster
RCNN, and DINO are the supervised base-
lines.

Method COCO-Full (100%)

STAC [39] (18×) 39.5 -0.3−−→ 39.2
Unbiased Teacher (9×) 40.2 +1.1−−→ 41.3
SoftTeacher [51] (24×) 40.9 +3.6−−→ 44.5
DSL [3] (12×) 40.2 +3.6−−→ 43.8
Dense Teacher [57] (18×) 41.2 +3.6−−→ 46.1
PseCo (24×) 41.0 +5.1−−→ 46.1
Instant-Teaching [58] (24×) 37.6 -0.27−−→ 40.2
Semi-DETR [56] (8×) 48.6 +1.8−−→ 50.4

Sparse Semi-DETR (8×) 49.2 +2.1−−→ 51.3

Table 4. Comparing Sparse Semi-DETR
with other approaches on COCO-Full.
Note that 1 denotes 30k training iterations,
while an N× signifies N times 30k iterations.

effective design. Applying QR selectively to the student,
teacher, or both networks, we find that employing QR on
weak augmented image features Ft1 and Ft2, and integrat-
ing them into the student network with the original decoder
queries yields the best results. Table 5c shows that process-
ing Ft1 features without MLP (in [56]) improves results.
Table 5d presents our study on the impact of different query
variants, where we observe that QR consistently outperforms
other methods. Finally, Table 5e shows that using an atten-
tional block in the QR module is more effective than sim-
ple concatenation or cosine similarity. We provide more
analysis of the Query Refinement Module supplementary
document. Figure 5 compares Sparse Semi-DETR and Semi-
DETR. Sparse Semi-DETR, processing fewer but refined
queries, demonstrates lower duplication rates in this training
approach.

Effect of Reliable Pseudo-Label Filtering Module. In our
analysis of the Pseudo-Label Filtering Module, we examine

the impact of various parameters. Table 6a shows that a
smaller m results in lower performance due to the inclusion
of poor-quality labels. Performance improves with a mod-
erately larger m due to enhanced auxiliary loss. However,
excessively large m values trigger NMS, negatively impact-
ing performance. Additionally, in Table 6b, we analyze the
selection of the k value and find that setting k to 4 yields
the best performance. In Table 6c, the optimal performance
for σ is achieved at 0.4; values lower than this may lead to
the generation of noisy pseudo-labels, whereas higher values
can decrease the number of effective pseudo-labels.

Limitation. We still have duplications when we apply the
one-to-many training strategy in both stages. Table 7 illus-
trates that a one-to-many strategy for 120k iterations with
Sparse Semi-DETR achieves a 44.6 mAP using NMS. In
comparison, 60k iterations in the first stage attain a compara-
ble 44.3 mAP without NMS. Future works can explore this
aspect.



Query Refinement Pseudo-Label Filtering mAP AP50 AP75

✗ ✗ 43.5 58.9 46.0
✓ ✗ 43.8 61.1 47.3
✗ ✓ 43.9 60.5 46.3
✓ ✓ 44.3 61.7 47.6

(a) Effect of Individual Component.

Teacher Student mAP AP50 AP75

✗ ✗ 43.5 58.9 46.0
✓ ✗ 43.8 61.2 47.2
✗ ✓ 44.3 61.7 47.6
✓ ✓ 42.8 59.7 45.8

(b) Effect of QR on Student and Teacher module.

MLP mAP AP50 AP75

✓ 43.7 60.9 46.9
✗ 44.3 61.7 47.6

(c) Effect of MLP.

Method mAP AP50 AP75

Single-view Queries 43.0 59.3 46.3
Cross-view Queries 43.5 58.9 46.0
Query Refinement 44.3 61.7 47.6

(d) Effect of different variants of queries.

Method mAP AP50 AP75

Simple Concat 43.4 58.8 46.1
Cosine Similarity 43.7 60.3 46.1
Attention Module 44.3 61.7 47.6

(e) Effectiveness of Attentional module in QR.

Table 5. Ablations for the proposed Sparse Semi-DETR on COCO 10% Label dataset. (a) We analyze the effectiveness of each module
of Sparse Semi-DETR. (b) We experiment with different QR combinations to identify the optimal design, applying QR selectively on the
student, the teacher, or both. (c) We analyze the effect of using MLP layers for Ft1 and Fs1. Empirical observation reveals that we do not
require MLP as in [56]. (d) We observe the effect of the attentional block in the Query Refinement module by replacing it with simple
concatenation or cosine similarity. (e) We vary the type of object queries fed to the decoder with the decoder’s original queries. The best
results are highlighted .

Figure 5. The top-row figures display Semi-DETR’s detection
results, and the bottom-row shows Sparse Semi-DETR’s outcomes.
Both networks were trained for 120k iterations using one-to-many
and one-to-one strategies. Sparse Semi-DETR eliminates redundant
bounding boxes in the bottom-left image and detects small objects,
like knives, in the top-right image, as indicated by white arrows.

7. Conclusion

In conclusion, we successfully address the inherent limi-
tations of DETR-based semi-supervised object detection
frameworks by introducing Sparse Semi-DETR. This novel
solution effectively tackles overlapping predictions and the
detection of small objects. Sparse Semi-DETR incorporates
a Query Refinement Module to enhance object query quality,
mainly benefiting the detection of small and partially ob-
scured objects. Besides, it also introduces a Reliable Pseudo-
Label Filtering Module to filter out low-quality pseudo-
labels selectively, thereby enhancing overall detection accu-

m (k=4) mAP

2 44.0
4 44.1
6 44.3
8 44.2

(a) Effect of m.

k (m=6) mAP

2 43.8
4 44.3
6 44.1
8 43.9

(b) Effect of k.

σ mAP

0.2 43.2
0.3 43.8
0.4 44.3
0.5 44.0

(c) Effect of σ.

Table 6. Ablations for the Reliable Pseudo-Label Filtering
Module on COCO 10% Label dataset. We study the impact of
various parameters as augmented ground truth (m), top pseudo-
labels selection (k) and filtering threshold (σ).

Iterations 40k 60k 80k 100k 120k

mAP 43.5 44.3 44.0 43.8 44.6
without-NMS Y Y Y Y N

Table 7. Evaluating One-to-Many Assignment Strategy.

racy and consistency with the remaining high-quality labels.
Our method outperforms existing SSOD approaches, with
extensive experiments demonstrating its effectiveness.
Ethical considerations. We study semi-supervised mod-
els, and agree that standard ethical considerations for visual
recognition are applicable to our work.
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Lopez-Paz. mixup: Beyond empirical risk minimization.
ArXiv, abs/1710.09412, 2017. 3

[55] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Heung-Yeung Shum. DINO: DETR with
improved denoising anchor boxes for end-to-end object detec-
tion. In The Eleventh International Conference on Learning
Representations, 2023. 2, 3, 7

[56] Jiacheng Zhang, Xiangru Lin, Wei Zhang, Kuo Wang, Xiao
Tan, Junyu Han, Errui Ding, Jingdong Wang, and Guanbin Li.
Semi-detr: Semi-supervised object detection with detection
transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 23809–
23818, 2023. 2, 3, 5, 7, 8

[57] Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming
Li, Haiyan Yu, and Jian Sun. Dense teacher: Dense pseudo-
labels for semi-supervised object detection, 2022. 3, 7

[58] Qiang Zhou, Chaohui Yu, Zhibin Wang, Qi Qian, and Hao
Li. Instant-teaching: An end-to-end semi-supervised object
detection framework. CoRR, abs/2103.11402, 2021. 1, 2, 3, 7

[59] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable {detr}: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2021. 2, 3


