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Preface

For over a decade, Artificial Intelligence (AI) technologies and applications are
proliferating in a rapid pace. The rise of Al is driven by a variety of factors including
the unprecedented improvements in hardware and software, and the explosion in the
amount of generated data. These advances enable the development of sophisticated
Al models (e.g., deep learning models, deep reinforcement learning models, large
language models), as well as their deployment and execution in realistic settings.
This is also the reason why modern manufacturers are undertaking significant
investments in Al solutions as part of their digital transformation journey. As a
result, Al is rapidly transforming the manufacturing industry, through enabling
tangible improvements in the efficiency, quality, and productivity of industrial
organizations.

A variety of Al-based use cases are nowadays deployed in Industry 4.0 pro-
duction lines. Some of the most prominent examples of such Al-enabled use
cases can be found in the areas of predictive maintenance, quality control, supply
chain optimization, production planning, process automation, and safety monitor-
ing. For instance, a variety of machine learning models are nowadays used to
make quality control more practical and more intelligent, by automating product
quality inspection, enabling timely detection of defects, and identifying production
configurations that could lead into production problems. As another example, deep
learning algorithms are commonly used to predict and anticipate machine failures
before they occur, based on predictive and accurate estimations of the Remaining
Useful Life (RUL) of the machinery. Likewise, there are Al systems that enable the
timely detection of anomalies in products and production processes.

These use cases are some of the most disruptive solutions of the Industry 4.0
era, which is transforming manufacturing enterprises by means of Cyber Physical
Production Systems (CPPS). In this direction, most Al use cases for Industry 4.0
emphasize the training, development, and deployment of accurate and effective
machine learning systems. The latter are integrated with Industrial Internet of
Things (IIoT) systems in the scope of scalable and secure cloud/edge environments.
To this end, industrial solution integrators leverage structuring principles and
blueprints specified in standards-based reference architectures for Industry 4.0
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systems. Nevertheless, the AI’s potential for manufacturing is still largely underex-
ploited. State of the art systems are usually limited to the extraction of data-driven
Al-based insights for improving production processes and related decision making.
These insights are based on quite simple models about the production processes and
hardly combine capabilities of multiple Al systems and algorithms. To alleviate
these limitations, there are research initiatives that explore the integration and
collaboration of multiple Al systems in the scope of production processes. In this
direction, there is on-going research on:

*  Multi-agent systems that foster enhanced collaborative intelligence based on the
interaction and the development of synergies across different autonomous Al
agents.

* Solutions for Al interoperability across diverse systems. These solutions leverage
advanced knowledge models (e.g., Semantic Knowledge Graphs (SKGs) and
embeddings that capture the relationships between different entities) to enable the
development of sophisticated Al systems that span entire multi-stage production
processes beyond simple ML-based state machines.

During the last couple of years, Industry 4.0 is evolving to a direction where
Al serves manufacturing workers, while at the same time interacting closely with
them in a variety of human-in-the-loop scenarios such as human-robot collaboration
(HRC) scenarios. At the same time, Al use cases are increasingly aiming at increas-
ing production sustainability to ensure that the manufacturing sector contributes to
strategic targets such as the European Green Deal (EGD) of the European Union
(EU). Sustainability and human-centricity are driving the transition of Industry 4.0
digital manufacturing systems to the Industry 5.0 era, which emphasizes human-
centricity and environmental performance.

The advent of Industry 5.0 systems is increasing the functional sophistication and
integration complexity of Al systems in manufacturing. It also asks for an evolution
of Al in a human-centered dimension, where Al systems operate in trustworthy and
reliable manner. Specifically, the evolution of Al systems toward the Industry 5.0
era asks for:

* Novel Al architectures for Industry 5.0: Industry 5.0 system comprises multiple
Al components (e.g., robots, machine learning models, Natural Language Pro-
cessing (NLP)) that must safely and effectively interact with humans in industrial
environments. The development and deployment of such systems requires novel
architectures and structuring principles, beyond classical architectures of Big
Data, Al and Industrial Internet of Things (IloT) platforms.

* Knowledge Modelling and Representation: HRC use cases are usually deployed
in highly dynamic environments involving humans, robots, and Al systems
that interact with each other. The implementation of advanced and automated
reasoning in such an environment asks for novel ways for representing processes
in ways that capture the complex interrelationships between the different actors.

* Models and Learning paradigms for Human-Robot Collaboration: Industry 5.0
introduces a need for deploying novel learning paradigms that foster the interplay
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between humans and Al actors. Such paradigms include, for example, active
learning and intelligent Multi-Agent Systems (MAS). They enable outcomes
that combine the speed of Al systems with the credibility of human judgment.
Likewise, Industry 4.0 solutions like Digital Twins are currently transformed
to account for the context of the human workers, i.e., they are evolving toward
human-centric digital twins.

» Explainability, transparency, and regulatory compliance: Industry 5.0 systems
pose their own unique transparency and safety requirements. They involve
humans in the loop that must be able to understand the decisions and operation
of AI system. Hence, Al use cases cannot be developed based on black-box
Al models. Rather, Al systems should be transparent, explainable, trusted, and
understandable to humans. Manufacturers must also ensure that their Al systems
adhere to the mandates of emerging Al regulations such as the Al Act in Europe.

The aim of this book is to shed light on the limitations of existing solutions for
Al in manufacturing and to introduce novel solutions that:

» Improve the functional capabilities and technical performance of state-of-the-art
Al systems for manufacturing in a variety of production processes like production
scheduling and quality control

* Enhance the human centricity, the trustworthiness, and the overall social perfor-
mance of Al systems in line with the requirements and concepts of the Industry
5.0era

The book comprises 27 chapters that present innovative Al systems and solutions
spanning both state-of-the-art Industry 4.0 use cases and emerging, human-centric
Industry 5.0 use cases. The chapters are contributed by Y EU-funded projects,
which are closely collaborated in the context of the Al4Manufacturing Cluster
of European projects, as well as in the scope of the activities of the European
Factories of the Future Research Association (EFFRA). The contributing projects
focus on the development, deployment, and operation of Al systems for production
lines. Each of the project addresses a set of unique challenges of Al in Industry
4.0 and/or Industry 5.0 use cases, such as the development and deployment of
effective MAS systems, the development of trusted and explainable Al systems, the
specification and implementation of knowledge models and semantics for Industry
5.0 applications, as well as the development of novel forms of digital twin systems
and applications (e.g., human-centric digital twins).

Specifically, the book is structured in the following three parts:

Part I: Architectures and Knowledge Modelling for AI

This part presents architectures for Al-based Industry 5.0 systems and solutions,
ranging from high-level reference architecture models to architecture of specific
Al platforms and solutions’ marketplaces. The presented architectures illustrate the
structure of both Industry 4.0 and Industry 5.0 use cases with emphasis on the
structuring principles that drive the integration of Al and ML models with industrial
systems. Moreover, this part of the book includes several chapters that illustrate
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semantic modelling techniques for AI applications in manufacturing, including
techniques based on semantic knowledge graphs and embeddings.

Part II: Multi-agent Systems and Al-based Digital Twins for Manufacturing
Applications

This part of the book presents multi-agent systems and digital twin solutions for
Industry 5.0. The digital twins’ solutions can identify the users’ context toward
modeling and simulating Al-based processes with the human in the loop. In terms of
multi-agent systems, the chapter presents human-Al interaction approaches based
on the intelligent agents, which empower decentralized collaborative intelligence
paradigms for Al in manufacturing.

Part III: Trusted, Explainable, and Human-Centered AI Systems

This part of the book introduces novel approaches to implementing human-centered,
trusted, and explainable Al systems for digital manufacturing applications. Most
of the presented solutions target human-in-the-loop scenarios such as human-robot
interactions and emphasize not only the technical performance but also the social
performance of Al systems. Therefore, they are suitable for applications of the
Industry 5.0 era.

Overall, the book provides a comprehensive overview of Al technologies and
applications in manufacturing covering both Industry 4.0 and Industry 5.0 envi-
ronments. The book is provided as an open access publication, which ensures that
researchers and practitioners will have unlimited access to it. In essence, it is a
contribution of the Al4Manufacturing cluster of projects and of various other EU
programs to the Industry 4.0 and Industry 5.0 communities. I hope that researchers,
practitioners, and providers of industrial automation solutions for manufacturing
will find it interesting.

Mirel Luxembourg, Luxembourg John Soldatos
July 2023



Acknowledgments

This book has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreements No. 956573 (STAR),
No. 957204 (MAS4AI), No. 957362 (XMANAI), No. 101000165 (ASSISTANT),
No. 957331 (knowlEdge), and No. 957402 (Teaming. AI), which are part of the
Al4Manufacturing Cluster of projects. Several contributions of the book have been
also supported financially from other EU projects (e.g., No. 952119 (KITT4SME)
No. 870092 (DIMOFAC), No. 869963 (MERGING)) and various national projects
as indicated in the acknowledgement sections of each chapter.

The editor and the chapter co-authors acknowledge valuable support from
partners of the above-listed EU projects.

Disclaimer: The contents of the book reflect only the contributors’ and co-
authors’ view. The European Commission is not responsible for any use that may
be made of the information it contains.

ix



Contents

PartI Architectures and Knowledge Modelling for Al in
Manufacturing

Reference Architecture for AI-Based Industry 5.0 Applications ........... 3
John Soldatos, Babis Ipektsidis, Nikos Kefalakis,
and Angela-Maria Despotopoulou

Designing a Marketplace to Exchange AI Models for Industry 5.0 ........ 27
Alexandros Nizamis, Georg Schlake, Georgios Siachamis,

Vasileios Dimitriadis, Christos Patsonakis, Christian Beecks,

Dimosthenis Ioannidis, Konstantinos Votis, and Dimitrios Tzovaras

Human-AlI Interaction for Semantic Knowledge Enrichment of
AT Model Output..........oooii e 43
Sisay Adugna Chala and Alexander Graf3

Examining the Adoption of Knowledge Graphs in the

Manufacturing Industry: A Comprehensive Review......................... 55
Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl,

Bernhard Moser, Kabul Kurniawan, Elmar Kiesling, and Franz Krause

Leveraging Semantic Representations via Knowledge Graph

Embeddings........ ..o 71
Franz Krause, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil,

Thomas Hoch, Mario Pichler, Bernhard Heinzl, and Bernhard Moser

Architecture of a Software Platform for Affordable Artificial

Intelligence in Manufacturing ..........................................LL 87
Vincenzo Cutrona, Giuseppe Landolfi, Rubén Alonso, Elias Montini,

Andrea Falconi, and Andrea Bettoni

Multisided Business Model for Platform Offering AI Services ............. 105
Krzysztof Ejsmont, Bartlomiej Gladysz, Natalia Roczon, Andrea Bettoni,
Zeki Mert Barut, Rodolfo Haber, and Elena Minisci

xi



xii Contents

Self-Reconfiguration for Smart Manufacturing Based

on Artificial Intelligence: A Review and Case Study ......................... 121
Yarens J. Cruz, Fernando Castafio, Rodolfo E. Haber, Alberto Villalonga,
Krzysztof Ejsmont, Bartlomiej Gladysz, Alvaro Flores,

and Patricio Alemany

Part II Multi-agent Systems and AI-Based Digital Twins for
Manufacturing Applications

Digital-Twin-Enabled Framework for Training and Deploying Al

Agents for Production Scheduling....................................L 147
Emmanouil Bakopoulos, Vasilis Siatras, Panagiotis Mavrothalassitis,

Nikolaos Nikolakis, and Kosmas Alexopoulos

A Manufacturing Digital Twin Framework ................................... 181
Victor Anaya, Enrico Alberti, and Gabriele Scivoletto

Reinforcement Learning-Based Approaches in Manufacturing

Environments .............o... 195
Andrea Fernandez Martinez, Carlos Gonzalez-Val, Daniel Gordo

Martin, Alberto Botana Lépez, Jose Angel Segura Muros,

Afra Maria Petrusa Llopis, Jawad Masood, and Santiago Muifios-Landin

A Participatory Modelling Approach to Agents in Industry Using AAS .. 217
Nikoletta Nikolova, Cornelis Bouter, Michael van Bekkum,
Sjoerd Rongen, and Robert Wilterdink

14.0 Holonic Multi-agent Testbed Enabling Shared Production ............ 231
Alexis T. Bernhard, Simon Jungbluth, Ali Karnoub, Aleksandr Sidorenko,
William Motsch, Achim Wagner, and Martin Ruskowski

A Multi-intelligent Agent Solution in the Automotive
Component-Manufacturing Industry ... 251
Luis Usatorre, Sergio Clavijo, Pedro Lopez, Echeverria Imanol,

Fernando Cebrian, David Guillén, and E. Bakopoulos

Integrating Knowledge into Conversational Agents for Worker

Upskilling ... 265
Rubén Alonso, Danilo Dessi, Antonello Meloni, Marco Murgia,

and Reforgiato Recupero Diego

Advancing Networked Production Through Decentralised
Technical Intelligence .......... ... ... i 281
Stefan Walter and Markku Mikkola

Part III Trusted, Explainable and Human-Centered Al Systems

Wearable Sensor-Based Human Activity Recognition for Worker
Safety in Manufacturing Line ........... ... 303
Sungho Suh, Vitor Fortes Rey, and Paul Lukowicz



Contents xiii

Object Detection for Human—Robot Interaction and Worker

ASSIStANCe SYSeIMS ......ooiiiiiii e 319
Hooman Tavakoli, Sungho Suh, Snehal Walunj, Parsha Pahlevannejad,

Christiane Plociennik, and Martin Ruskowski

Boosting AutoML and XAI in Manufacturing: AI Model

Generation Framework ................... 333
Marta Barroso, Daniel Hinjos, Pablo A. Martin, Marta Gonzalez-Mallo,

Victor Gimenez-Abalos, and Sergio Alvarez-Napagao

Anomaly Detection in Manufacturing ................................LL 351
Jona Scholz, Maike Holtkemper, Alexander Gral3, and Christian Beecks

Towards Industry 5.0 by Incorporation of Trustworthy and
Human-Centric Approaches ..., 361
Eduardo Vyhmeister and Gabriel Gonzalez Castane

Human in the AI Loop via xAI and Active Learning for Visual Inspection 381
Joze M. Rozanec, Elias Montini, Vincenzo Cutrona, Dimitrios

Papamartzivanos, Timotej Klemenci¢, Blaz Fortuna, Dunja Mladenic,

Entso Veliou, Thanassis Giannetsos, and Christos Emmanouilidis

Multi-Stakeholder Perspective on Human-AI Collaboration in

INdustry 5.0 ... ..o 407
Thomas Hoch, Jorge Martinez-Gil, Mario Pichler, Agastya Silvina,

Bernhard Heinzl, Bernhard Moser, Dimitris Eleftheriou,

Hector Diego Estrada-Lugo, and Maria Chiara Leva

Holistic Production Overview: Using XAI for Production Optimization .. 423
Sergi Perez-Castanos, Ausias Prieto-Roig, David Monzo,
and Javier Colomer-Barbera

XAI for Product Demand Planning: Models, Experiences,

and Lessons Learnt ............ ... .. . i 437
Fenareti Lampathaki, Enrica Bosani, Evmorfia Biliri, Erifili Ichtiaroglou,

Andreas Louca, Dimitris Syrrafos, Mattia Calabresi, Michele Sesana,

Veronica Antonello, and Andrea Capaccioli

Process and Product Quality Optimization with Explainable

Artificial Intelligence.......... ... .. 459
Michele Sesana, Sara Cavallaro, Mattia Calabresi, Andrea Capaccioli,

Linda Napoletano, Veronica Antonello, and Fabio Grandi

Toward Explainable Metrology 4.0: Utilizing Explainable AI

to Predict the Pointwise Accuracy of Laser Scanning Devices

in Industrial Manufacturing ...................... 479
Eleni Lavasa, Christos Chadoulos, Athanasios Siouras, Ainhoa Etxabarri

Llana, Silvia Rodriguez Del Rey, Theodore Dalamagas,

and Serafeim Moustakidis



Editor and Contributors

About the Editor

John Soldatos (http://gr.linkedin.com/in/johnsoldatos) holds a PhD in Electrical
and Computer Engineering from the National Technical University of Athens
(2000) and is currently Honorary Research Fellow at the University of Glasgow,
UK (2014-present). He was Associate Professor and Head of the Internet of
Things (IoT) Group at the Athens Information Technology (AIT), Greece (2006—
2019), and Adjunct Professor at the Carnegie Mellon University, Pittsburgh, PA
(2007-2010). He has significant experience in working closely with large multi-
national industries (IBM Hellas, INTRACOM S.A., INTRASOFT International
S.A., Netcompany-Intrasoft S.A., and Netcompany S.A.) as R&D consultant and
delivery specialist, while being scientific advisor to high-tech startup enterprises.
Dr. Soldatos is an expert in Internet-of-Things (IoT) and Artificial Intelligence
(AI) technologies and applications, including applications in smart cities, finance
(Finance 4.0), and industry (Industry 4.0). Dr. Soldatos has played a leading role
in the successful delivery of more than 70 (commercial-industrial, research, and
business consulting) projects, for both private and public sector organizations,
including complex integrated projects. He is co-founder of the open-source platform
OpenloT (https://github.com/OpenlotOrg/openiot). He has published more than
200 articles in international journals, books, and conference proceedings. He has
also significant academic teaching experience, along with experience in executive
education and corporate training. Dr. Soldatos is a regular contributor in various
international magazines and blogs, on topics related to Artificial Intelligence, 10T,
Industry 4.0, and cybersecurity. Moreover, he has received national and international
recognition through appointments in standardization working groups, expert groups,
and various boards. He has recently coedited and coauthored eight edited volumes
(books) on Artificial Intelligence, BigData, and Internet of Things-related themes.

XV


http://gr.linkedin.com/in/johnsoldatos
http://gr.linkedin.com/in/johnsoldatos
http://gr.linkedin.com/in/johnsoldatos
http://gr.linkedin.com/in/johnsoldatos
http://gr.linkedin.com/in/johnsoldatos
http://gr.linkedin.com/in/johnsoldatos

XVi Editor and Contributors
Contributors

Enrico Alberti Nextworks SRL, Pisa, Italy
Patricio Alemany Rovimadtica SL, Cérdoba, Spain

Rubén Alonso R2M Solution s.r.l., Pavia, Italy
Programa de Doctorado, Centro de Automadtica y Robdtica, Universidad Politécnica
de Madrid-CSIC, Madrid, Spain

Sergio Alvarez-Napagao High Performance and Artificial Intelligence, Barcelona
Supercomputing Center, Barcelona, Spain

Victor Anaya Information Catalyst SL, Xativa, Spain

Veronica Antonello TXT e-solutions SpA, Milan, Italy
TXT e-tech, Milan, Italy

E. Bakopoulos LMS, Laboratory for Manufacturing Systems, Patras, Greece

Marta Barroso High Performance and Artificial Intelligence, Barcelona Super-
computing Center, Barcelona, Spain

Zeki Mert Barut Department of Innovative Technologies, University of Applied
Science of Southern Switzerland, Manno, Switzerland

Christian Beecks FernUniversity of Hagen, Hagen, Germany

Alexis T. Bernhard Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
GmbH (DFKI), Kaiserslautern, Germany

Andrea Bettoni Department of Innovative Technologies, University of Applied
Science of Southern Switzerland, Manno, Switzerland

Evmorfia Biliri Suite5 Data Intelligence Solutions, Limassol, Cyprus
Enrica Bosani Whirlpool Management EMEA, Milan, Italy

Cornelis Bouter Data Science, Netherlands Organisation for Applied Scientific
Research (TNO), Den Haag, The Netherlands

Mattia Calabresi TXT e-solutions SpA, Milan, Italy
TXT e-tech, Milan, Italy

Andrea Capaccioli Deep Blue, Rome, Italy

Gabriel Gonzalez Castafié The Insight SFI Research Centre of Data Analytics,
University College Cork, Cork, Ireland

Fernando Castafio Centro de Automadtica y Robética (CSIC-Universidad Politéc-
nica de Madrid), Madrid, Spain

Sara Cavallaro CNH Industrial, Modena, Italy



Editor and Contributors XVii

Fernando Cebrian Fersa Bearings, Zaragoza, Spain
Christos Chadoulos AIDEAS OU, Tallinn, Estonia

Sisay Adugna Chala Department of Data Science and Al, Fraunhofer Institute for
Applied Information Technology (FIT), Sankt Augustin, Germany

Sergio Clavijo Fundacion TECNALIA R&I, Madrid, Spain
Javier Colomer-Barbera Ford, Valencia, Spain

Yarens J. Cruz Centro de Automatica y Robética (CSIC-Universidad Politécnica
de Madrid), Madrid, Spain

Vincenzo Cutrona University of Applied Science of Southern Switzerland,
Switzerland

Theodore Dalamagas Athena Research Center, Marousi, Greece

Silvia Rodriguez Del Rey Asociacion de Empresas Tecnoldgicas Innovalia, Calle
Rodriguez Arias, Bilbao, Spain

Angela-Maria Despotopoulou Netcompany-Intrasoft S.A, Luxembourg, Luxem-
bourg

Danilo Dessi Knowledge Technologies for the Social Sciences Department,
GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany

Vasileios Dimitriadis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Krzysztof Ejsmont Faculty of Mechanical and Industrial Engineering, Warsaw
University of Technology, Warsaw, Poland

Institute of Production Systems Organization, Faculty of Mechanical and Industrial
Engineering, Warsaw University of Technology, Warsaw, Poland

Dimitris Eleftheriou CORE Innovation, Athens, Greece

Emmanouil Bakopoulos Laboratory for Manufacturing Systems & Automation
(LMS), Department of Mechanical Engineering & Aeronautics, University of
Patras, Rio-Patras, Greece

Christos Emmanouilidis University of Groningen, Groningen, The Netherlands

Hector Diego Estrada-Lugo Technological University Dublin, School of Environ-
mental Health, Dublin, Ireland

Andrea Falconi Martel Innovate, Zurich, Switzerland
Alvaro Flores Rovimatica SL, Cérdoba, Spain
Blaz Fortuna Qlector d.o.o., Ljubljana, Slovenia

Thanassis Giannetsos Ubitech Ltd., Athens, Greece



XViii Editor and Contributors

Victor Gimenez-Abalos High Performance and Artificial Intelligence, Barcelona
Supercomputing Center, Barcelona, Spain

Bartlomiej Gladysz Faculty of Mechanical and Industrial Engineering, Warsaw
University of Technology, Warsaw, Poland

Institute of Production Systems Organization, Faculty of Mechanical and Industrial
Engineering, Warsaw University of Technology, Warsaw, Poland

Marta Gonzalez-Mallo High Performance and Artificial Intelligence, Barcelona
Supercomputing Center, Barcelona, Spain

Carlos Gonzalez-Val AIMEN Technology Centre, Smart Systems and Smart
Manufacturing Group, Pontevedra, Spain

Fabio Grandi Universita di Modena e Reggio Emilia, Modena, Italy

Alexander Grafl Department of Data Science and Al, Fraunhofer Institute for
Applied Information Technology (FIT), Sankt Augustin, Germany

David Guillén Fersa Bearings, Zaragoza, Spain

Rodolfo Haber Centre for Automation and Robotics (CAR), Spanish National
Research Council-Technical University of Madrid (CSIC-UPM), Madrid, Spain

Rodolfo E. Haber Centro de Automadtica y Robética (CSIC-Universidad Politéc-
nica de Madrid), Madrid, Spain

Bernhard Heinzl Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

Daniel Hinjos High Performance and Artificial Intelligence, Barcelona Supercom-
puting Center, Barcelona, Spain

Thomas Hoch Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

Maike Holtkemper FernUniversity of Hagen, Hagen, Germany
Erifili Ichtiaroglou Suite5 Data Intelligence Solutions, Limassol, Cyprus
Echeverria Imanol Fundacion TECNALIA R&I, Madrid, Spain

Dimosthenis Ioannidis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Babis Ipektsidis Netcompany-Intrasoft, Brussels, Belgium

Simon Jungbluth Technologie-Initiative SmartFactory KL e.V., Kaiserslautern,
Germany

Ali Karnoub Technologie-Initiative SmartFactory KL e.V., Kaiserslautern,
Germany

Nikos Kefalakis Netcompany-Intrasoft S.A, Luxembourg, Luxembourg



Editor and Contributors Xix

Elmar Kiesling WU, Institute for Data, Process and Knowledge Management,
Vienna, Austria

Timotej Klemenci¢ University of Ljubljana, Ljubljana, Slovenia

Kosmas Alexopoulos Laboratory for Manufacturing Systems & Automation
(LMS), Department of Mechanical Engineering & Aeronautics, University of
Patras, Rio-Patras, Greece

Franz Krause University of Mannheim, Data and Web Science Group, Mannheim,
Germany

Kabul Kurniawan WU, Institute for Data, Process and Knowledge Management,
Vienna, Austria
Austrian Center for Digital Production (CDP), Vienna, Austria

Fenareti Lampathaki Suite5 Data Intelligence Solutions, Limassol, Cyprus

Giuseppe Landolfi University of Applied Science of Southern Switzerland,
Switzerland

Eleni Lavasa Athena Research Center, Marousi, Greece

Maria Chiara Leva Technological University Dublin, School of Environmental
Health, Dublin, Ireland

Ainhoa Etxabarri Llana UNIMETRIK S.A., Legutiano,Alava, Spain

Afra Maria Petrusa Llopis AIMEN Technology Centre, Smart Systems and
Smart Manufacturing Group, Pontevedra, Spain

Alberto Botana Loépez AIMEN Technology Centre, Smart Systems and Smart
Manufacturing Group, Pontevedra, Spain

Pedro Lopez Fundacion TECNALIA R&I, Madrid, Spain
Andreas Louca Suite5 Data Intelligence Solutions, Limassol, Cyprus

Paul Lukowicz German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany

Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany

Daniel Gordo Martin AIMEN Technology Centre, Smart Systems and Smart
Manufacturing Group, Pontevedra, Spain

Andrea Fernandez Martinez AIMEN Technology Centre, Smart Systems and
Smart Manufacturing Group, Pontevedra, Spain

Jorge Martinez-Gil Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

Pablo A. Martin High Performance and Artificial Intelligence, Barcelona Super-
computing Center, Barcelona, Spain



XX Editor and Contributors

Jawad Masood AIMEN Technology Centre, Smart Systems and Smart Manufac-
turing Group, Pontevedra, Spain

Antonello Meloni Mathematics and Computer Science Department, University of
Cagliari, Cagliari, Italy

Markku Mikkola VTT Technical Research Centre of Finland Ltd., Espoo, Finland
Elena Minisci CRIT S.R.L., Vignola, Italy
Dunja Mladeni¢ Jozef Stefan Institute, Ljubljana, Slovenia

Elias Montini University of Applied Science of Southern Switzerland, Switzerland
Politecnico di Milano, Milan, Italy

David Monzo Tyris Al, Valencia, Spain

Bernhard Moser Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

William Motsch Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH
(DFKI), Kaiserslautern, Germany

Serafeim Moustakidis AIDEAS OU, Tallinn, Estonia

Santiago Muifios-Landin AIMEN Technology Centre, Smart Systems and Smart
Manufacturing Group, Pontevedra, Spain

Marco Murgia Mathematics and Computer Science Department, University of
Cagliari, Cagliari, Italy

Jose Angel Segura Muros AIMEN Technology Centre, Smart Systems and Smart
Manufacturing Group, Pontevedra, Spain

Linda Napoletano Deep Blue, Rome, Italy

Nikolaos Nikolakis Laboratory for Manufacturing Systems & Automation (LMS),
Department of Mechanical Engineering & Aeronautics, University of Patras, Rio-
Patras, Greece

Nikoletta Nikolova Data Science, Netherlands Organisation for Applied Scientific
Research (TNO), Den Haag, The Netherlands

Alexandros Nizamis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Parsha Pahlevannejad German Research Center for Artificial Intelligence
(DFKI), Kaiserslautern, Germany
Technologie-Initiative SmartFactory, Kaiserslautern, Germany

Panagiotis Mavrothalassitis Laboratory for Manufacturing Systems & Automa-
tion (LMS), Department of Mechanical Engineering & Aeronautics, University of
Patras, Rio-Patras, Greece



Editor and Contributors XX1

Dimitrios Papamartzivanos Ubitech Ltd., Athens, Greece

Christos Patsonakis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Sergi Perez-Castanos Tyris Al, Valencia, Spain

Mario Pichler Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

Christiane Plociennik German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany
Technologie-Initiative SmartFactory, Kaiserslautern, Germany

Ausias Prieto-Roig Tyris Al, Valencia, Spain

Reforgiato Recupero Diego Mathematics and Computer Science Department,
University of Cagliari, Cagliari, Italy
R2M Solution s.r.l., Pavia, Italy

Vitor Fortes Rey German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany

Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany

Natalia Roczon Faculty of Mechanical and Industrial Engineering, Warsaw Uni-
versity of Technology, Warsaw, Poland

Sjoerd Rongen Data Ecosystems, Netherlands Organisation for Applied Scientific
Research (TNO), Den Haag, The Netherlands

Joze M. Rozanec Jozef Stefan Institute, Ljubljana, Slovenia
Qlector d.o.o0., Ljubljana, Slovenia

Martin Ruskowski German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany
Technologie-Initiative SmartFactory KL e.V., Kaiserslautern, Germany

Georg Schlake FernUniversity of Hagen, Hagen, Germany
Jona Scholz FernUniversity of Hagen, Hagen, Germany
Gabriele Scivoletto Nextworks SRL, Pisa, Italy

Michele Sesana TXT e-solutions SpA, Milan, Italy
TXT e-tech, Milan, Italy

Georgios Siachamis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Aleksandr Sidorenko Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
GmbH (DFKI), Kaiserslautern, Germany



XXii Editor and Contributors

Agastya Silvina Software Competence Center Hagenberg GmbH, Hagenberg,
Austria

Athanasios Siouras AIDEAS OU, Tallinn, Estonia
John Soldatos Netcompany-Intrasoft S.A, Luxembourg, Luxembourg

Sungho Suh German Research Center for Artificial Intelligence (DFKI), Kaiser-
slautern, Germany

Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany

Dimitris Syrrafos Suite5 Data Intelligence Solutions, Limassol, Cyprus

Hooman Tavakoli German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany
Technologie-Initiative SmartFactory, Kaiserslautern, Germany

Dimitrios Tzovaras Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Luis Usatorre Fundacion TECNALIA R&I, Madrid, Spain

Michael van Bekkum Data Science, Netherlands Organisation for Applied Scien-
tific Research (TNO), Den Haag, The Netherlands

Vasilis Siatras Laboratory for Manufacturing Systems & Automation (LMS),
Department of Mechanical Engineering & Aeronautics, University of Patras, Rio-
Patras, Greece

Entso Veliou University of West Attica, Aigaleo, Greece

Alberto Villalonga Centro de Automadtica y Robética (CSIC-Universidad Politéc-
nica de Madrid), Madrid, Spain

Konstantinos Votis Centre for Research and Technology Hellas, Information
Technologies Institute (CERTH/ITI), Thessaloniki, Greece

Eduardo Vyhmeister The Insight SFI Research Centre of Data Analytics, Univer-
sity College Cork, Cork, Ireland

Achim Wagner Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH
(DFKI), Kaiserslautern, Germany

Stefan Walter VTT Technical Research Centre of Finland Ltd., Espoo, Finland

Snehal Walunj German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany
Technologie-Initiative SmartFactory, Kaiserslautern, Germany

Robert Wilterdink Advanced Computing Engineering, Netherlands Organisation
for Applied Scientific Research (TNO), Den Haag, The Netherlands



Abbreviations

ACDS Al Cyber-Defence Strategies

ACL Agent Communication Language
ADAS Advanced Driver Assistance System
AHP Analytic Hierarchy Process

Al Artificial Intelligence

AlaaS Al as a Service

AL Active Learning

ALE Accumulated Local Efforts

AMG Al Model Generation

AMR Automatic Mobile Robots

ANOVA  Analysis of Variance

APaaS Application Platform as a Service
API Application Programming Interface
AR Augmented Reality

AutoML  Automated Machine Learning

BM Business Model

BOM Bill Of Materials

CAD Computer-Aided Design

CD Continuous Delivery

CEAP Circular Economy Action Plan

CI Continuous Integration

CM Community Management

CMOS Complementary Metal Oxide Semiconductor
CNC Computer Numerical Control

CNN Convolutional Neural Network
CoAP Constrained Application Protocol
CPPM Cyber-Physical Production Modules
CPPS Cyber-Physical Production Systems
CPS Cyber-Physical Systems

CPT Capabilities Periodic Table

CPU Central Processing Unit

XXiii



XXiV

CRUD
CSV
CvV
DAIRO
DBFSP
DCP
DES
DL
DLT
DnDF
DNN
DoS
DP
DPO
DRP
DS

DS
DSS
DT
DTF
DTI
D2C
EC
EGD
ERP
ESCO
EU
EFFRA
FMEA
FMS
FGSM
FT
GAT
GCN
GDPR
GE
GNN
GPR
GraphML
GRPN
GUI
GW
HAR
HCAI
HDT

Create Update Delete

Comma Separated Values

Computer Vision

Data, Al, and Robotics

Distributed Blocking Flowshop Scheduling Problem
Data Collection Platform

Discrete Event Simulation

Deep Learning

Distributed Ledger Technologies
Non-discrimination, and Fairness
Deep Neural Network

Denial of Service

Data Type Probing

Data Protection Officer

Deep Reinforcement Learning
Digital System

Data Scientist

Decision Support System

Digital Twin

Digital Twin Framework
Decentralised Technical Intelligence
Direct sales to final Customers
European Commission

European Green Deal

Enterprise Resource Planning
European Skills, Competences, and Occupations
European Union

European Factories of the Future Research Association
Failure Mode and Effects Analysis
Flexible Manufacturing System

Fast Gradient Sign Method
Fungible Token

Graph ATtention

Graph Convolutional Network
General Data Protection Regulation
Generic Enabler

Graph Neural Network

Gaussian Process Regression

Graph Machine Learning

Global Risk Priority Number
Graphical User Interface

Griding Wheel

Human Activity Recognition
Human-Centered Artificial Intelligence
Human Digital Twin

Abbreviations



Abbreviations XXV

HITL Human In The Loop

HLF Hyperledger Fabric

HMI Human-Machine Interface
HMS Holonic Manufacturing System
HOTL Human On The Loop

HR Human Resources

HRC Human-Robot Collaboration
HRI Human-Robot Interface

HTTP HyperText Transport Protocol
HTTPS Secure HyperText Transport Protocol

ICT Information and Communications Technology
IDTA Industrial Digital Twin Association

IEEE Institute of Electrical and Electronics Engineers
IEEE-SA IEEE Standards Association

IDM IDentity Management and Access Control
IFS Innovative Factory Systems

IIAF Industrial Internet Architecture Framework
IIC Industrial Internet Consortium

IIoT Industrial Internet of Things

IIRA Industrial Internet Reference Architecture
IISF Industrial Internet Security Framework

ILO International Labour Organization

IMU Inertial Measurement Unit

IoT Internet of Things

IoU Intersection of Union

ISCO International Standard Classification of Occupations
ISO International Organization for Standardization
IT Information Technology

14.0L 14.0 Language

JSON JavaScript Object Notation

JSSP Job Shop Scheduling Problem

KG Knowledge Graph

KPI Key Performance Indicator

KQML Knowledge Query and Manipulation Language
LIME Local Interpretable Model-Agnostic Explanations

LLM Large Language Models

LPG Labeled Property Graph

LSTM Long Short-Term Memory

MAP Mean Average Precision

MAPE Mean Absolute Percentage Error
MAS Multi-Agent System

MC Malicious Control

MDP Markov Decision Process

MIP Mixed Integer Programming

ML Machine Learning



XXVi Abbreviations

MLP Multilayer Perceptron

MMD Maximum Mean Discrepancy
MO Malicious Operation

MO Machine Operator

MPMS Manufacturing Process Management System
MP&L Material Planning & Logistics
MQTT Message Queue Telemetry Transport

MSE Mean Squared Error

MSP Multi-Sided Platforms

MVP Minimum Viable Platform

NAICS North American Industry Classification System

NFT Non-Fungible Token

NLP Natural Language Processing

NOC National Occupation Classification

OD Object Detection

OECD Organisation for Economic Cooperation and Development
OEM Original Equipment Manufacturer

ONNX Open Neural Network Exchange
OPC-UA  Open Platform Communications United Architecture

oT Operational Technology

OWL Web Ontology Language

O*NET Occupational Information Network

PBT Population-Based Training

PCA Principal Component Analysis

PCPSP Precedence Constrained Production Scheduling Problem
PDT Platform Design Toolkit

PGD Projected Gradient Descent

PIAAC Programme for the International Assessment of Adult Competencies
PLM Product Lifecycle Management

PLM Production Line Manager

PMML Predictive Model Markup Language

POV Point of View

PPKB Production Processes Knowledge Base

PRM Process of Risk Management

PS Physical System

QFD Quality Function Deployment

RA Reference Architecture

RAME Risk Assessment and Mitigation Engine
RAMI Reference Architecture Model Industry 4.0
RAMP Robotics and Automation Marketplace
RASP Risk Architecture, Strategy, Protocols

RCA Route Cause Analysis
RDF Resource Description Framework
REST Representation State Transfer

RGAN Relational Graph Attention Network



Abbreviations XXVii

RGCN Relational Graph Convolutional Network

RL Reinforcement Learning

RMS Reconfigurable Manufacturing System
RMSLE  Root Mean Squared Log Error

ROS Robot Operation System

RPN Risk Priority Number

RQ Research Question

RZSG Robust Zero-Sum Game

SaaS Software as a Service

SC Smart Contract

SHACL  Shapes Constraint Language
SHAP SHapley Additive exPlanations

SQL Structured Query Language

SME Small Medium Enterprise

SNE Stochastic Neighbor Embedding

SOTA State of the Art

SPM Security Policies Manager

SPR Security Policies Repository

SS Software Scientist

SSO Single Sign On

STEP Skills Towards Employment and Productivity
SVM Support Vector Machine

SVR Support Vector Regression

TAI Trustworthy Al

TEER Training, Education, Experience, and Responsibilities
TLS Transport Level Security

Ul User Interface

WS Wrong Setup

XAI eXplainable Artificial Intelligence

YOLO You Only Look Once



Part I
Architectures and Knowledge Modelling
for AI in Manufacturing



Reference Architecture for AI-Based )
Industry 5.0 Applications o

John Soldatos (), Babis Ipektsidis (%), Nikos Kefalakis (),
and Angela-Maria Despotopoulou

1 Introduction

For over a decade, manufacturing enterprises are heavily investing in their digital
transformation based on Cyber-Physical Production Systems (CPPS) that enable
the digitization of production processing such as production scheduling, products’
assembly, physical assets’ maintenance, and quality control. The deployment and
operation of CPPS in the manufacturing shopfloor is the main enabler of the fourth
industrial revolution (Industry 4.0) [1], which boosts automation and efficiency
toward improving production speed and quality [2], while lowering production costs
and enabling novel production models such as lot-size-one manufacturing and mass
customization.

Industry 4.0 applications are usually developed based on advanced digital
technologies such as Big Data, Internet of Things (IoT), and Artificial Intelligence
(AI), which are integrated with CPPS systems in the manufacturing shopfloor
and across the manufacturing value chain. In cases of nontrivial Industry 4.0
systems, this integration can be challenging, given the number and the complexity
of the systems and technology involved. For instance, sophisticated Industry 4.0
use cases are likely to comprise multiple sensors and automation devices, along
with various data analytics and AI modules that are integrated in digital twins
(DTs) systems and applications. To facilitate such challenging integration tasks,
industrial automation solution providers are nowadays offered with access to various
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reference architecture models for Industry 4.0 applications. These models illustrate
the functionalities and technological building blocks of Industry 4.0 applications,
while at the same time documenting structuring principles that facilitate their
integration and deployment in complete systems and applications. Some of these
reference architecture models focus on specific aspects of Industry 4.0 such as data
collection, data processing, and analytics, while others take a more holistic view that
addresses multiple industrial functionalities. Moreover, several architecture models
address nonfunctional requirements as well, such as the cybersecurity and safety of
industrial systems.

During the last couple of years, there is a surge of interest on Industry 4.0
applications that emphasize human-centered industrial processes, i.e., processes
with the human in the loop, as well as the achievement of ambitious sustainability
and resilience objectives. The latter are at the very top of the policy agenda of the
European Union, as reflected in the European Green Deal (EGD) and Europe’s
Circular Economy Action Plan (CEAP). This has led to the introduction of the term
Industry 5.0, which evolves Industry 4.0 in a direction that complements efficiency
and productivity goals with societal targets, notably contributions to sustainability
and the workers’ well-being [3]. Hence, Industry 5.0 targets a sustainable, human-
centric, and resilient industry [4]. In this direction, Industry 4.0 systems must be
enhanced with human-centric technologies that put the worker at the center of the
production process, while at the same time fostering security, safety, transparency,
and trustworthiness. For instance, the shift from Industry 4.0 to Industry 5.0 asks for
the deployment and use of transparent, interoperable, and explainable Al systems
[5], beyond black-box systems (e.g., deep neural networks) that are typically used in
Industry 4.0 deployments. As another example, Industry 5.0 applications comprise
technological paradigms that foster the collaboration between humans and industrial
systems (e.g., co-bots), rather than systems that aim at replacing the human toward
hyper-automation (e.g., fully autonomous industrial robots). Likewise, the scope
of digital twins in Industry 5.0 tends to differ from Industry 4.0, as simulations
and what-if analysis account for human parameters (e.g., physical characteristics,
emotional status, skills) as well. Also, Industry 5.0 pays greater emphasis on
nonfunctional requirements such as data protection, security, and safety when
compared to Industry 4.0 that prioritizes industrial performance and accuracy.

Despite these technological differences between Industry 5.0 and Industry 4.0
systems, there is still a lack of standards, formal guidelines, and blueprints for devel-
oping, deploying, and operating Industry 5.0 systems. In most cases, manufacturers
and providers of industrial automation solutions make use of conventional Industry
4.0 and blueprints, which they enhance with the required features and functionalities
of their Industry 5.0 use cases at hand. We argue that this is a considerable
misstep in the process of designing and implementing Industry 5.0 solutions, as
it deprives architects and developers of industrial systems of the opportunity to
consider Industry 5.0 functionalities and features from the early stages of the
industrial systems’ development. State-of-the-art approaches to developing Industry
5.0 systems start from Industry 4.0 reference architectures and address human-
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centricity, sustainability, and resilience as secondary, complementary concerns
rather than as indispensable requirements that must be prioritized.

Motivated by the general lack of reference architecture models for Industry
5.0 systems, this chapter introduces a reference architecture for human-centric,
resilient, and sustainable industrial systems, notably digital manufacturing systems
that are developed based on cutting-edge technologies such as Artificial Intelligence
(AI). The reference architecture highlights the main functional and nonfunctional
aspects of Industry 5.0 systems and introduces technological building blocks that
can support their implementation. In this direction, the present model specifies
technologies that foster human-centricity and trustworthy interactions between
humans and industrial systems, such as human-centered digital twins, explainable
and interpretable Al, active learning, neurosymbolic learning, and more. Emphasis
is also put on technological building blocks that boost cybersecurity and safety,
such as technologies for ensuring the trustworthiness of data and machine learning
algorithms. Along with the specification of building blocks and structuring princi-
ples for the integration in end-to-end Industry 5.0 solutions, the chapter delineates
various blueprints that can facilitate the development of Industry 5.0 use cases. The
presented blueprints include guidelines for regulatory compliance in the European
Union (EU), notably compliance to the European Al regulation proposal (i.e., the
“Al Act”) [6].

The remainder of the chapter is structured as follows:

» Section 2 presents related work on reference architectures (RAs) for Industry 4.0.
Various RAs are briefly reviewed and their concepts that are relevant to Industry
5.0 solutions are highlighted.

* Section 3 introduces a reference architecture for Industry 5.0 systems. A high-
level model of functionalities for human-centric and resilient manufacturing is
first introduced, followed by a more detailed logical architecture. Moreover,
the section presents a set of technological building blocks that can support the
development of real-life systems based on the presented architecture.

e Section 4 presents a set of blueprints for developing Industry 5.0 solutions
based on the presented architecture. The blueprints include guidelines and best
practices for building solutions compliant to the European Regulation for Al
systems.

* Section 5 is the final and concluding section of the chapter.

2 Relevant Work

A considerable number of reference architecture models have been recently intro-
duced to facilitate the development, integration, and deployment of Industry 4.0
applications. These include architectural models specified by standards development
organizations and research initiatives. As a prominent example, the Industrial
Internet Reference Architecture (IIRA) prescribes a standards-based architecture
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for developing, deploying, and operating Industrial Internet of Things (IIoT)
systems [7]. It is destined to boost interoperability across different IoT systems
and to provide a mapping on how different technologies can be exploited toward
developing IIoT systems. The IIRA is described at a high level of abstraction,
as it strives to have broad applicability. Its specification has been driven by the
analysis of a rich collection of industrial use cases, notably use cases prescribed
in the scope of the activities of the Industrial Internet Consortium (IIC). The
IIRA is described based on the ISO/IEC/IEEE 42010:2011 [8] standard, which
has been adopted by IIC to define its Industrial Internet Architecture Framework
(ITAF). The IIRA is defined in terms of four complementary viewpoints: (1) the
“business viewpoint” presents the functional modules that are destined to support
the business goals of different stakeholders; (2) the “usage viewpoint” presents the
way systems compliant to IIRA are used. It includes various sequences of activities
involving human or logical actors, which deliver the functionality prescribed by the
architecture; (3) the “functional viewpoint” presents the functional components of
an IIoT system, including their structure and interrelation, as well as the interfaces
and interactions between them; and (4) the “implementation viewpoint” is devoted
to technologies that are used to implement the various functional components and
their interactions. In the scope of the IIRA, there are also cross-cutting elements, i.e.,
elements and functions that are applicable to all viewpoints, including connectivity,
industrial analytics, distributed data management, as well as intelligent and resilient
control.

The functional viewpoints of the IIRA specify five sets of functionalities,
including: (1) the ‘“control domain,” which comprises functions conducted by
industrial control and automation; (2) the “operations domain,” which deals with
the management and operation of the control domain. It comprises functions for
the provisioning, management, monitoring, and optimization of control domain
systems and functions; (3) the “information domain,” which focuses on managing
and processing data from other domains, notably from the control domain; (4) the
“application domain,” which provides the application logic required to implement
the various business functions; and (5) the “business domain,” which implements
business logic that supports business processes and procedural activities in the scope
of an IloT system.

Overall, the IIRA provides a taxonomy of the main functional areas of industrial
systems, which are relevant to Industry 5.0 systems and applications as well. The
IIRA introduces a clustering of functionalities into different domains, which we
will leverage in Sect. 3 toward introducing our Industry 5.0 architecture. Also, the
IIRA illustrates how specific functions such as asset management and cybersecurity
functions can be integrated with IIoT systems and provides insights about how to
best structure the logical and implementation views of industrial architectures. The
implementation view of the IIRA is based on a cloud/edge computing approach,
which is also the suggested implementation approach for Industry 5.0 systems.
Nevertheless, the [IRA does not include any specific provisions for human-centric
industrial systems such as systems that collect and analyze information about
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the context of the human user toward customizing the industrial functionalities
accordingly.

The Industrial Internet Security Framework (IISF) complements the [IRA with a
security viewpoint for industrial systems [9]. One of the main objectives of the IISF
is to prescribe the functions needed for the development, deployment, and operation
of trusted IIoT. These functions are also essential for ensuring the trustworthiness
of Industry 5.0 systems and their AI components in industrial environments. Thus,
the structure and functions of IISF provided inspiration about how to support Al
trustworthiness for industrial use cases. The IISF specifies functionalities that secure
all the different elements of an industrial system such as the various communication
endpoints of the system. Most of these functions can be used to boost the security
and trustworthiness of Industry 5.0 systems as well, as they safeguard the operation
of the networks, the data, and the data processing functions of Industry 5.0 systems.
Specifically, the IISF is concerned with the five main characteristics that affect
the trustworthiness of IIoT deployments, i.e., security, safety, reliability, resilience,
and privacy. The framework specifies a functional viewpoint that is destined to
secure IIoT systems compliant to the IIRA. To this end, the functional viewpoint
specifies six interacting and complementary building blocks, which are organized in
a layered fashion. The top layer comprises four security functions, namely endpoint
protection, communications and connectivity protection, security monitoring and
analysis, and security configuration management. Likewise, a data protection layer
and a system-wide security model and policy layer are specified. Each one of
the functional building blocks of the IISF can be further analyzed in more fine-
grained functions such as monitoring functionalities, data analytics functionalities,
and actuation functionalities. Each of these three types of functionalities include
security-related functions.

One more reference architecture for industrial systems, notably for fog comput-
ing systems, was introduced by the OpenFog Consortium prior to its incorporation
within the Industrial Internet Consortium in 2019 [10]. The OpenFog RA specifies
the structure of large-scale fog computing system with emphasis on how fog nodes
are connected to enhance the intelligence and to boost the efficiency of Industrial
IoT systems. The OpenFog RA specifies some cross-cutting functionalities, which
are characterized as “perspectives.” One of these perspectives deals with the security
functionalities, which implies that security is applicable to all layers and use
scenarios from the hardware device to the higher software layers of the architecture.
As already outlined, such security functions are key to the development and
deployment of trusted industrial systems of the Industry 5.0 era.

The Big Data Value Association (BDVA) has specified the structure of big data
systems based on the introduction of a reference model for big data systems [11].
The model illustrates a set of modules that are commonly used in big data systems
along with structuring principles that drive their integration. The BDVA reference
model consists of the following layers:

* Horizontal layers that illustrate the modules and the structure of data processing
chains. The modules of data processing chains support functions such as data
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collection, data ingestion, data analytics, and data visualization. The horizontal
layers do not map to a layered architecture, where all layers must coexist in
the scope of a system. For instance, it is possible to have a data processing
chain that leverages data collection and visualization collection functions without
necessarily using data ingestion and data analytics functionalities. Hence, the
BDVA horizontal layers can be used as building blocks to construct data pipelines
for Al systems.

o Vertical layers that deal with cross-cutting issues such as cybersecurity and trust.
The latter are applicable to all functionalities of the horizontal layers. Vertical
layers can be also used to specify and address nontechnical aspects such as the
ever important legal and regulatory aspects of Al systems.

The horizontal and vertical layers of the reference model are used to produce
concrete architectures for big data systems. There are clearly many commonalities
between big data and Al systems as many Al systems (e.g., deep learning systems)
are data-intensive and process large amounts of data. The BDVA RA does not,
however, address functionalities that foster the development of Industry 5.0 systems,
such as data quality and Al model explainability functionalities. As such it is
mostly appropriate for architecting Al systems without special provisions for their
trustworthiness and human centricity.

Standards-based functionalities for Al systems are also specified by the ISO/IEC
JTC 1/SC 42 technical committee on Artificial Intelligence [12]. The committee
has produced several standards that cover different aspects of Al systems, such
as data quality for analytics and machine learning (ML) (i.e., ISO/IEC DIS 5259-
1), transparency taxonomy of Al systems (i.e., ISO/IEC AWI 12792), a reference
architecture of knowledge engineering (i.e., ISO/IEC DIS 5392), functional safety
and Al systems (i.e., ISO/IEC CD TR 5469), as well as objectives and approaches
for explainability of ML models and Al systems (i.e., ISO/IEC AWI TS 6254).
As evident from the above-listed descriptive titles, the ISO/IEC JTC 1/SC 42
technical committee addresses human centricity (e.g., safety, explainability) and
trustworthiness (e.g., data quality, explainability) issues for Industry 5.0 systems.
Nevertheless, most of the relevant standards are under development and not yet
available for practical applications and use.

In recent years, the IEEE (Institute of Electrical and Electronics Engineers) SA
(Standards Association) is developing a suite of standards (i.e., standards of the
IEEE 7000 family) that deal with the ethical aspects of Al systems. For instance,
the IEEE 7000-2021 standard titled “IEEE Standard Model Process for Addressing
Ethical Concerns during System Design” [13] specifies a process that organizations
can follow to ensure that their Al systems adhere to ethical values and integrate
ethical AI concepts within their systems’ development lifecycle. These standards
can facilitate the development of Industry 5.0. However, they are mostly focused
on development, deployment, and operational processes rather on how to structure
Industry 5.0 systems.

Overall, there is a still a lack of standards-based architectures and blueprints
for the development of Industry 5.0 systems. Hence, Al developers, deployers, and
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engineers have no easy ways to structure, design, and build nontrivial trustworthy
human-centric Al systems [14].

3 Architecture for AI-Based Industry 5.0 Systems

(STAR-RA)

3.1 High-Level Reference Model for AI-Based Industry 5.0

Systems

3.1.1 Overview

A high-level reference model for Al-based Industry 5.0 systems is illustrated in
Fig. 1. The model specifies a set of functionalities that foster trustworthiness and
safety of Al systems in-line with the mandates of Industry 5.0. It clusters Industry
5.0 functionalities in three main categories or functional domains according to the
terminology of the Industrial Internet Reference Architecture (IIRA). The three
domains are as follows:

Cybersecurity domain: This domain includes functionalities that boost the
cybersecurity and cyber resilience of Al systems in industrial settings. These
functionalities ensure the reliability and security of industrial data, as well as
of the AI algorithms that are trained and executed based on these data. The
functionalities of this domain support and reinforce the trustworthiness of the
project’s functions in the other two domains.

Human—robot collaboration (HRC) domain: This domain provides functionali-
ties for the trusted collaboration between human and robots. It leverages cyber-
security functionalities, while reinforcing functionalities in the safety domain.
The specified functionalities aim at boosting trusted interactions between humans
and Al systems in ways that yield better performance than humans or Al
systems alone. In this direction, this domain leverages Al models that foster the
collaboration between humans and Al systems such as active learning [15] and
neurosymbolic learning (e.g., [16, 17]).

Safety domain: This domain comprises functionalities that ensures the safety of
industrial operations, including operations that involve workers and/or automa-
tion systems. For instance, functionalities in this domain reinforce worker safety,
while boosting the safe operation of AMRs (automatic mobile robots).

For each one of the functional domains, Fig. 1 presents a set of functionalities,

notably functionalities that are actually implemented and validated in the context
of the H2020 STAR project. These functionalities are illustrated in the following
subparagraphs. Note, however, that they are by no means exhaustive, as it is possible
to specify additional functionalities that boost the cybersecurity, HRC and safety of
Al-based functionalities in Al systems.
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Fig. 1 STAR high-level reference model for Industry 5.0 systems

Explainable AT (XAI) has a prominent role in the high-level reference model of
Fig. 1. This is because XAl functionalities provide support to various functionalities
of the different domains. For instance, XAl is an integral element of AI models that
foster HRC such as neurosymbolic learning. Similarly, XAl can be used to identify
potential attempts to tamper Al systems by altering their operations. As such XAI
is positioned as a cross-cutting functionality of XAI systems. As shown in Fig.
1, machine learning platforms are among the main pillars of Al-based Industry
5.0 systems as most of the functionalities are deployed and executed over such
platforms. This is, for example, the case for Al systems that implement cyber-
defense strategies in the cybersecurity domain and reinforcement learning systems
that detect safety zones in the safety domain.

3.1.2 Cybersecurity Domain Functionalities

Cybersecurity functionalities are key to ensuring the trustworthiness of Al systems.
This is because they ensure the trustworthiness and reliability of industrial data
and the Al models that are trained and developed based on these data. Moreover,
they protect these systems from cybersecurity attacks that could compromise their
operation and break the trust on their operation. A set of indicative functionalities
that have been implemented in the STAR project include:

* Secure networked data collection: This refers to the implementation of secure
networked protocols for accessing industrial data stemming from Cyber-Physical
Systems (CPS) and enterprise applications (e.g., ERP (Enterprise Resource
Planning) of an industrial site. For instance, they entail the implementation
of data collection probes based on secure networked protocols such as TLS
(Transport Level Security) and HTTS (Secure HyperText Transport Protocol).

* Data provenance and traceability: Data provenance and traceability of industrial
data is key toward ensuring industrial data reliability. Specifically, provenance
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and traceability functionalities enable Al system developers to continually access
properties and characteristics of the source industrial data (e.g., hash codes,
statistical properties) in order to implement tamper-proof functionalities [18].
Such functionalities can be implemented for both source data and Al models
built on them to help preventing their tampering by malicious actors.

* Risk assessment and mitigation: Risk assessment and mitigation functionalities
are integral to most cybersecurity systems. In the case of Al-based industrial
systems, they provide the means to identify, assess, and install mitigation
measures against potential cybersecurity risks. Some of these risks (e.g., data
falsification) can be mitigated based on other functionalities of the cybersecurity
domain (e.g., provenance and traceability).

e Security Policies Manager: This functionality makes provision for the specifica-
tion and implementation of security policies for Al systems. It is a placeholder for
a wide range of policies such as authenticated and authorized access to industrial
data and Al functions.

o Al cyber-defense strategies: Al systems are subject to additional vulnerabilities
and cyber-resilience risks. For example, hackers can launch data poisoning
attacks that alter the data that are used for training machine learning systems
toward compromising their operation (e.g., [19]). Likewise, Al systems must
be robust against evasion attacks that manipulate input data toward producing
errors in the operation of machine learning systems (e.g., [20]). Al cyber-defense
functionality aim at mitigating and confronting such attacks based on techniques
such as auditing of the training data and formal verification of the input data.

3.1.3 HRC Domain Functionalities

The list of HRC functionalities of the high-level reference model includes:

e Al for human—robot collaboration: Beyond classical machine learning models
and paradigms, there are machine learning approaches that foster the interplay
between humans and Al systems to enable effective HRC. This is, for example,
the case with active learning systems, where robots and ML systems can consult
a human expert to deal with uncertainty during data labeling processes. Active
learning approaches accelerate knowledge acquisition by Al systems, facilitate
HRC, and improve the overall performance and trust of Al deployments.

* Knowledge management and representation: The knowledge of proper repre-
sentation and management of HRC processes is key to the implementation of
effective human—Al interactions. In this direction, semantic modeling techniques
(e.g., semantic knowledge graphs) are employed to facilitate Al systems to
understand and reason over the context of the HRC process [21].

* HMI for feedback collection and management: HRC systems involve interactions
between humans and Al systems, including the provision of feedback from the
human to the Al system. This is, for example, the case in the above-mentioned
active learning systems where humans provide data labeling feedback to Al
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systems. To implement such feedback collection and management functionali-
ties, the HRC domain includes placeholders for proper HMI (human machine
interfaces) such as NLP (natural language processing) interfaces.

Simulated reality: Simulated reality systems enable the training of HRC systems
in the scope of virtual simulated environments. They are usually linked to
reinforcement learning systems that are trained in virtual rather than in real
environments. Their inclusion in the reference model signals the importance of
training humans for HRC functionalities in a safe environment. As such they are
also enablers of functionalities in the safety domain of the Al-based Industry 5.0
reference model, such as functionalities for safety zones detection.

Human digital twin (HDT): This is a placeholder for human-centered digital
twins, which are digital twin systems that comprise information about the
characteristics and the context of the human workers [22]. HDT systems are ideal
for modeling, developing, and implementing HRC systems that blend Al systems
with human actors, while modeling and simulating their interactions.

3.1.4 Safety Domain Functionalities

The safety domain of the reference model outlines functionalities that are key to
ensuring the safe operation of Al systems (e.g., robots) in the scope of Industry 5.0
scenarios. It identifies the following indicative but important functionalities:

Object localization and tracking: This functionality aims at identifying the
location of objects within industrial environments, notably of moving objects
such as mobile robots. The localization and tracking of such functionalities are
integral elements of applications that safeguard the safe operation of robotics and
Al systems in industrial environments.

Safety zones detection: Automation systems that move within an industrial
environment (e.g., shopfloor, plant floor) must follow safe trajectories that
minimize the risk of collisions between automation systems, humans, and other
stationary elements of the workplace. In this direction, the detection of safety
zones based on Al technologies (e.g., reinforcement learning [23]) can increase
the safety of the Al systems and minimize related risks.

Safe automatic mobile robots: This functionality is a placeholder for systems
that ensure the safe movement of automatic mobile robots. The implementation
of this functionality can benefit from other functionalities of this domain such as
the detection of safety zones.

Worker safety: Apart from ensuring the safe operation and movement of robotic
systems, it is important to ensure the safety of the workers. Workers’ safety is at
the heart of Industry 5.0 system that emphasize human centricity. The respective
functionalities ensure that workers act within safe environments and that the
emotional and physical context of the human is properly considered in the design,
development, deployment, and operation of Al systems.
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» Fatigue monitoring system: Fatigue monitoring is a very prominent example of a
human-centered functionality that can boost both the performance and the safety
of industrial systems. It collects and analyzes information about the fatigue of
the worker, which can then be used to drive the adaption of Al and Industry 5.0
systems toward a worker-centric direction.

3.2 Logical Architecture for AI-Based Industry 5.0 Systems
3.2.1 Driving Principles

Figure 2 illustrates a specific instantiation of the reference architecture model, which
has been implemented in the scope of the STAR project [25] and is conveniently
called STAR-RA in the scope of this chapter. The architecture is presented in
the form of a logical view, which comprises functional modules along with their
structure and their interactions with other systems. It can serve as a basis for
implementing, deploying, and operating Al-based Industry 5.0 systems. Systems
compliant to the STAR-RA aim at securing existing Al-based CPPS systems in
manufacturing production lines based on a holistic approach that pursues the
following principles that are fully in-line with the earlier presented high-level
architecture:

» Secure and reliable data: The STAR Al systems must operate over reliable
industrial data, i.e., the architecture makes provisions for alleviating the inherent
unreliability of industrial data.
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o Secure and trusted Al algorithms: Systems compliant to the STAR-RA enhance
the secure operation of the Al systems and algorithms that they comprise. In
this direction, they make provisions for implementing cyber-defense strategies
that protect and defend Al systems from malicious security attacks. STAR-RA
compliant systems focus on defenses against cybersecurity attacks. Physical
security attacks may be applicable to some industrial systems (e.g., robotics
systems), yet they are not address by the STAR-RA.

o Trusted human Al interactions: The presented architectures focus on the imple-
mentation of trusted interactions between humans and Al systems. On the one
hand, it ensures that Al systems are transparent and explainable to humans toward
boosting their acceptance and adoption. On the other hand, it also focuses on safe
and trusted interactions between humans and Al systems in HRC scenarios.

* Safe Al systems: The architecture boosts the safety of autonomous Al systems
such as mobile robots. For example, it focuses on the secure placement and
movement of autonomous mobile robots (AMRs) within industrial plants.

The above listed functionalities and the logical modules that implement them
can not only work independently but also in synergy with each other. For instance,
reinforcement learning (RL) algorithms can be used to ensure the safe operation
of AMRs, which contributes to the trusted operation of Al systems. Such RL
algorithms can operate independently from other modules. However, they can
also be integrated with the industrial data reliability systems of the cybersecurity
domain toward ensuring that they operate over trusted and reliable industrial data.
This boosts and reinforces their trustworthiness. Moreover, they can be integrated
with Al-based cyber-defense strategies to ensure that they cannot be tampered or
compromised by malicious parties. This is yet another measure to strengthening the
trustworthiness of Al systems for safe AMR operations. Overall, when integrating
and combining multiple modules of the architecture, manufacturers and system
integrators can gain a multiplicative trustworthiness benefit, as one system can
reinforce the other.

This architectural proposition provides the structuring principles for integrating
the Al-based industrial systems of the Industry 5.0 era. However, the presented
functional modules do not represent an “all-or-nothing” value proposition. Manufac-
turers and Al systems integrators can adopt and implement parts of the STAR-RA,
i.e., specific modules of the logical architecture.

As illustrated in Fig. 2, the architecture enables the development of Al systems
that receive data from the shopfloor (i.e., digital manufacturing platforms and other
Al-based CPPS systems) and provide different types of Al-based services to factory
(cyber)security teams and to other factory stakeholders (e.g., industrial engineers,
plant managers, factory workers). The alignment of the different modules to the
high-level architecture of the previous subsection is illustrated by means of their
color, i.e., blue-colored modules belong to the cybersecurity domain, red-colored
modules to the safety domain and green-colored to the HRC domain.
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3.2.2 Logical Modules

The main modules and building blocks of the architecture are illustrated in the
following subparagraphs.

Digital Manufacturing Platforms and CPPS Systems

The architecture enables the development of secure, safe, and trusted Al systems
in production lines. To this end, systems compliant to the STAR-RA collect and
process data from Al-based systems in the shopfloor, including machines, robotic
cells, AMRs, and other digital manufacturing platforms. Industry 5.0 systems
comprise various CPPS systems and digital manufacturing platforms that serve as
data sources for other logical modules. The latter may also consume data from
other data sources in the shopfloor such as business information systems (e.g.,
ERP (Enterprise Resource Planning)) and manufacturing databases (e.g., historian
systems).

Industry 5.0 Applications

This building block represents different types of Al-based industrial applications
such as machine learning (ML) and robotics applications. They leverage information
and data sources from the shopfloor. In some cases, they are integrated with
the digital manufacturing platforms as well. Other modules of the architecture
collect data from them and analyze their behavior toward boosting the security and
trustworthiness of their operation. Al-based Industry 5.0 applications can also be
data sources that provide data to other logical modules and data-driven systems of
the architecture.

Secure Networked Probes (SNP)

This building block provides a secure data collection solution that offers a real time
data collection, transformation, filtering, and management services to facilitate data
consumers (e.g., the Al cyber-defense module and the Security Policies Manager)
in accessing the required data. For example, it can be used to collect security-related
data (e.g., network, system, and solution proprietary) from monitored IoT systems
and store them to detect patterns of abnormal behavior by applying simple (i.e.,
filtering) or more elaborate (i.e., deep learning) data processing mechanisms. The
solution features specialized probes that may be deployed within the monitored
IoT/CPPS system or poling services for acquiring data from shopfloor sources such
as CPPS systems and digital manufacturing platforms. The module belongs to the
cybersecurity domain of the high-level reference architecture.
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Data Provenance and Traceability (DPT)

The DPT module belongs to the cybersecurity domain and provides the means
for tracking and tracing industrial data. It interfaces to the data probes to acquire
information about the industrial data of the shopfloor such as information about
data types, volumes, and timestamps. Accordingly, it records this information (i.e.,
the metadata) about the acquired data to facilitate the detection of data abuse and
data tampering attempts. Specifically, data ingested in the DPT can be queried by
other modules to facilitate the validation of datasets and to ensure that the data
they consume have not been falsified. In this way, the DPT module reinforces the
reliability and the security of the industrial data that flow through the system.

Blockchain — Distributed Ledger Infrastructure

There are different ways for implementing a DPT infrastructure for industrial data.
The STAR-RA promotes a decentralized approach, which leverages the benefits of
distributed ledger technologies, i.e., a blockchain protocol. Distributed ledger infras-
tructures offer some advantages for industrial data provenance, such as immutable
and tamper-resistant records. They also provide a comprehensive and auditable
trail that records the history of data transactions, including creation, modification,
and transfer events. In addition, blockchains enable the implementation of Smart
Contracts (SC) over the distributed ledger infrastructure, notably SCs that are used
to validate the metadata of the industrial datasets that are recorded in the blockchain.
SCs enable decentralized applications that provide information about the metadata
to interested modules such as the cyber-defense strategies module.

Al Cyber-Defense Strategies (ACDS)

This module implements cyber-defense strategies for Al systems, i.e., strategies that
protect Al systems against adversarial attacks. These strategies operate based on
access to industrial data from:

* The Al systems (including ML systems) that must be protected from cybersecu-
rity attacks.

* The CPPS and digital manufacturing platforms that act as data sources.

* The metadata of the industrial data that are managed by the DPT module and its
blockchain implementation.

* The explainable AI (XAI) module, which implements explainable AI models that
illustrate and interpret the operation of various Al systems and algorithms.

The module materializes different strategies in response to attacks against Al sys-
tems. For instance, it implements cyber-defense strategies for poisoning and evasion
attacks. Nevertheless, additional cyber-defense strategies can be implemented and
integrated with the rest of the modules (i.e., secure networked data probes, DPT).
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A data integration infrastructure (e.g., based on a data bus pattern) can be used as a
data exchange middleware infrastructure to facilitate data transfer and data sharing
across different modules involved in the detection of a cybersecurity attacks, i.e.,
the DPT, the ACDS, and the SNP.

Risk Assessment and Mitigation Engine (RAME)

This module implements the security risk assessment and mitigation service of the
STAR-RA in-line with the cybersecurity domain of the high-level architecture. The
module assesses risk for assets associated with Al-based systems in manufacturing
lines. In this direction, it interacts with the Al cyber-defense strategies modules as
follows: (1) the defense strategies communicate to the RAME information about
identified risks for Al assets; and (2) the RAME consumes information from the
DPT to assess risks. It also offers mitigation actions for the identified risks such as
changes to the configuration of a probe via the SNP module.

Security Policies Manager (SPM) — Security Policies Repository (SPR)

This module defines and configures security policies that govern the operation
of the DPT, Al cyber-defense, and the RAME modules. Specifically, the module
specifies security policies that provide information about the probes and data
sources to be integrated, the configurations of the probes, as well as the cyber-
defense strategies to be deployed. By changing the applicable policies, the SPM
changes the configuration and the operation of other modules of the cybersecurity
domain (e.g., DPT, RAME, ACDS). The operation of the SPM is supported by a
Security Policies Repository (SPR), where policy files are persisted. Furthermore,
the SPM offers a GUI (graphic user interface) to the security officers of the factory
(e.g., members of CERT (computer emergency response teams)).

Machine Learning and Analytics Platform

Several modules of the architecture are based on machine learning algorithms,
including deep learning and reinforcement learning. This is, for example, the case
of the ACDS module, which implements Al-based defense strategies among others.
Another prominent example is the XAl module, which produces explainable ML
models. The machine learning and analytics platform supports the operation of
these Al systems. It enables developers and users of the STAR-RA modules (i.e.,
data scientists, domain experts, ML engineers) not only to specify and execute ML
models but also to access their metadata and outcomes. The platform interacts with
modules that provide datasets for training and executing Al algorithms such as the
SDP module.
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Explainable Artificial Intelligence (XAI)

This module provides and executes XAl models and algorithms. It provides the
means for executing different types of XAI algorithms such as algorithms for
explaining deep neural networks and general-purpose algorithms (e.g., LIME —
Local Interpretable Model-Agnostic Explanations) [24] that explain the outcomes
of Al classifiers. As such the module is a placeholder of XAI techniques. The
XAI module provides its services to several other modules that leverage explainable
algorithms, such as the Al cyber-defense strategies module and the simulated reality
(SR) modules.

Simulated Reality (SR)

This module simulates production settings in a virtual world with a twofold
objective: (1) producing data to be used by Al algorithms, especially in cases
where real-world data are not available at adequate quantities; and (2) utilizing
reinforcement learning techniques in artificial settings (i.e., simulated environments)
toward accelerating their convergence. SR leverages services from the XAI module,
which facilitate humans to assess the appropriateness and correctness of the
simulated data that are generated by the SR.

Active Learning (AL) and Neurosymbolic Learning

This module provides a placeholder for machine learning paradigms that foster
HRC, i.e., modules of the HRC domain of the high-level reference architecture.
Such paradigms include active learning and neurosymbolic learning, which help
robots and Al systems to benefit from human expertise in the context of human in
the loop industrial processes. These machine learning techniques for HRC fall in the
scope of the HRC domain of the high-level architecture.

Production Processes Knowledge Base (PPKB)

This module consolidates domain knowledge about the production processes of the
manufacturing environment. It is used for inferencing by the other modules such as
the AL and neurosymbolic learning modules. The latter modules can interact and
update the module with knowledge acquired by the humans in the scope of human-
in-the-loop processes. Therefore, it also falls in the scope of the HRC domain.
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AMR Safety

This module comprises RL techniques that boost the safety of AMRs in industrial
environments such as manufacturing shopfloors. It provides insights on the safe
placement of robots in a manufacturing environment. To this end, it incorporates
functionalities such as objective localization and safety zones detection of the safety
domain of the high-level architecture of Fig. 1.

Human-Centered Digital Twin

This module implements a digital twin that factors human-centered parameters (e.g.,
fatigue, emotional status of the worker). It is a placeholder for digital twins of
human-centered processes, including Al-based processes that have the human in the
loop. It interacts with the analytics platforms, the workers, and the humans’ digital
models.

The HDT offers a centralized access point to exploit a wide set of workers’
related data. It leverages a digital representation of the workers, which is seamlessly
integrated with production system DTs. The latter can be exploited by Al-based
modules to compute complex features that, enriching the HDT, enable better
decisions, and dynamically adapt automation systems behavior toward improving
production performance, workers’ safety, and well-being.

Human Models — Human Digital Images

This module persists and manages data about the human worker toward supporting
the construction, deployment, and operation of HDTs. They provide the means for
creating and using digital representations of the workers.

Graphical User Interface (GUI) — Human Machine Interface (HMI)

This module provides a GUI interaction modality between factory workers and Al
systems. It comprises visualization elements (e.g., dashboards), while enabling users
to interact with the Al-based modules (e.g., provide form-based input).

Natural Language Processing (NLP)

This module enables NLP interactions between the factory users and relevant Al

modules (e.g., AL modules). It is a placeholder for different NLP implementations
and interfaces.
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Feedback Module

This module coordinates the provision of feedback from the human worker to
the Al system. It is particularly important for the implementation of human—Al
systems interactions (e.g., HRC scenarios). The feedback module interfaces to some
interaction module (e.g., GUI or NLP) that enables the transferring of user data to
the feedback module and vice versa.

Fatigue Monitoring System

This module leverages sensors and IoT devices (e.g., electroencephalography (EEG)
sensors) to collect information about the worker’s fatigue. The collected information
is transferred to other modules such as the human models and the HDT.

4 Solution Blueprints for Industry 5.0 Applications

4.1 The Industry 5.0 Blueprints Concept

The STAR-RA for Industry 5.0 applications can be used to support the imple-
mentation of popular secure and trustworthy data-driven use cases in industrial
environments. In this direction, selected functional modules of the STAR-RA can
be deployed and operated. The specification of the modules and the information
flows that can support specific HRC, cybersecurity, and safety solutions in Industry
5.0 context can be defined as blueprints over the introduced architecture. Each
blueprint provides a proven way to implement trusted data processing and Al
functionalities for industrial applications. Rather than having to read, browse and
understand the entire STAR-RA and its low-level technical details, interested parties
(e.g., solution integrators, manufacturers, researchers in industrial automation, and
digital manufacturing) could consult blueprints as practical ways for enhancing
the trustworthiness and regulatory compliance of their work. Following paragraphs
illustrate blueprints for popular technical solutions and for the adherence of Industry
5.0 to the Al regulation proposal of the European Parliament and the Council of
Europe.

4.2 Technological Solutions Blueprints

Several blueprints can be defined based on the Al cyber-defense strategies (ACDS)
to support use cases for defending cybersecurity attack against Al systems. As a
prominent example, Table 1 illustrates the blueprint against defending a poisoning
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Table 1 Poisoning attack defense

Blueprint title Poisoning attack defence

Scope and purpose Detect with high accuracy a poisoning attack against an AI/ML
system, i.e., cases where an attacker compromises the learning
process based on adversarial examples, in ways that compromise the
Al systems ability to produce correct/credible results.

STAR-RA components | Analytics platform, STAR blockchain (distributed ledger

involved infrastructure), DPT (data provenance and traceability), risk
assessment and mitigation engine, XAl module
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attack, where an adversary attempts to contaminate the data used to train an Al
system.

Figure 3 presents the information flow between the various components of this
blueprint, as implemented in the STAR project.

As another example, Table 2 presents a blueprint for solutions that validate the
integrity of industrial data. This is crucial in the scope of Industry 5.0 applications as
it is a foundation for ensuring industrial data reliability. Different types of industrial
data can be protected based on this blueprint, such as CPPS data and analytics results
(including AI outcomes). Figure 4 illustrates the information flow between different
blockchain components that implement data integrity validation blueprint.

4.3 Regulatory Compliance Blueprints

Regulatory compliance blueprints illustrate how the STAR-RA and its component
could be leveraged to boost the adherence of Al solutions to the Al regulation
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Table 2 Validating the integrity of industrial data

Blueprint title Validating the integrity of industrial data

Scope and purpose Retrieve persisted critical measurements (e.g., analytics results)
from the blockchain to be validated/compared with existing data to
verify their authenticity based on their metadata properties

STAR-RA components Data models, blockchain (distributed ledger infrastructure), DPT

involved (data provenance and traceability)
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proposal of the European Commission. In April 2021, the European Parliament and
the Council of Europe presented an initial proposal for the regulation of Al systems
[6]. This proposal is the first organized and structured effort to regulate Al systems
worldwide. Its importance for systems deployed within Europe is particularly high,
given that it lays a basis for future laws within the various EU member states. The
proposal establishes a technology-neutral definition of Al systems in EU law, while
presenting a risk-based classification of Al systems. The classification proposes to
categorize Al systems in four general classes, ranging from unacceptable risk to
no risk (i.e., risk free) systems. It also outlines the requirements and obligations
associated with the deployment of systems from each one of the envisaged risk
levels. For instance, “high-risk” Al systems can be authorized if and only if they
meet requirements spanning the areas of transparency, explainability, data quality,
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Table 3 Supporting the deployment of Al systems of minimal risk

Blueprint title Supporting the deployment of Al systems of minimal risk

Scope and purpose Support adherence to codes of conduct that mandate transparency of
Al system

STAR-RA components | (Optional) XAl (for transparency); (optional) security policies

involved manager (for increased cybersecurity); (optional) Al cyber-defence

strategies (ACDS) (for Al cybersecurity)

Table 4 Supporting the deployment of Al systems of limited risk

Blueprint title Supporting the deployment of Al systems of limited risk

Scope and purpose Support the mandatory transparency of Al system; provide optional
support for increasing the security and safety of limited risk Al
systems

STAR-RA components (Mandatory) XAl (for transparency); (optional) blockchain

involved (distributed ledger infrastructure) and DPT (data provenance and

traceability) for data quality; (optional) security policies manager
(for increased cybersecurity); (optional) Al cyber-defence strategies
(ACDS) (for Al cybersecurity)

and more. These obligations are significantly lower for medium- and low-risk
systems.

STAR-RA includes technical components that can help AI deployers and
operators to meet regulatory requirements and obligations. Different components
can be used to support systems belonging to the different risk classes of the Al
Act. For example, the Al Act specifies that minimal-risk systems (e.g., ML-based
calculations and visualization of information about physical assets) can be deployed
without essential restrictions. There are no mandatory obligations for minimal risk
systems. Compliance to Al code of conduct for them is recommended, yet optional.
Deployers may therefore choose to deploy one or more STAR components from
the different domains of the platform (cybersecurity, human-robot collaboration,
safety), as well as explainable Al components as illustrated in the relevant regulatory
blueprint of Table 3.

On the other hand, when deploying a limited risk system, Al deployers must
ensure that they are meeting transparency obligations. In this direction, humans must
be notified of the existence of an Al system component in the loop of the industrial
process. This concerns industrial processes with the human in the loop, where Al
systems and human interact. It is, for example, the case of some HDT applications
where industrial systems collect information about the status of the worker and
adapt their operations to it. The STAR-RA includes XAI components that can
help deployers meet the requirements of limited risk deployments. Deployers can
optionally use other STAR components to increase the safety, security, and overall
trustworthiness of the Al system (see Table 4).

Many Al systems in manufacturing and other industrial environments can be
classified as being high risk. This is, for example, the case with systems involving
AMRs and other types of industrial robots. In the case of high-risk systems,
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Table 5 Supporting the deployment of Al systems of high risk

Blueprint title Supporting the deployment of Al systems of high risk
Scope and purpose Support the mandatory transparency, security, data quality, and
safety of high-risk Al systems

STAR-RA components | (Mandatory) XAl (for transparency); blockchain (distributed ledger

involved infrastructure) and DPT (data provenance and traceability) for data
quality; security policies manager (for increased cybersecurity);
(optional) Al cyber-defence strategies (ACDS) (for Al
cybersecurity)

deployers and operators must comply with a longer list of requirements, including
more stringent specifications regarding explainability, transparency, data quality,
and more. To support the qualification, deployment and use of such high-risk
systems, STAR-RA offers many relevant components that support data reliability,
Al algorithms’ reliability, increased cybersecurity, safe human—robot collaboration,
and more. The use of these systems in a high-risk Al context becomes mandatory
rather than optional. This is illustrated in Table 5.

5 Conclusions

Despite the rising interest in trustworthy and human-centered Artificial Intelli-
gence systems for Industry 5.0 deployments, existing reference architectures and
blueprints for Al applications do not adequately address the development and
deployment of trusted Al solutions. This chapter has introduced an architecture
model that can boost the design and development of trustworthy and human-
centered Al applications. It has also described few indicative blueprints for the
development of technical solutions and regulatory-compliant systems in-line with
the architecture.

At a high level, the presented architecture clusters functionalities in three
complementary domains, including cybersecurity, human-robot collaboration, and
safety. The functionalities in each one of the domains reinforce functionalities
in the other domains. Moreover, the XAl components of the project are used to
support functionalities in all three domains. The presented architecture and its
functional modules do not present an “all or nothing” value proposition. Rather
manufacturers and integrators of Al solutions in industrial environments can select
subsets of components of the reference architecture to meet different sets of
industrial requirements. However, the presented views of the architecture do not go
down to implementation detail, but rather provide higher level structuring principles
and blueprints for the implementation of trustworthy Al systems.

Some of the presented blueprints provide guidance on how to use STAR-RA
components to implement systems that adhere to the mandates of the Al regulation
proposal of the European Parliament and the Council of Europe. This guidance is
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important for companies that seek to comply with the Al Act and to demonstrate
regulatory readiness. The inclusion of this chapter in this open access book aspires
to raise awareness about both the technical and the regulatory aspects of trustworthy
and human-centered solutions for manufacturing.
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Designing a Marketplace to Exchange Al ®)
Models for Industry 5.0 o

Alexandros Nizamis, Georg Schlake, Georgios Siachamis,
Vasileios Dimitriadis, Christos Patsonakis, Christian Beecks,
Dimosthenis Ioannidis, Konstantinos Votis, and Dimitrios Tzovaras

1 Introduction

Online marketplaces, locations on Internet where people can purchase and sale
services and goods, have highly increased in the last couple of decades. Recently,
various marketplaces for exchanging Al models have been introduced [1]. In these
marketplaces the Al models and machine learning (ML) algorithms have been
monetized and offered as products.

AWS Marketplace! by Amazon enables its customers to find a large variety
of pre-built models and algorithms covering a wide range of use cases and
domains related to Business Analytics, Computer Vision, Healthcare, and Text and
Language Processing. A subscription-based model with charging per hour, day,
etc. is primarily adopted. A monthly based subscription model is also offered by
Akira.AL> This marketplace offers Al models especially for solutions related to
Text Analysis and Computer Vision along with access to processing, storage, and
network resources for enabling the execution of Al models. Pretrained models for a

! https://aws.amazon.com/marketplace/solutions/machine-learning.
2 https://www.akira.ai.
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wide variety of sectors are also available at the Gravity AI® and Modelplace AI*
(specialized in Computer Vision) marketplaces. The latter enables the real-time
execution of models through web—browser interfaces. Other marketplaces’ move
a step further from live execution to shared building of models among developers
by providing software development kits (SDKs).

Some specific Al marketplaces for healthcare domain are also available such as
the Imaging AI Marketplace® by IBM. It is a centralized marketplace that enables
healthcare providers to discover, purchase, and manage applications that provide the
latest Al-powered tools. In this marketplace, researchers and developers can reach a
large community of customers for their specific Al applications for eHealth domain
and take advantage of the provided infrastructure and deployment processes. To this
direction, Nuance Communications’ has introduced its marketplace for Healthcare
Al solutions as well providing similar functionalities as the IBM one.

In addition to word-leaders’ approaches and market-ready solutions, EC-funded
research projects have presented various marketplaces for listing or even trading
solutions including AI/ML algorithms. AI4EUROPE or Al on Demand [2] offers
a trustworthy open-source platform for the development, training, and sharing of
AI/ML models. However it is considered more as an open code repository as it lacks
business logic in comparison with commercial marketplaces. MARKET4.0 project
[3] develops a multi-sided business platform for plug and produce industrial product
service systems. The European Factory Foundation and EFPF project [4] offers a
Portal/Marketplace as part of its interoperable Data Spine that includes solutions
coming from previous EU projects and third-parties’ initiatives. However the
solutions are a mix of software solutions, products, and services. Other marketplaces
related to manufacturing domain and Industry 4.0 were provided by projects like
v-fos [5] (which offers an application marketplace with an embedded SDK) and
NIMBLE [6] that has introduced a federated interoperable eco-system for B2B
connectivity. Some other approaches [7] coming from research introduced Al as
enablers for marketplaces by combining virtual agents with semantics [8, 9] for
automated negotiations in manufacturing marketplaces [10]. In Boost 4.0 project
a common European Data Space for manufacturing was introduced instead of a
Marketplace. However, it contains Al services connected to available data sources
based on IDSA3® architecture. The latter supports also the establishment of Al
Marketplace® that is a meeting place for Al providers and consumers. Recently,

3 https://www.gravity-ai.com.
4 https://modelplace.ai/.

3 https://c3.ai/c3-ai-application- platform/c3-ai-integrated- development- studio/c3-ai-
marketplace.

6 https://www.ibm.com/downloads/cas/6BWYDLDO.
7 https://www.nuance.com/healthcare.html.

8 https://internationaldataspaces.org/.

9 https://ki-marktplatz.com/en/.
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PoP-Machina project'? proposed a collaboration platform for makers that provides

a marketplace based on a blockchain network infrastructure. However, it is focused
more on collaborative design and not on Al model exchange. A blockchain approach
for building marketplaces for Al was also introduced by IBM [11]. It was a
back-end implementation regarding trusted transactions and not a full operational
marketplace.

As it is perceived there are market-ready solutions in the field of Al marketplaces,
however they are focused on cases related to health, text recognition, computer
vision, etc. and not to manufacturing and Industry 4.0/5.0 domains. On the contrary,
there are marketplaces coming from research field that are related to Industry 4.0/5.0
domain, but either they lack some business logic or they collect heterogeneous
solutions and even physical products, so they cannot be considered as marketplaces
for exchanging of AI/ML models. In the current work, we are introducing the
knowlEdge project’s [12, 13] Marketplace that aims to deliver a marketplace for
exchanging Al models for smart manufacturing using blockchain services and smart
contracts as the core of its business logic. The introduced marketplace can act as an
enabler for intelligent production as it collects and offers Al solutions related to
manufacturing domain able to solve various kinds of problems in factories.

Following this introductory section, the next section presents the knowlEdge
Al Marketplace’s main functionalities and its high-level architecture. Section 3
presents the core technical parts and interfaces of the knowlEdge Marketplace. The
conclusions are drawn in Sect. 4.

2 Functionalities and Proposed System Architecture
of knowlEdge Marketplace

The introduced marketplace for AI models regarding smart manufacturing offers a
series of functionalities common to normal marketplaces and stores for services and
products. In particular, it offers:

* A user-friendly web-based interface to enable trading of Al algorithms and
models

* Trusted trades among the stakeholders, protection of Intellectual Property
Rights (IPR) and security

* Profiles and role management functionalities

 Search functionalities based on various features

* Reviews and ratings regarding users and Al models

To support the abovementioned functionalities, the knowlEdge Marketplace
incorporates a series of technologies and components in its architecture as it is
depicted in Fig. 1. They are distinguished in three main categories: the back-end
part related to AI models description and management, the back-end part related

10 https://pop-machina.eu.
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Fig. 1 High-level architecture of the knowlEdge Al model Marketplace

to business logic and transactions, and the front-end part related to user-centric
services such as interfaces.

In particular, the User-Centric Services module provides a series of function-
alities related to user experience such as Uls, search functionalities, user profile
management, etc.

NFT-Based Monetization Framework for AI Models based on Smart Contracts
provides all the functionalities related to business logic based on blockchain. It
offers smart contracts (or chaincode) for fungible and non-fungible Tokens (FTs
and NFTs), marketplace, and mint notary. Furthermore, secure access services are
also part of this module.

Al Model Repository is responsible for the modeling of AI/ML algorithms, their
storage, and the provision of management services such as CRUD (Create, Read,
Update, and Delete) operations.

Various APIs have also been developed to enable the different module communi-
cation based on HTTP protocol.

All the core modules of the introduced marketplace are presented in the following
section.

3 Implementation of knowlEdge Marketplace for
Exchanging AI Models in Industry 5.0

In this section, the core modules of the knowlEdge Marketplace are described.
We start with the way, the data is stored in the knowlEdge AI Model Repository
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Fig. 2 The internal architecture of the knowlEdge Al Model Repository

(Sect. 3.1), before we discuss the Monetization Framework (Sect. 3.2) and conclude
it with the User Interfaces (Sect. 3.3).

3.1 knowlEdge AI Model Repository

The knowlEdge Al Model Repository is a central cloud-hosted component, which
manages a database of Al models and their corresponding meta-information. For
these purposes, it consists of four main components: the knowlEdge Repository
Management, the Model Database, the Metadata Database, and the Historical Data
Store (see Fig.2). In general, the Al Model Repository provides all the necessary
functionality to Marketplace regarding the modeling of the Al and the management
of data and metadata in the Marketplace that are related to AI models. So, besides
the four aforementioned components, an Ontology that enables the modeling of
Marketplace’s metadata is a core part of the Repository as well.

3.1.1 Overview of Key Components

The knowlEdge Repository Management is the central component connecting the
other components and offering services over a REST API, which follows the
OpenAPI [14] specification and is the single interface of the knowlEdge Repository.
It offers a feature-rich possibility to query for Al models and datasets to identify
similarities between different problems and solutions.
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The Metadata Database is a MongoDB [15], which stores the metadata of
the knowlEdge Repository. This metadata follows the knowlEdge Ontology (see
Sect. 3.1.2) to ensure a high level of usable information for all datasets and models
present in the repository.

The Model Database is used to store the actual model specification files in a
Hadoop [16] Distributed File System. The model files can be presented in ONNX!!
or PMML [17] format to make sure that as many different models as possible can
be described for the knowlEdge Repository.

The Historical Data Store is used to store the datasets a model is trained on.
With these datasets also present, it is possible to benchmark new models on the
same datasets and directly compare the performance of models.

3.1.2 Ontology

The knowlEdge Ontology has been developed to ensure that a wide variety of
metadata are available for the knowlEdge repository. The Ontology consists of 12
different types of entities (see Fig. 3). In this entity—relationship diagram, the most
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Fig. 3 The technical structure of the knowlEdge Ontology
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important entities and relationships of the knowlEdge Ontology are given and show
the possibilities of the hierarchical structure of this Ontology. It shows the technical
ways the knowlEdge Repository stores the data according to it. These entities can be
split into user-related (User), model-related (Model, IO Vector, Model Specification
and Model Type), data-related (Task, Analysis Type, Application, Data, Property
and Property Type), and performance-related (Performance Evaluation) Entities.
The main entities/classes are as follows:

User: A User is identified by its unique name and email address. Furthermore,
the timestamp of the time it was created is stored. A User can be owner of several
Models and creator of several Application, Data, and Property Type entities.
Model: A Model contains its name, a description, and the timestamp of its
creation as well as a link to a Model Specification and the Model Type it
instantiates. It can have hierarchical children and a parent as well as multiple
10 Vectors as input and output.

IO Vector: An IO Vector contains its name, dimensionality, and data type, which
can be of type integer, float, Boolean, or categorical. It can be input and output to
several Models.

Model Specification: A Model Specification contains the actual model file, i.e.,
an ONNX or PMML file describing the model.

Model Type: A Model Type has its name. It can be child to another Model Type
and parent to several Model Types. It can be instantiated by several Models.
Task: A Task consists of its name, the timestamp of its creation, its Analysis
Type, Application, and Data. It is created by a single User, can have multiple
Tasks as children, and can have several Models trained for it. It may be child of
another Task.

Analysis Type: An Analysis Type has a name and the timestamp of its creation.
It is part of a Task and can be child to one and parent to many Analysis Types.
Application: An Application has a name, a description, and the timestamp of its
creation. It is part of a Task, created by a User, and can be child to one and parent
to many Applications.

Data: A Data entity consists of its name and description, the Task it is part of, and
the timespan it was gathered during. It is created by a User, consists of several
Properties, and may inherit from one and be parent for several Data entities.
Property: A Property consist of its name, the Property Type it instantiates, and
the Data entity it belongs to.

Property Type: A Property Type consists of its name, creation time, and type,
which may be Boolean, integer, float, or categorical. It is created by a User and
may be instantiated by several Properties. A Property Type can be based on one
Property Type, and there can be multiple Property Types based on one Property
Type.

Performance Evaluation: A Performance Evaluation represents the actual
performance of an AI Model on a Task. It is linked to both these entities and
contains the performance measurement as well as the information which measure
this represents.
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The model specifications in the Model Database will be stored in the ONNX or
PMML Format. These two formats offer compatibility with a wide range of different
machine learning techniques and frameworks to boost interoperability regarding Al
models in the proposed marketplace. While PMML focuses on traditional machine
learning methods, ONNX is specialized for exchanging deep neural networks. The
combination of both formats makes it possible to store a wide range of machine
learning models in an easy to use and deploy way.

3.2 NFT-Based Monetization Framework for AI Models

Besides the Ontology for describing the Marketplace metadata and the reposi-
tory services for the management of Al models, a set of services regarding the
monetization-, security-, and business-related concepts was required for the delivery
of the proposed AI Model Marketplace.

Therefore, in the context of the knowlEdge Marketplace, a number of blockchain-
based services have been developed and deployed. An end-to-end decentralized
Al Model Marketplace that enables the monetization of Al models while ensuring
security, auditability, and verifiability has been implemented based on blockchain
technology. To guarantee ownership of Al models, each model is treated as a unique
asset on the distributed ledger, represented as non-fungible tokens (NFTs). The
use of NFTs provides additional functionalities, including ownership transfer. The
marketplace is based on the presupposition that participants share a common value
system, and fungible tokens are used as the equivalent of real-world fiat currency.

In Table 1, we provide the various actor roles and the means under which they
engage with the marketplace platform, i.e., their capabilities.

Note that the terms “Al Model Producer,” “Al Model Researcher,” and “Al
Model Developer” are used interchangeably to refer to the same actor. Similarly,
the terms “Al Model Consumer” and “Marketplace Customer” refer to the same
actor. Lastly, note that the same real-world entity can potentially enact in all of the
aforementioned roles, e.g., an Al model producer can also act as a consumer, or
marketplace customer for AI models produced by others.

The following functionalities are available in the DLT-based Al Model Market-
place, building on the core set of functionalities that were previously outlined. The
functionalities are as follows:

* Al model producers, represented as NFT owners, can advertise their willingness
to sell access to individual AI model binary files at a price of their choice.

* Each AI model producer can query the Al models they have advertised on the
marketplace.

* Each Al model producer can retract advertised AI models at any time.

* Any entity can query all AI models advertised on the marketplace.

¢ Interested Al model consumers can purchase access to any advertised AI model,
provided they have sufficient coin balance.
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Table 1 Roles and capabilities of users in the system

Role
Admin

Al Model Producer

Al Model Consumer

Capabilities

Entities that have access to privileged functionalities, such as:

e Anything related to Identity and access management (IAM)

e Acting as principals of notarized functionalities wherever and if
deemed necessary. For instance, approving the minting of fungible
tokens (coins)

Entities that produce or develop new Al models. Their engagement with
the platform is as follows:

e Querying the platform for a complete list of all the Al models that
they own

e Uploading Al models to the repository

e Minting Al models (NFTs) on the DLT (Distributed Ledger

Technology) and storing the corresponding metadata file on the
off-chain metadata store

e Publishing their willingness to sell access to AI models (NFTs) that
they own on the marketplace

e Retracting from the marketplace selling access to AI models (NFTs)

e Creating (bank) accounts, transferring coins to accounts of other
users, and so on

These are the main clients of the marketplace, i.e., the ones that
purchase access to Al models. Their engagement with the platform is as
follows:

o Retrieve a list of all (or even individual) AI models for which they can
buy access to.

e Query the NFT metadata store to obtain additional information of an
Al model, such as the URL of the corresponding repository on which it
is stored.

e Create (bank) accounts, transferring coins to accounts of other users,
and so on.

e Purchase access to AI models that are advertised by specifying the
fungible token account that will be used for the payment. Obviously, the
specified account must have a sufficient coin balance.

e Once a purchase has been completed, these entities retain indefinitely
their right to access the Al model, regardless of whether the
corresponding producer has retracted it.

e Query the platform for a complete list of all the purchases that they
have performed in the marketplace.

* Al model consumers retain access rights to purchased Al model binary files, even
if the models are later retracted from the marketplace.

» Each consumer can query the marketplace for a list of all successful purchases.

» External entities, such as an AI Model repository, can securely verify that an
actor requesting access to an Al model binary file is a legitimate consumer who
has previously performed a successful purchase.
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Fig. 4 High-level overview of the Al model monetization framework’s architecture

A detailed diagram of the architecture can be found in Fig. 4. The diagram depicts
the involved users, the components of the blockchain infrastructure, and intuitive
descriptions of their interactions.

There are also several off-chain components that play different roles. For
example, we need to account for the physical storage of Al model files and provide
an identity and access management infrastructure for the actors and the services
they consume. Additionally, we need to include various integration and deployment-
related components such as API gateways and dashboards (user interfaces) for the
involved actors. The list of components along with a succinct description of their
function can be found below:

» Hyperledger Fabric (henceforth, HLF) Community Management (CM) API: A
federated identity authorization service that, apart from supporting all standard
OAuth 2.0 and OpenlD Connect flows, encompasses, as part of the user
registration (onboarding) process, private key and X.509 digital certificate
generation, which are subsequently stored in an HLF-compliant secure wallet
store.

e HLF Wallet: Implementation of HLF’s Wallet interface employing MongoDB
as a storage medium for Hyperledger Fabric’s Go SDK. This is employed
internally by the HLF SC Gateway component (see below).

e HLF Smart Contract (SC) Gateway: a configurable microservice that exposes
functions of any smart contract deployed on any arbitrary Hyperledger Fabric
channel as HTTP endpoints
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e NFT Metadata Store: a REST API that exposes endpoints for storing and
retrieving metadata files associated with NFTs

e NFT Chaincode: the smart contract that implements the entire non-fungible
token-related functionality

* FT Chaincode: the smart contract that implements the entire fungible token-
related functionality

3.3 User Interfaces and Functionalities

Besides the core back-end services and the corresponding modules that were
presented in the previous section, a module focused on the delivery of front-end-
related services is also included in knowlEdge Marketplace. This module does not
only include interfaces but also supports some user-related functionalities such as
search capabilities and user’s profile management. They are considered in the same
building block as they are strictly connected to a front-end theme that was used and
their functionality is derived from them.

Regarding the interfaces design, best practices were used. The design pillars that
were followed were the esthetic and minimalistic design, the use of common and
consistent UI elements, the adoption of widely used input controls and navigational
elements, the error prevention and good error messaging, etc. The Uls were imple-
mented as web-based interfaces using technologies such as Angular, Bootstrap, and
Nebular. The ngx-admin template was used to enable faster implementation as it
is a popular admin dashboard based on Angular and it is free and open source. It
is efficient as it is packed with a huge number of UI components and it is highly
customizable.

The Uls enable the exploration of various available AI models in different views
(see Fig.5) based on the user’s preferences (grid view and list view). The search
functionalities provide various filters such as AI models owner, category of the
algorithm, price range, rating, etc. Text-based search is also supported, so the user
can type text related to the model’s name, keywords, and other metadata.

By selecting a model, the user is able to read details (see Fig.6) such as
description, specifications of the model, and metadata such as rating, price, and
owner. Furthermore, any datasets connected to a model are also visible. All the
data available to UI are dynamically retrieved from Repository and Monetization
modules. The user can also select to add to cart a model in order to purchase it
based on the NFT monetization module.

Besides exploring and purchasing AI models, a user can act as a provider
and deploy his/her own Al model by using corresponding interfaces (Fig.7) that
are available in a kind of a step wizard form. First, the user adds the dataset
details that were used for training a model. Then the general details regarding the
task/application that the model is related to (e.g., predictive maintenance) are added.
After that, the user adds Al model details such as the type, input and output, model
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format, and connections with other models and deploys the model itself (e.g., an
ONNKX file, etc.).

4 Conclusions

The design and the implementation of a marketplace for exchanging AI models
related to Industry 5.0 and smart manufacturing are introduced. The knowlEdge
Marketplace highlights the main components that a marketplace for AI models
should include. A component to enable the modeling of AI models/algorithms
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and their metadata based on standards has been defined as a necessity. Moreover,
Al developers should be able to provide their models based on widely used
formats and standards in such marketplaces. Furthermore, services to enable trusted
transactions and sharing, along with security and protection of ownership in Al
marketplaces, have been found as core concepts that should be covered as well.
The use of blockchain technology for this kind of services has been proved as an
ideal candidate as it provides all the necessary concepts regarding monetization and
secure and trusted transactions. Moreover, user-friendly and easy-to-use interfaces
were another important factor that should be considered as in the end, as any other
marketplace, it is focused to end-users.

Regarding the next steps, the knowlEdge Marketplace focuses on further testing
and evaluation by domain experts targeting to final improvements so to be con-
sidered as a completely market-ready solution. The plan is for this marketplace to
be one of the core Al marketplaces in Europe related to Al models exchanged in
Industry 5.0 era.
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Human-AlI Interaction for Semantic )
Knowledge Enrichment of AI Model ke
Output

Sisay Adugna Chala and Alexander Graf}

1 Introduction

Modern day agile manufacturing [6] requires developing a framework of Al
solutions that capture and process data from various sources including from human-
Al collaboration [1]. Enhancing a manufacturing process by (semi-)automatized
Al solutions that can support different stages in a production process that involves
inter-company data infrastructure is one of the challenges in data-intensive Al for
manufacturing. This challenge is exacerbated by the lack of contextual information
and nontransparent Al models. In this chapter, we describe the concept of domain
knowledge fusion in human-Al collaboration for manufacturing. Human interaction
with Al is enabled in such a way that the domain expert not only inspects the output
of the Al model but also injects engineered knowledge in order to retrain for iterative
improvement of the Al model. It discusses domain knowledge fusion, the process to
augment learned knowledge of Al models with knowledge from multiple domains or
sources to produce a more complete solution. More specifically, a domain expert can
interact with Al systems to observe and decide the accuracy of learned knowledge
and correct it if needed.

The purpose of a domain ontology is to serve as a repository for domain-specific
knowledge. Ontology enrichment system, as a part of human-Al collaboration,
enables domain experts to contribute their expertise with the goal of enhancing the
knowledge learned by the Al models from the patterns in the data. This enables the
integration of domain-specific knowledge to enrich the data for further improvement
of the models through retraining.
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Domain knowledge fusion is a technique that involves combining knowledge
from multiple domains or sources to produce a more complete solution by augment-
ing learned knowledge of Al models. It is used to improve the accuracy of predictive
models, e.g., to guide feature selection in a machine learning model, resulting in
better predictive performance [16]. Domain knowledge fusion also helps improve
effectiveness of predictive models by supporting efficient dimension reduction
techniques that are able to capture semantic relationships between concepts [17].

After reviewing prior research, we describe our concept domain knowledge
fusion in agile manufacturing use case scenarios for human-Al interaction. We iden-
tify two kinds of knowledge: (i) learned knowledge, i.e., the knowledge generated
by the Al model and (ii) engineered knowledge, i.e., the knowledge provided by the
domain expert. We identify three aspects of domain expert interaction with our Al
systems to observe and (a) reject if the learned knowledge is incorrect, (b) accept if
the learned knowledge is correct, (c) adapt if the learned knowledge is correct but
needs modification. We demonstrate these concepts for researchers and practitioners
to apply human-AlI interaction in agile manufacturing.

The rest of this chapter is organized as follows: in the Related Works section, we
examine related works in order to identify research gaps of human-Al interaction in
agile manufacturing. In the Human Feedback into AI Model section, we discuss
the methodology (sub-components and interfaces) developed in the human-Al
collaboration to enhance agile manufacturing. The Interaction for Model Selection
and Parameter Optimization section covers the implementation of the proposed
system and presents the preliminary results. Finally, in the Conclusion and Future
Works section, we summarize the results and outline the future research works of
the chapter.

2 Related Works

Fact-checking, a task to evaluating the accuracy of AI models, is a crucial,
pressing, and difficult task. Despite the emergence of numerous automated fact-
checking solutions, the human aspect of this collaboration has received minimal
attention [13], though some advancement is being observed in conversational Al
[8]. Specifically, it remains unclear how end users can comprehend, engage with,
and build confidence in Al-powered agile manufacturing systems. In other words,
enabling interaction of domain experts to Al model outputs, in order that they
inspect the output and provide their feedback, helps fix errors that could lead to
undesirable outcomes in production process.

Existing studies on human-Al collaboration predominantly focus on user inter-
face (UI) and user experience (UX) aspects, i.e., whether (and how) the Al
systems provide an intuitive user interface. A number of them assessed human-Al
collaboration with respect to human-Al interaction guidelines as opposed to features
that enable human actor to provide feedback to the Al model [4, 9]. Regarding its
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effect on decision-making of users has been studied using different eXplainable Al
(XAI) interface designs [12].

Apart from data fact-checking and UI/UX, human-Al interaction can be done for
data labeling. For example, data such as time series measurements are not intuitive
for users to understand, and Al is used to generate descriptive labels [10] for a
given data. Expert knowledge can augment the result of AI models by inspecting
the output and complementing it. Ontology enrichment is being studied in areas
of knowledge management [7], natural language processing [14], medical [3], and
energy [5]. Although manufacturing with human in the loop is recently getting
traction, studies on ontology enrichment have minimal attention for manufacturing.

There are several existing human-Al collaboration solutions that aim to leverage
the strengths of both humans and AI systems through human-Al collaboration.
Advanced applications like virtual assistants like Google Assistant [11] and Apple
Siri [2] are common examples of human-Al collaboration systems. These Al-
powered voice-activated assistants interact with humans to perform tasks, answer
questions, and control connected devices. Most of these advancements concentrate
in natural language processing, healthcare, and energy. However, the role of Al in
manufacturing is mainly focused on automation and control.

This chapter focuses on data analytics and insights generation through Al models
that had minimal attention despite the fact that manufacturing domain generates
massive amount of sensor data. Processing and analyzing the large volumes of
data can help identify patterns, trends, and anomalies, providing valuable insights
to support decision-making. The chapter develops a tool that enables humans to
collaborate with Al systems through intuitive interfaces that help domain experts
in interpreting insights, validating the findings, and applying domain knowledge to
gain a deeper understanding of the data.

3 Human Feedback into AI Model

The purpose of human feedback into Al model is enabling domain experts to
inject their knowledge via predefined interfaces allowing for collaboration with the
system in order to connotate previous knowledge with semantics, as for instance
with a description of a specific process or data. It helps better understanding of
the data, as it also provides the possibility for a better evaluation of the whole
Al pipeline. In other words, human-Al collaboration is a component that offers
interfaces between domain expert and Al system. The functionalities offered by
the human-AI collaboration are to enable human feedback for domain experts, i.e.,
machine operators and managers without the need to understand the intricacies of
Al models.

As shown in Fig. 1, the human-Al collaboration is composed of multiple sub-
components and interfaces that enable communication with external systems such
as data sources, model repositories, machine configurations, and decision support
systems. The main sub-components described below are interface abstraction,
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Fig. 1 Human-AlI collaboration components and interfaces

model and data selection, parameter optimization, configuration adaptation, domain
knowledge enrichment, and domain knowledge repository.

3.1 Interface Abstraction

Interface abstraction component is a container for configuration adaptation, mod-
el/data selection, parameter optimization and adaptation, and domain ontology
enrichment components. It provides an interface to the domain expert through
the decision support system through intuitive and user-friendly interfaces that
enable effective communication and cooperation between humans and Al Interface
abstraction is beneficial for human-Al collaboration by playing a crucial role in
enabling seamless cooperation and enhancing the productivity and usability of Al
technologies. The goal of interface abstraction is to bridge the gap between the
capabilities of Al systems and the understanding and expertise of human users.
It allows users to interact with complex Al technologies without requiring them
to have in-depth knowledge of the underlying algorithms of AI models. In effect,
it empowers users to leverage the capabilities of Al systems while focusing on
their own areas of expertise. By abstracting the complexities of Al algorithms
and technologies, interface abstraction facilitates effective communication and
collaboration between humans and Al
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3.2 Model and Data Selection

The human-Al collaboration system offers features for data and model selection.
Operators select models and data from the available list of options in order to
execute them for a specific scenario. Model and data selection are critical factors
in human-AlI collaboration. Because the choice of model and data significantly
influences the performance, accuracy, and overall effectiveness of the Al system.
When considering human-Al collaboration, several key considerations come into
play. One aspect is determining the specific requirements of the task at hand,
understanding the problem domain, the type of input data, and the desired output.
This knowledge helps guide the selection of an appropriate model for the dataset.
Another aspect is understanding capabilities of the Al model because different Al
models and algorithms are suitable for the task. Considering factors such as the
model’s architecture, complexity, interpretability, and scalability affect the choice
of a model that aligns with the task requirements.

3.3 Parameter Optimization

Parameter optimization is an important step in human-Al collaboration to ensure
optimal performance and effective interaction between humans and Al systems.
Operators and managers perform the optimization of parameters that offer the best
outcome for the given scenario. The system provides them with an interface where
the operators can select the parameters, try various values, and observe the results.

It involves continuous evaluation of the performance of the system and collecting
feedback from the human collaborator. This feedback can be used to identify areas
for improvement and guide the parameter optimization process to iteratively refine
and fine-tune the parameters based on the evaluation results and feedback. The
parameter optimization is necessary for the domain expert to deal with trade-offs
between different performance metrics or constraints that need to be satisfied. For
example, optimizing for accuracy may lead to longer response times, which may
impact the user experience.

The first step in parameter optimization is to identify the metrics or criteria that
will be used to measure success. This will help guide the parameter optimization
process. Once the parameters are identified, the next step is to determine the metrics
that evaluate the performance of Al model, such as efficiency and accuracy. In this
chapter, an example implementation of parameter optimization is shown in Fig. 4.

3.4 Configuration Adaptation

Configuration adaptation is the process of adjusting or fine-tuning the configuration
settings of Al systems to better align with the needs, preferences, and context of
human users. It involves customizing the equipment, parameters, or policies of Al
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models to optimize their performance. Feedback of domain expert plays a vital role
in configuration adaptation as it provides valuable insights into the effectiveness and
suitability of the AI model’s behavior in that the Al system can learn and adjust its
configuration settings to improve its performance and align more closely with the
user’s requirements in response to incorporating domain expert feedback. Moreover,
when a model offers a need for specific configurations of machines that need to
be modified, operators/managers can adapt the configurations of machines so that
it suits to the model under consideration, for example, if new machines need to be
added to the human-Al collaboration system, their configuration should be extracted
and stored in such a way that they are accessible and usable to the modules.

3.5 Domain Knowledge Enrichment

Enriching learned knowledge with engineered knowledge describes the scenario
where the Al model analyzes the given data for a task (e.g., outlier detection) and
produces its result (e.g., that a given data point is an outlier), the domain expert
realizes that the output of the model is not right (e.g., that the data point is not an
outlier), and the information provided by the domain expert (i.e., the data point is
not an outlier) is stored in the repository of ground truth and sent back to the Al
model for retraining. It is used by operators and managers to enrich the knowledge
repository with new entries obtained from the execution of the system using diverse
setting of models, parameters, and configurations.

The key challenge of this approach is that it relies on the availability of domain
experts. Scarcity of domain experts (that most of them spend their time on machine
monitoring, operation, and management), limited availability of domain expertise,
rapidly evolving Al landscape, and its demand for interdisciplinary skills make this
challenge difficult to handle. Developing Al models often requires deep domain
expertise in specific fields, e.g., manufacturing in this case, and experts who possess
both domain expertise and a solid understanding of Al techniques are difficult to
find. Moreover, effective collaboration between domain experts and Al practitioners
often necessitates interdisciplinary skills. Domain experts need to understand
Al concepts and methodologies, while Al practitioners need to comprehend the
nuances and complexities of the specific domain. The scarcity of individuals with
expertise in both areas makes the task of domain knowledge enrichment challenging.

In this chapter, the limitation of Al model development knowledge of domain
expert is taken into account. Having listed these challenges, this research assumes
that the involvement of humans in enriching knowledge will potentially reduce
over time. As such, an initial set of Al models are trained and made available
for the domain expert to experiment with them before trying to perform parameter
optimization and feedback provision. At the beginning of a collaboration between
humans and Al, there will be a significant effort to optimize parameters and transfer
human knowledge and expertise to the Al models by providing more data, defining
rules, and setting up the initial knowledge base. However, through retraining, the Al



Human-AlI Interaction for Semantic Knowledge Enrichment of Al Model Output 49

model learns and accumulates more data that it can gradually require less feedback
from the domain expert.

Organizations can benefit from this system despite these challenges by defining
feasible objectives of the human-Al collaboration in the manufacturing setting
whereby they identify the specific areas where Al can enhance manufacturing pro-
cesses, such as quality control, predictive maintenance, or supply chain optimization
and establish key performance indicators (KPIs) to measure success. For example,
companies can utilize this approach to perform what-if analysis in order to explore
the potential implications of different scenarios and make more informed decisions
by combining the analytical capabilities of Al models with human judgment,
expertise, and contextual understanding. Domain experts can modify the input
parameters, adjust variables, or introduce new constraints to observe the potential
changes in the outcomes. The Al system then performs the simulations and presents
the results to the human collaborator.

3.6 Domain Knowledge Repository

Domain Knowledge is the repository of knowledge (both learned knowledge
generated by the Al model and engineered knowledge curated by the domain expert.
Machines and production processes are undergoing a rapid digital transformation,
opening up a wide range of possibilities. This digitalization enables various
opportunities, including early detection of faults and pricing models based on actual
usage. By leveraging sensor data analytics, it becomes possible to monitor machine
operations in real time, providing valuable insights and applications. This is better
achieved if the domain experts assist in improving the quality of AI model output
by providing domain knowledge, for which this component is responsible to store.

4 Interaction for Model Selection and Parameter
Optimization

Improving the effectiveness of AI model requires a comprehensive understanding of
the model’s design and implementation and it can be achieved in a number of ways:
(i) reviewing the input data, including the quality, completeness, and relevance, to
determine if it can be modified to improve the output, (ii) analyzing the output data
of the interaction model can help identify patterns and trends that can be used to
modify the model’s output and identify areas for improvement or optimization, and
(iii) modifying the algorithms used in the interaction model can help improve the
output. In this chapter, the second method is used, i.e., the domain expert provides
feedback on the output of the Al model.
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An example scenario that shows the procedure for the human-Al interaction is
shown below:

* Fetch predicted labels form the output of automatic label detection of models.

* Present the data with predicted label to the domain expert.

* Present the domain expert with choices to (i) accept the predicted label and
(a) confirm the predicted label or (b) offer an alternative label or (ii) reject the
predicted label and offer the correct label.

— If the domain expert accepts and confirms the label, the process ends.

— If the domain expert accepts the predicted label and offers an alternative
label or a refinement of the label or rejects the predicted label altogether
and offers the correct label, the domain expert’s input will be sent as input
to retrain the model.

* Visualization of behavior of the model with/without the domain expert’s input
will be shown for comparison of the effect of the domain fusion.

* Human-AlI collaboration system will expose an API of the visualization to the
DSS component through which the user will inspect the outputs of the model.

Figure 3 shows the process of data/model selection and parameter optimization
including data flow and UI mockup for model selection and parameter optimization
user interface through which the domain expert selects the model and parameter and
optimizes the parameter values. The UI presents visualization of processing results
for the selected model, parameter, and values. Once the domain expert determines
the model, parameter, and values, the UI then enables the domain expert to export
the result which will then be consumed by the Decision Support System (DSS).

The domain expert selects a section of the visualization and provides engineered
knowledge, i.e., manual labeling of data points. This helps the user to visually
inspect the dataset and enrich it with domain knowledge to boost the quality of
the data to be used as training dataset for better performance of the ML model. For
example, for an Al model built for anomaly detection, this is achieved by enabling
the user to select the data point on the visualization plot in order to display and
review (and when applicable, modify) the data that are marked by the system as
anomalies. This is implemented by providing point, box, or lasso [15] selection
where the user can select a single (or multiple data points on the graphs) and get the
corresponding data points back, to provide the domain knowledge.

As depicted in Figs. 2 and 3, the domain expert will load data and models from
the model repository, run the models on the data, observe the visualization, and
adjust parameters in order to achieve the desired behavior of the Al model. Once the
domain expert obtains satisfactory output from the model, she/he can then provide
feedback. The algorithm shown in Fig. 4 shows the detailed operations during the
domain knowledge enrichment.
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Fig. 2 Human-AlI collaboration flow diagram

5 Conclusion and Future Works

This chapter discusses the concept of a framework of human-Al collaboration in
manufacturing for injecting domain knowledge provided by human experts into
Al models, as provided by machine learning processes in order to iteratively
improve Al models. It explores the importance of human feedback in enhancing
the effectiveness of AI models and improving usefulness of their outputs through
incorporating human feedback. It describes a use case scenario to showcase the
implementation of human-Al interaction where human feedback is utilized to enrich
learned knowledge.

There are a number of future works in this chapter. An implementation of a
full-fledged human-AlI software prototype should be implemented and deployed so
as to measure its effectiveness and also to experiment on the varied use cases to
measure its actual usability in the real world. For this, the questions such as how
the introduction of human-Al interaction affects the performance and effectiveness
of the Al model, and for the given test, how much of the output of the Al model is
rejected, accepted, and modified need to be answered.

Another aspect of the future research is to analyze whether AI model produces
erroneous results even after retraining using expert feedback, i.e., whether the
accuracy of the retrained Al model shows any improvement.

Yet another aspect is a study on scaling human-AlI collaboration that takes into
account the scarcity of domain experts who have understanding of intricacies of
Al modeling or Al developers who have sufficient knowledge of the domain of
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ALGORITHM1: PSEUDOCODE FOR DOMAIN KNOWLEDGE ENRICHMENT

Input: data, url of model repository

Output: data enriched by domain expert feedback

data € load data // obtain data

While (model in models) do

best_model = argmax{accuracy(i]}
visualize output of best model

[V TR« T T S FTI R Y

[
(=]

[
L]

End

model_url € url of model repository // obtain url of model repository
models € load_models (model_url) // load models from the model repository
parameters € selected parameters // user adjusts parameters for the model

accuracy(i] € run_models (model, data, parameters) // obtain accuracy of models

item_selected € index (user_selection) // obtain index of the selected item from visualization
item_class_update € index (user input) // update class or label of item with expert input

Fig. 4 Pseudocode showing high-level process of human-Al collaboration

manufacturing. Long-term studies of how to scale human-Al collaboration are of
paramount importance because scaling up the human-Al collaboration approach
to large-scale manufacturing settings presents challenges in maintaining consistent
collaboration and effectively incorporating human feedback across various use
cases, domains, and data volumes. Therefore, it is important to further research
scaling up human-AlI collaboration in large-scale manufacturing settings through
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a well-planned approach that involves aligning technology, data, technical/domain
expertise, and processes to create a seamless integration of human and Al capa-
bilities, ultimately enhancing productivity, quality, and efficiency in manufacturing
operations.
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Examining the Adoption of Knowledge )
Graphs in the Manufacturing Industry: o
A Comprehensive Review

Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl,
Bernhard Moser, Kabul Kurniawan, Elmar Kiesling, and Franz Krause

1 Introduction

Advancements in Artificial Intelligence (Al) have enabled automation, prediction,
and problem-solving, leading to increased productivity, adaptability, and efficiency
in both the service and industrial sectors. In the latter, the fourth industrial
revolution, commonly referred to as Industry 4.0 [19], represents a significant shift
in industrial production. Driven by the integration of digital technology, industrial
advancements increasingly hinge on data, which has opened up new possibilities
beyond traditional applications.

A key goal toward Industry 5.0 is to combine human adaptability with machine
scalability. Knowledge Graphs (KGs) provide a foundation for developing frame-
works that enable such integration because they facilitate to dynamically integrate
human decision-making with Al-generated recommendations and decisions [34].
KGs represent knowledge in a graph-based structure which connect entities and
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their relationships. In the context of hybrid human-Al intelligence, KGs can
represent shared conceptualizations between humans and Al components, providing
a foundation that facilitates their collaboration in dynamically integrating human
decision-making.

Furthermore, KGs provide a critical abstraction for organizing semi-structured
domain information. By utilizing KGs, decision-making can be improved, knowl-
edge management can be enhanced, personalized interactions can be enabled,
predictive maintenance can be supported, and supply chain operations can be
optimized. Therefore, KGs serve as a foundation for creating a shared knowledge
space for Al components and humans, an environment for the representation of
policies that govern the interactions between agents, and a view of real-world
physical processes on the shop floor by extracting and integrating relevant events.

Thus, KGs hold enormous potential for facilitating collaboration in this field,
making production lines more efficient and flexible while producing higher quality
products. As such, companies seeking to achieve the goals of Industry 5.0 find that
KGs can realize their vision [20]. However, research in this area is still in its early
stages, and further studies are required to analyze how KGs might be implemented.
This overview aims to provide a review of the current state of research in this field,
as well as the challenges that remain open.

The rest of this work is structured in the following way: Sect.2 reviews the
current usage scenarios of KGs in industrial settings, Sect. 3 outlines the research
questions and search strategy, Sect.4 presents the major findings that can be
extracted when analyzing the previously mentioned research questions, and Sect. 5
discusses the lessons learned and future research directions.

2 Antecedents and Motivation

The industrial landscape has been revolutionized by the emergence of collaborative
paradigms between human—machine systems, such as the Internet of Things (IoT),
Internet of Services (IoS), and Cyber-Physical Systems (CPS), resulting in the so-
called Industry 5.0. This has led to a shift in focus toward enhancing collaboration
between humans and machines [13]. The creation and connection of newly available
devices generate enormous data with significant potential value, which can be used
to extend the product’s life cycle, on-demand manufacturing, resource optimization,
machine maintenance, and other logistical arrangements [8].

KGs have recently gained much attention due to their potential to boost
productivity across various sectors. KG can primarily empower industrial goods
and services and their development process in two areas. First, they may save time
and labor costs while enhancing accuracy and efficiency in domain information
retrieval for requirements gathering, design and implementation, and service and
maintenance management, by offering a semantic-based and in-depth knowledge
management approach. Second, the development of KG has made it possible to build
a data architecture suitable for corporate use by combining intelligent discovery and
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knowledge storage, utilizing KG embedding techniques to gather more information
from KGs. KGs are most employed to model a particular and frequently complex
domain semantically, explicitly modeling domain knowledge used to support and
increase the accuracy of tasks performed further down the pipeline. Furthermore,
advanced methodologies founded on KGs have become essential for knowledge
representation and business process modeling.

In recent years, there has been a rise in interest in analyzing KGs using Machine
Learning (ML) techniques, such as predicting missing edges or classifying nodes.
To input feature vectors into most ML models, much research has been devoted to
developing methods to build embeddings from KG. The transformation of nodes
and, depending on the technique, edges into a numerical representation via KG
embedding enables direct input into an ML model [2].

Furthermore, KG is widely assumed to be a tool for optimizing supply chain
operations, reducing costs, and improving overall efficiency. Manufacturers can
model their supply chain using KGs to fully understand how their suppliers,
customers, and operations depend on one another, enabling them to make real-time
data-based decisions.

In summary, many KGs have been built, both open to the public and closed
for internal company use. Enterprise KGs are closed applications that can only
be used by authorized personnel, while Open KGs are usually academic or open-
source projects available for use by anyone on the Web. By using modeling and ML
organizations can gain insights and make data-based decisions thanks to the creation
of these KGs. This research work describes the current state of Open KGs.

3 Research Questions and Search Strategy

KGs serve as semantic representations of various aspects involved in the manu-
facturing process. These aspects include all phases of system engineering, such
as the phases of development (e.g., layouts), organizational development (e.g.,
collaboration and worker roles), and operational development (e.g., user stories).
These KGs can improve the processes by considering the data coming from the
industrial monitoring and the human work themselves and additional contextual
data and knowledge sources. Some examples include technical documentation about
the process, questionnaires about maintenance cases, constraints, and rules for
representing standards and policies for safety or ethical issues, protocols about
teaming workflows, logging about process states, and user feedback. This chapter
investigates the present state of KGs in manufacturing. In this chapter, potential
areas are identified, and chances for future works are highlighted. The following are
the primary research questions that guided this study.
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3.1 Research Questions

We propose some research questions to provide specific insights into how KGs
are used in manufacturing. These Research Questions (RQs) consider that the two
most popular KG types are Resource Description Framework (RDFs) and Labeled
Property Graph (LPG). Our RQs are designed to cover the essential aspects of
bibliometric facts and application scenarios.

RQ1: Which areas within manufacturing are most interested in KGs?

The purpose of RQI is to demonstrate the significance and relevance of the topic
by providing an overview of bibliometric facts from previously published studies on
the applications of KGs in manufacturing.

RQ2: Which manufacturing domains commonly employ KGs?

RQ?2 investigates KG application scenarios within manufacturing. Specifically,
we will examine the manufacturing domains in which KGs have been used, the
specific use cases, and the types of systems developed.

RQ3: What is the popularity of RDF and LPG as KG types?

RQ3 aims to evaluate the degree to which KG applications have matured by
investigating some research aspects such as the format and standards used.

RQ4: How are industrial KGs currently used?

RQ4 discusses which building, exploitation, and maintenance procedures are
commonly followed in manufacturing-related KGs. This provides insight into the
structure of KGs that is vital for researchers and practitioners.
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3.2 Dataset

To address these RQs, we analyze a significant sample of literature published in
recent years. The search scope considers gray literature such as professional forums
and publications as well as academic publications published in journals or academic
conferences or in books that have been peer-reviewed. In total, we have identified
40 items of publication using KG published between 2016 and 2022. The authors
of these items come from a diverse range of academic disciplines and represent
institutions from various parts of the world. Overall, the sample of publications
provides a comprehensive and diverse set of perspectives on the research questions
at hand. The following is an analysis of the main characteristics of these sources.

3.3 Subject Area

KG in manufacturing is an emerging field that has drawn considerable attention from
both industry and academic communities. The current body of research primarily
originates from Computer Science. Conversely, there is a significant gap in research
output from the fields of Engineering and Business, which are the other two most
represented areas of knowledge. The scope of research in other areas, such as
Chemistry, Physics, and Astronomy, as well as Materials Science, remains limited,
with only a marginal number of proposals. Figure 1 presents a comprehensive
categorization of the research venues considered in this chapter. The classification
scheme is based on the self-description provided by each venue where the research
works have been published.

3.4 Manufacturing Domain

The presented findings illustrate the prevailing domains explored in the literature
on applying KGs in manufacturing, as summarized in Fig. 2. To determine whether
a given paper pertains to the manufacturing domain, the North American Industry
Classification System (NAICS!) was employed. However, most of the examined
literature does not specify any particular application domain.

Machinery is identified as the second most frequently represented domain,
after which Materials, Chemistry, and Automotive follow. Furthermore, Additive
Manufacturing, Aerospace, Mining, Operations, and Textile, albeit less frequently

U https://www.census.gov/naics/.
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Fig. 1 Research communities that have published the most research on KGs in manufacturing

investigated, are also observed in the literature. The identified domains highlight the
diverse industries that benefit from leveraging KGs.

Most reviewed works employ knowledge fusion techniques in general scenarios
where KGs combine data from multiple sources. Additionally, KGs are applied
to automate the merging of isolated production processes, generate digital twins
based on KGs, and utilize them for automated source code development. These
findings demonstrate the versatility of KGs in manufacturing and their potential to
revolutionize various aspects of industrial production.

3.5 Kinds of KGs

A KG may be modeled as either an RDF graph or an LPG, depending on the data
requirements. As shown in Fig. 3, RDF-based solutions currently dominate the field.
However, a considerable proportion of solutions are also represented by LPGs.
RDF is a recommended standard from the World Wide Web Consortium? that
provides a language for defining resources on the Web. The representation of
resources is accomplished using triples that consist of a subject, predicate, and
object. RDF Schema, commonly referred to as RDFS, defines the vocabulary
used in RDF descriptions. The RDF data model is specifically designed for
knowledge representation and is used to encode a graph as a set of statements.
By standardizing data publication and sharing on the Web, RDF seeks to ensure

2 https://www.w3.org/.
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Fig. 3 Knowledge Graph adoption in the manufacturing industry by representation paradigm

semantic interoperability. The semantic layer of the available statements, along with
the reasoning applied to it, forms the foundation of intelligent systems in the RDF
domain.

On the other hand, LPG representation primarily emphasizes the graph’s struc-
ture, properties, and relationships. This highlights the unique characteristics of
graph data, opening new opportunities for data analysis and visualization. It also
brings a window of opportunity for developing ML systems that use graphs to infer
additional information.
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Different approaches to KG have a significant impact on the user experience.
When developers and analysts work with RDF data, they use statements and
SPARQL query language to make changes. On the other hand, LPG use the Cypher
query language, which provides a more intuitive way to interact with nodes, edges,
and related properties within the graph structure.

3.6 Different Approaches for KG Creation

Compared to the broader scope of research on KGs, the development of KGs in
an industrial context often employs a knowledge-driven approach. Consequently,
knowledge-driven KGs are more used in the industry. This trend may stem from
the practical advantages of a more closed-world approach, which is better suited
to the constraints and contingencies inherent in a production environment. It also
suggests that the manufacturing industry remains cautious about adopting the latest
advancements in KG embeddings to enhance their analytical capabilities.

Figure 4 depicts the distribution of popularity between the two distinct
approaches for building KGs. Currently, the knowledge-driven approach prevails,
but recent years have witnessed a significant surge in the number of data-
driven solutions. These solutions are better equipped to deal with ML and other
computational intelligence techniques.

Knowledge-Driven

Data-Driven

0 20 40 60 80 100
Percentage of papers published

Fig. 4 Manufacturing industry Knowledge Graphs by form of creation
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4 Insights

This section summarizes the results obtained from our analysis and highlights
potential areas for future research on the use KGs in the manufacturing domain.
The findings are structured according to the RQs addressed earlier in the study.

4.1 Answers to the Research Questions

Based on our study, we can deduce the most active research communities in the field
of KGs. The answer to RQ1 (AQ1) is as follows:

AQ1. The majority of primary research in the field of KGs is conducted in the
discipline of Computer Science. Research in KGs is less common in other
areas of knowledge.

This could be because computer scientists have been developing new representa-
tion models since the beginning. Today, KGs are considered the natural progression
of such models to make them more adaptable to new platforms and emerging
methods for managing large amounts of data.

Regarding the answer to RQ2 (AQ2), it is unsurprising that the most common
case is the preference for proposing generic models that can be easily adapted to
various domains.

AQ2. The literature primarily covers the manufacturing industry as a
general concept. In most of the works examined, no specific application
domain was provided.

The domains related to machinery and materials are the next most represented,
followed by chemistry and material. Finally, some KGs have also been developed
in the aerospace, additive manufacturing, mining, operations, and textile fields.

Regarding the representation of KGs, the two most commonly used data models
are RDF and LPG. However, in answering RQ3 (AQ3), we seek to identify the
current prevailing choice for representing KGs.
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AQ3. In the industrial domain, RDF is the preferred format for building.
KGs. This is due to RDF’s ability to represent complex data and relationships
in a structured and interoperable manner, which allows for the building of
integrated knowledge spaces for both humans and AI components.

RDF is beneficial for industrial applications as it facilitates the integration of
diverse sources and a more comprehensive understanding of the data. Moreover,
the ability to query across multiple sources makes it easier for people to analyze
relevant information for their specific needs.

Regarding the question of the predominant approach to constructing industrial
KGs, it has been observed that knowledge-driven approaches are most commonly
used, as stated in Answer to RQ4 (AQ4):

AQ4. Knowledge-driven approaches are predominant. However, new devel-
opments using data-driven approaches are expected to be increasingly incor-
porated into the existing body of literature as new solutions are proposed in
combination with more mature techniques.

It is worth noting that existing knowledge-driven methods still encounter several
general challenges, such as the interoperability and heterogeneity of data, incom-
pleteness, and other specific challenges that arise from the goal of integrating them
as active components rather than passive artifacts or mere data stores.

4.2 Additional Lessons Learned

In light of our study, the utilization of KGs within the manufacturing industry has
experienced substantial growth in recent years as manufacturers seek to enhance
their operational efficiency and decision-making capabilities. The structural design
of KGs facilitates a more intuitive and comprehensive representation of data than
traditional database models, rendering KGs well suited for the manufacturing
industry.

Additional Lesson Learned #1. Although still nascent, the application of
KGs within the manufacturing industry has garnered substantial interest from
academia and industry.
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One of the primary reasons for this keen interest is that by modeling relationships
between suppliers, manufacturers, and customers, organizations can better under-
stand the flow of goods, services, and information through their supply chain. This,
in turn, can assist them in identifying bottlenecks, optimizing production processes,
and ensuring product delivery to customers.

Additional Lesson Learned #2. The majority of the studies examined have
been published in conference proceedings. In many instances, this indicates
that the subject of investigation is still in the developmental stages. The state
of the art is gradually maturing in almost every research area, leading to more
journal publications with archival significance.

KGs can aid manufacturers in enhancing their ability to predict and respond to
shifts in demand. This can help reduce waste, optimize production processes, and
boost efficiency. However, most of the research is a work in progress, and there is
still a long way to go to consolidate the results of archival value.

4.3 Open Problems

As a result of our study, we have identified several issues that limit the adoption
of KGs in manufacturing and production environments. Some of the most critical
issues are described below. The first issue concerns tabular data. This kind of data
is frequently represented in values separated by commas. It is typically one of the
most common input methods in industrial environments because it enables modeling
a wide variety of data associated with temporal aspects (timestamps) and spatial
aspects (coordinates). However, more optimal solutions still need to be proposed.

Problem 1 (Dealing with Tabular Data) Most solutions today are created
to deal with information that is predominately textual in its presentation.
Although this information category is crucial in the sector, it is not domi-
nant in manufacturing settings, which involve working with machinery and
equipment that generate numerical data in tabular form.

Another fact that is taken for granted by both researchers and practitioners is that
it is possible for KGs to effectively deal with information of varying types that may
arrive via a variety of channels and sources. However, our research has not found a
large number of papers concerned with the temporal component of processing KGs.
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Problem 2 (Real-time and Synchronization) Because many of the processes
involved in manufacturing are automated and must have a high degree
of synchronization, the manufacturing industry demands solutions that can
perform adequately in environments with substantial time constraints and
synchronization needs.

Last but not least, according to the results of our investigation, work still needs
to be done in compiling the best practices for manufacturing KGs. In this sense, we
miss work in the direction of design and proposal of best practices for the sector.

Problem 3 (Lack of Standardized Procedures) A substantial obstacle still
exists in identifying reference architectures to build, implement, and use KGs
in industrial and production settings. A compilation of best practices can be of
genuine benefit in several ways, including high standards of quality results and
resource saving while developing new systems or making changes to existing
ones.

KGs are suitable for the manufacturing industry because they can provide
systems with contextual data to achieve efficient and effective solutions. This
contextual data includes human experience, environmental knowledge, technical
conventions, etc. Creating such solutions becomes critical when the influence on
human life is essential, as in the case of a factory that employs human workers.

5 Conclusion

In this chapter, we have seen how the amount of data generated in the industrial
sector at a high velocity is bringing new challenges. For example, this data emanates
from multiple sources, each utilizing distinct formats and standards. Consequently,
integrating these divergent pieces of information is not only essential but also
critical. Contextualizing data elements utilizing relevant relationships is imperative
to ensure consistency and high-quality data.

The study also examines KGs as multifaceted knowledge bases that capture
interlinked descriptions of entities. KGs facilitate the smooth integration and
structuring of information at large scale, even from heterogeneous sources. Unlike
other knowledge bases, KGs are not homogeneous and do not require rigid schemas.
This makes KGs highly scalable and suitable for integrating and connecting diverse
data representations.
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Semiautomatic methods, employing available data sources and manual effort,
are used to construct manufacturing KGs. However, manual KGs construction is
only practical for small-scale KGs, and automated methods are necessary for large-
scale KGs. Therefore, automating the construction and maintenance of KGs in the
manufacturing domain is essential for successful implementation.

In conclusion, utilizing KGs in the manufacturing industry can offer several
advantages, including better decision-making processes and the ability to predict
and respond to changes in demand. With the manufacturing industry evolving at
an unprecedented rate, KGs will likely play an increasingly critical role in driving
operational efficiency and competitiveness.
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Knowledge Graph Embeddings o

Franz Krause, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil,
Thomas Hoch, Mario Pichler, Bernhard Heinzl, and Bernhard Moser

1 Introduction

Knowledge graphs are becoming increasingly recognized as a valuable tool in
data-driven domains like healthcare [1], finance [2], and manufacturing [3], where
they have gained considerable popularity in recent research. They are commonly
employed to represent and integrate both structured and unstructured data, providing
a standardized approach to encode domain knowledge [4]. Built on ontologies
that conceptualize domain classes, relations, and logical inference rules, KGs
represent specific instantiations of ontological models and their inherent semantic
characteristics. Typically, KGs are divided into two modules: a terminological
TBox containing concepts (such as the class of a manufacturing process) and an
assertive ABox containing real-world instances (such as unique executions of a
manufacturing process).
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We adopt the notion of a (standard) KG G = (V, E) as described in [5], which
is represented by a set of nodes V (also referred to as vertices) and a set of triples
E C V x R x V consisting of directed and labeled edges. Here, R denotes the set
of valid relation types defined in the underlying ontology. Thus, an edge in the form
of a triple (s, p, 0) € E implies an outgoing relation from the subject s € V to the
object 0 € V via the predicate p € R. Given such a KG, embedding techniques aim
to exploit the topology of the graph to generate latent feature representations

y: V=T (D)

of its nodes V in a latent representation space I', e.g., I' = R4 with d € N,
thereby enabling their utilization in downstream applications, e.g., graph-based
machine learning (ML). However, the findings of this work can be applied almost
analogously to the most well-known KG extensions, such as labeled property graphs
like Neo4;j [6].

In addition to the improved applicability of graph-based data in tasks like
recommendation systems [7] or question answering [8], embedding formalisms
have also proven to be valuable as intrinsic complements to graph-structured
data. This is due to their ability to provide an empirical approach for enhancing
the expressivity of graph topologies by means of downstream tasks like entity
linking [9] and link prediction [10]. Consequently, related areas such as relational
ML are receiving significant attention in both literature and applications [11].

In this chapter, we first provide a brief overview of representation learning as
the enabler of KG embeddings, addressing state-of-the-art embedding formalisms
for generating lean feature representations and describing their functionalities.
An analysis of the advantages and drawbacks of employing KG embeddings is
provided, along with a discussion of associated open research questions. We focus
specifically on potential challenges and risks that may hinder the usage of KG
embeddings in the highly dynamic manufacturing domain. Accordingly, we present
the methodologies developed within the Teaming. Al project to address those
problems. In this context, we describe the applicability and potential benefits of
KG embeddings in the human—Al-based manufacturing use cases of the project.
Furthermore, we showcase the Navi approach as an enabler of dynamic KG
embeddings that allows for real-time and structure-preserving computations of new
or updated node representations.

2 Knowledge Graph Embeddings

The generation of KG embeddings as per Eq.(l) denotes a subdiscipline of
representation learning. In the context of KGs, representation learning is applied
to determine lean feature representations that are able to capture inherent semantic
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relationships between KG elements. Thus, we first provide a general overview of
representation learning to subsequently describe its application in KG embeddings.

3 Representation Learning

Representation learning comprises techniques for the automatic detection of appro-
priate feature representations that can be employed by downstream models or tasks,
such as machine learning models [12]. Thus, the main objective of representation
learning is to eliminate the need for preprocessing raw input data. Given a set
of observable variables V with semantic representations 7 : V — Il within
an inherent representation space IT (which is not necessarily compatible with the
downstream model), these techniques aim to generate an alternative feature mapping
y : V. — T into a representation space I" that satisfies the requirements of the
desired task.

Representation learning can be performed in a supervised, unsupervised, or
self-supervised manner. One example of a supervised approach for learning latent
feature representations is the training of deep neural networks on labeled input data.
Namely, given an input feature 7 (v) for some v € V, the hidden layer outputs
(and also the output layer) obtained from the forward pass of the network can be
considered as alternative representations y (v), as illustrated in Fig. 1.

Contrarily, unsupervised representation learning techniques can be utilized
for unlabeled representations 7 (v). Methods like principal component analysis
or auto-encoders intend to reduce the dimensionality of high-dimensional input
features. Accordingly, the goal of these algorithms is to determine alternative, low-
dimensional representations without the consideration of any target feature except
the input feature 7 (v) itself. For example, auto-encoders feed a representation
w(v) € R? into a deep neural network and attempt to reconstruct it, i.e., 7 (v)
also serves as the output feature. However, the hidden layers are assumed to be low-
dimensional to serve as alternative representations y (v) € R? of v € V withd < d’
as depicted in Fig. 2.

- i -

Input Layer m(v) € R? Hidden Layer y'(v) € R® Hidden Layer y'/ (v) € R* Output Layer ' (v) € R?

Fig. 1 Deep neural networks as supervised representation learning formalisms
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O O
o— @ @ O
o= O O @ ; O
= O O @ - O
o O O O
Alternative Representation y(v)
O O
Input (v) Output = m(v)

Fig. 2 Auto-encoders as unsupervised representation learning formalisms

Smart manufacturing is arriving. It promises a future of mass-producing highly personalized
PRODUCTS via responsive autonomous manufacturing operations at a competitive cost. Of
utmost importance, smart manufacturing requires end-to-end integration of intra-business and
inter-business manufacturing processes and systems. ...

... Subsequently, focusing on meeting changing demands of efficient production of highly
personalized PRODUCTS, we detail several future-proofing manufacturing automation scenarios
via integrating various existing standards. We believe that existing automation standards have
provided a solid foundation for developing smart manufacturing solutions.

Fig. 3 Extract from the abstract in [15]. The semantics of the word products is encoded within the
sentences that contain it

Finally, self-supervised representation learning aims to leverage the underlying
structure Sy of unlabeled data that contains the variables v € V and which
allows for deriving meaningful initial representations 7 (v). For example, a word
v € V may appear in a set of sentences 7 (v) within a shared text corpus Sy, as
exemplified in Fig. 3. While state-of-the-art NLP models like BERT [13] usually
split words into frequently occurring subword tokens via subword segmentation
algorithms such as Wordpiece [ 14], the inherent methods can be applied analogously
to sets of complete words. In the course of training such NLP models, numerical
embeddings y (v) € R? are assigned to the domain variables v € V with respect to
their original representations m (v). These alternative representations are optimized
by backpropagating the output of the LLM for at least one element of its initial
representation 7 (v).

Analogously, most NLP techniques can be applied to KG structures G = (V, E)
by characterizing directed graph walks (vi, p1, v2, p2, V3, ..., Vi—1, pi—1, ;) of
depth [ — 1 € N as sentences that are composed of edges (v;, pi, vi+1) € E. For
instance, the sample manufacturing KG depicted in Fig. 4 contains the 4-hop walk

(John, executes, Task 1, output, Product 1, input, Task 2, output, Product 2).

One of these transfer approaches is RDF2Vec [16], which utilizes random graph
walks to generate input data for the NLP-based Word2Vec algorithm [17]. By doing
s0, a mapping ¥ : V U R — R? is trained and thus, alternative representations
of the graph nodes in V, but also for the relation types in R as well. Therefore,
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< ES
Coe <

executes

Fig. 4 Sample KG containing process flows within a production process

node embeddings can be derived via y(v) := Y (v). Besides transfer approaches
like RDF2Vec, various embedding algorithms exist, which are specifically tailored
toward KG structures. These are further discussed in the following.

3.1 Representation Learning for Knowledge Graphs

KG embedding techniques denote a subdiscipline of representation learning, taking
into account KG structures as initial input data. Given a KG G = (V, E), these
approaches intend to provide numerical representations y : V — I' as per Eq. (1).
However, as exemplified by RDF2Vec, KG embeddings may contain alternative
representations of graph elements y ¢ V as well, such as embeddings of relations,
but also edges or subgraphs. Thus, in general, a KG embedding is a mapping
y : Q — I, where Q represents a collection of KG elements pertaining to G.
The node embedding of some v € V is accordingly obtained by restricting y to V,
ie., y(v) =y (v).

Based on the research conducted in [10], KG embedding methods can be cate-
gorized into three model families, namely tensor decomposition models, geometric
models, and deep learning models. We adopt this subdivision in the following.

3.1.1 Tensor Decomposition Models

Tensor decomposition models for KG embeddings are based on the concept of
tensor decompositions within the area of multilinear algebra [18]. These attempt
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0110 o e 00 0 0
0000 v 00 0 1
0 0 01 ‘ 01 00
0000 ‘@ 01 0 0,

Fig. 5 Sample KG with n = 4 nodes and k = 2 relations ry (blue) and r; (red), including their
respective adjacency matrices A; and Ay

to characterize tensors via sequences of simplified tensor operations. For a KG G,
this approach is applied to its unique adjacency tensor A € {0, 1}*"*"_defined as

ﬂh,i,j =1 «<— (v,-,rh,vj) e E.

Here, k € N denotes the cardinality of the underlying relation set R and n € N is
the number of nodes in V. Accordingly, without loss of generality, we may assume
labeled sets R = {r1,...,rx} and V = {vy, ..., v,}, as exemplified in Fig. 5.
Accordingly, tensor decomposition-based KG embedding methods intend to
approximate A by a sequence of lower dimensional tensor operations. Among these
methods, RESCAL [19] is considered to be the first work to apply this methodology
for determining KG embeddings. Regarding A, it proposes a rank-d factorization

A~ X-Ry - XT

of its h-th slice Aj, € {0, 1" by means of matrices X € R"*¢ and R, € R¥*4
with d <« n. Therefore, the i-th row of the matrix X contains an alternative
representation ¥ (v;) = (Xi1,...,Xi4) € R? of v; € V. The optimization of
the matrices X and (Rp)<j < is accordingly achieved by solving the minimization
problems

. 1 k
miny g, f(X,Ry) for f(X,Ry) = > (thl Ay — X - Ry -XTM"‘F) :

with the Frobenius norm | - || 7 and the corresponding element-wise operations

| 2
fh,i, j) = §<ﬂh,i,j —y )" Ry - V(”j)> .

To reduce the complexity of these optimizations, DistMult proposes to use diagonal
matrices (Rp)|<p<x [20]. However, by doing so, DistMult is limited to symmet-
ric relations. ComplEx solves this problem by employing C-valued embedding
spaces [21]. In addition to the mentioned models, numerous other tensor decompo-
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sition models for KG embeddings exist, including ANALOGY [22], SimplE [23],
and HolE [24].

3.1.2 Geometric Models

Geometric KG embedding models represent semantic relations as geometric trans-
formations within a corresponding embedding space. In contrast to tensor decompo-
sition models, embeddings are not determined based on characteristics of the unique
adjacency tensor A, but with respect to individual facts (s, p, 0) € E.

As outlined in [10], transformations 7, (s) := 7 (y(s), ¥(p)) € T are applied for
subject nodes s € V regarding predicates p € R. Accordingly, based on a distance
measure § : I' x I' = R, KG embeddings are computed via score functions

f(s,p,0):=8(tp(5), ¥ (0)) .

Among the family of geometric KG embedding methods, TransE [25] constitutes
the most famous approach. As a translational model, it approximates object
representations y (o) via y(0) ~ 1,(s) = y(s) + ¥ (p). Various geometric KG
embedding models build upon the idea of TransE, improving the representation of
nodes and relations by introducing additional components or transformations, such
as

* Relationship-specific hyperplanes to capture complex interactions between
nodes and relationships more effectively (TransH) [26]

* Relationship-specific node projection matrices to handle entities and relation-
ships with different characteristics more flexibly (TransR) [27]

» Adaptive projection matrices regarding differing node-relation-pairs (TransD)
(28]

* Relationship clustering to group similar relations (TransG) [29]

For a comprehensive overview of these methods, we refer to [10]. This work also
introduces negative sampling as a common obstacle of KG embedding formalisms.
Due to the open-world assumption of KGs, (s, p, 0) &€ E does not necessarily imply
that the fact is false. Rather, it means that the KG does not contain information
about its validity. Thus, negative sampling is applied to create a set of false facts
Epeg €V x RxV with ENE, e = ¥ to train the embeddings in a supervised way.

3.1.3 Deep Learning Models

Graph-based deep learning (DL) approaches, also referred to as Graph Neural
Networks (GNNs), exist for some time already, especially in the context of complex
network systems and their underlying undirected graph structures [30]. However,
the application of such algorithms on directed and labeled KGs may lead to a
loss of relevant information. To address this issue, Graph Convolutional Networks
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(GCNs) were first introduced to account for directed edges [31]. Furthermore, to
accommodate different relation types, Relational Graph Convolutional Networks
(RGCNs) were elaborated as extensions of GCNs [32], which were subsequently
extended by means of attention mechanisms [33] in Relational Graph Attention
Networks (RGATSs) [34].

In contrast to geometric KG embedding models that apply score functions
to individual triples and tensor decomposition models that intend to reduce the
dimensionality of the adjacency tensor A, DL-based models perform predictions
for labeled nodes v € V, taking into account itself and its outgoing neighbors

Nw):={yeV|3s,p,o)eE:(s=yrno=v)V(s=vA0o=1Y)}.

These labels can be derived from the KG itself via node assertions or link
assignments, or they can be external, such as numerical or nominal node attributes.
Adjacent node representations are meant to be aggregated to receive a composite
node representation of v. By backpropagating a suitable loss, initial embeddings of
v and its neighbors are optimized. This process is repeated for each labeled training
node to generate latent feature representations for all v € V U {N(v) : v € V}. The
formalism proposed in [32] subdivides N (v) into relation-specific neighborhoods

N:(v):={yeV|3d@s,p,0)eE:(s=yrno=v)V(=vAo=y)Ap=r},

regarding relation types r € R. Thus, given a matrix of (initial) feature representa-
tions X € R"*4 (i.e., the i-th row of X is an embedding of v; € V), embeddings of
outgoing neighbors can be incorporated in the forward pass of a GNN via

Ap - X e R,

where Aj, denotes the A-th slice of A. For instance, in the context of the KG from
Fig. 5, the composite representation of v regarding the relation r; equals the sum
of the initial embeddings of v, and v3. To account for differing impacts of incoming
and outgoing edges, R is typically extended via inverse relations ' for each r € R.
Some works also consider a self-relation ry. Accordingly, by taking into account the
adjacency matrices Ay = Id and Ay, = ﬂ,{ for 1 < h < k, we extend the set R
via

ﬁ::RU{r'|r € R}U{ro} with rj, = ry.

By doing so, GNN models capture the semantics of directed and labeled graphs
by summing up weighted composite representations to receive a convoluted matrix

2k
Y Ay X Wy e R
h=0
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including relation-specific weight matrices ‘W), € R9*d" Moreover, the extended
adjacency tensor A € R@+TDxnxn jg not necessarily {0, 1}-valued. Rather, it
is intended to contain normalization constants or attention scores to encode the
significance of individual nodes and relations to the forward pass of a GNN.
However,

(vi,rh, vj) ¢ E = ﬁh,i,]’ =0

still holds. If no normalization constants or attention mechanisms are to be
implemented, this tensor can be directly derived from A € {0, 1}**"*” by means
of matrix transpositions and the insertion of an additional identity matrix. Finally,
by introducing an activation function o : R — R such as ReLu, the generalized
forward pass of a GNN layer (including RGCNs and RGATS) can be defined as

2k
o (Zﬁth X wh> = X e R, )

h=0

4 Industrial Applications of Knowledge Graph Embeddings

The lack of use case scenarios poses a significant challenge to the application of
KGs and corresponding KG embeddings in the manufacturing domain. Without
specific applications, it becomes difficult to identify the relevant data sources,
design appropriate KG structures, and create meaningful embeddings that capture
the intricate relationships within manufacturing processes. Thus, the absence of
concrete use cases hinders the exploration of the full potential of KGs and KG
embeddings in improving efficiency, decision-making, and knowledge sharing
within this domain.

As a result of the research conducted within the Teaming.Al project, which
aims to enhance flexibility in Industry 4.0, while prioritizing human involvement
and collaboration in maintaining and advancing Al systems, we identified several
application scenarios within the manufacturing domain that can be leveraged by
introducing industrial KGs and KG embeddings. These are introduced in the
following.

Data Integration and Fusion Manufacturing involves diverse and complex data
from various sources, such as sensors, process logs, or maintenance records. While
KGs can integrate these heterogeneous data sources, KG embeddings map them into
a shared representation space. By representing KG nodes and their relationships in
this shared embedding space, it becomes easier to combine and analyze data from
different sources, leading to enhanced data fusion capabilities.
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Semantic Similarity and Recommendation KG embeddings allow for quantify-
ing the semantic similarity between nodes. In the manufacturing domain, this can
be useful for recommending similar products, materials, or processes based on their
embeddings. For example, embeddings can help to identify alternative materials
with desired properties or characteristics, thereby aiding in material selection.

Supply Chain Management Effective supply chain management is crucial for
manufacturing. KGs and corresponding KG embeddings can help model and
analyze complex supply chain networks by representing suppliers, products, trans-
portation routes, and inventory levels as graph entities. By considering their
semantic relations, embeddings can facilitate supply chain optimization, demand
forecasting, and identifying potential risks in the supply chain.

Decision Support Systems KG embeddings and relational ML techniques can
serve as a foundation for developing decision support systems in manufacturing.
By learning from empirical semantic observations, these systems can provide
recommendations, insights, and decision-making support to operators, engineers,
and managers. For example, based on the current state of the manufacturing
environment, the system can suggest optimal operating conditions or maintenance
actions. Moreover, models can be learned to recommend ML models for Al
activities, given the current manufacturing environment.

Fault Detection and Diagnosis KG embeddings combined with relational ML
techniques can aid in fault detection and diagnosis in manufacturing systems.
By analyzing historical data and capturing the relationships between machines,
process variables, and failure events, embeddings can be used to build systems that
identify faults or failures in advance. This facilitates proactive maintenance, reduces
downtime, and improves overall effectiveness.

In conclusion, KGs allow for representing manufacturing concepts and entities
(such as processes, machines, and human workers) and their semantic relationships.
KG embeddings, on the other hand, capture inherent semantics in lean numerical
representations which facilitate (i) the analysis of existing manufacturing knowledge
and (ii) the extraction of new manufacturing knowledge based on empirical
observations. As a powerful tool for representing domain knowledge in a human-
and machine-interpretable way, KGs enable the combination of human comprehen-
sibility with the computational capabilities of machines. This synergy of human and
machine intelligence enables effective collaboration, decision-making, and efficient
problem solving in the manufacturing domain. Moreover, it represents a step toward
optimized human-in-the-loop scenarios [35] and human-centric Industry 5.0 [36].

However, the manufacturing domain is inherently dynamic, with continuous
changes in its processes, equipment, materials, and market demands. Therefore, it
is crucial to incorporate these dynamics into KG embeddings, which are typically
designed for static snapshots of a domain (cf. Sect. 3.1). In the end, KG embeddings
should be able to capture the evolving relationships, dependencies, and contextual
information, preferably in real time. By incorporating dynamics, the embeddings
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can adapt to changes in manufacturing operations, such as process modifications,
equipment upgrades, or variations in product requirements. This enables the repre-
sentations to accurately reflect the current state of the manufacturing system and to
capture the evolving aspects of runtime observations and data.

5 The Navi Approach: Dynamic Knowledge Graph
Embeddings via Local Embedding Reconstructions

Most of the existing works on dynamic graph embeddings do not account for
directed and labeled graphs. Rather, they are designed to be applicable to undirected
and/or unlabeled graphs [37, 38], or they aim to embed temporally enhanced
snapshots of non-dynamic graphs [39, 40]. Moreover, approaches like the one
proposed in [41] exist that intend to perform an online training of KG embeddings
by focusing on regions of the graph which were actually affected by KG updates.
However, the overall embedding structure is still affected, leading to a need for
continuous adjustments of embedding-based downstream tasks, such as graph-
based ML models. Thus, we require a dynamic KG embedding formalism that (i)
can produce real-time embeddings for dynamic KGs and (ii) is able to preserve
the original structure of KG embeddings to allow for consistent downstream
applications.

We propose to utilize the dynamic Navi approach [42], which is based on the
core idea of GNNs as per Eq. (2). Given an initial KG G, = (Vy,, Ey,) at timestamp
fo, we assume an embedding ¥, : V;, — R? based on some state-of-the-art
KG embedding method from Sect. 3.1. Accordingly, a dynamic KG is defined as
a family of stationary snapshots (G,),cq- With respect to some time set 7. Given
a future timestamp ¢ > t#y, the Navi approach provides a consistent embedding
v+ V; = R4 so that previously trained downstream models can still be employed.

Since we leverage the idea of GNNs to reconstruct ¥, (v) through local neighbor-
hoods, these reconstructions are based on the unique adjacency tensors (A(t));cq
with A(r) € Rk*mxnt Here, n, = ‘th Vf| denotes the number of nodes that
were known to exist since the graph’s initialization and thus n; > n,, holds. Thus,
we assume an initial embedding matrix X,O e R™*? that contains the initial
embeddings as per ¥,. This matrix is then reconstructed based on itself via a single-
layer GNN

~ %~ ~ ~
o | Alto)o - O - Wo + thl Alto)n - Xiy - Wh ) =: Xyy & Xy

by taking into account the extended adjacency tensor ?l(to) (cf. Sect. 3.1.3). During
the training process, a global embedding y,, € R¢ is implemented regarding the
self-relation ro so that @, € R™0*? contains ng, copies of y,,. Moreover, instead
of zero-value dropouts, overfitting is prevented by randomly replacing node embed-



82 F. Krause et al.

dings with y;, in the input layer, simulating the semantic impact of nodes that are
not known at time #y. It is also used to represent self-loops, enabling reconstructions
that are independent of the (potentially unknown) initial representations. A detailed
overview, including training settings and benchmark evaluation results, can be found
in [42]. The evaluation implies that, given a timestamp ¢ > fy, this approach allows
for high-qualitative and consistent embeddings y, : V; — R? that are computed via

~ 2k~ ~
o (AW -0 - Wo+ Y~ A - &Xi- Wi ) =1 X,

i.e., the i-th row of i( ; represents the embedding y; (~v,-) of the node v; € V;. In the
case of new nodes, X; and ©, are the extensions of X;, and ®,, by inserting copies
of y,,, respectively. Moreover, the update of the adjacency tensor can be performed
via

AW = 10, )" - Alto)n - I (10, 1) + Blio, D).
First, the matrix I (g, t) € {0, 1} " accounts for newly inserted nodes, i.e.,
I(tO,t)i,j =1 < i=].

Second, the update matrices B(t, 1), € {—1, 0, 1}"**" identify KG updates

Blto. 1)y, == 1 <= the edge (v;, rp, vj) was inserted between £y and ¢
T —1 = theedge (v;, 7y, v;) was deleted between ¢y and ¢.

After the KG update, a synchronizing assistant is to provide (i) the number of
nodes n; and (ii) the update tensor B(fp, t) € {—1, 0, 1}kxnexne For instance, given
an Apache Jena Fuseki' KG, existing logging tools like rdf-delta’ can be extended to
use them as synchronizing assistants. Moreover, while we focus on a single update
at time ¢ € 7, transitions between arbitrary timestamps can be handled as well, i.e.,

Ay =1, ) - AWy, - 1@, 1)+ B(t, 1)y for tg <t <1,

In conclusion, the late shaping of KG embeddings via Navi reconstructions rep-
resents a promising approach for incorporating dynamic KG updates and semantic
evolutions into KG embeddings as lean feature representations of domain concepts
and instances. Besides the ability to allow for consistent embeddings, the results
in [42] even showed that the reconstruction of existing embeddings often leads
to an improved performance in downstream tasks like link predictions and entity
classifications as key enablers of the industrial use case applications outlined in
Sect. 4.

! Apache Software Foundation, 2021. Apache Jena, Available at https://jena.apache.org/.
2 https://afs.github.io/rdf-delta/.
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6 Conclusions

In this work, we highlighted the increasing importance of representing and exploit-
ing semantics, with a specific emphasis on the manufacturing domain. While
industrial KGs are already employed and utilized to integrate and standardize
domain knowledge, the generation and application of KG embeddings as lean
feature representations of graph elements have been largely overlooked. Existing
KGs lack either domain dynamics or contextuality, limiting the applicability of
context-dependent embedding algorithms. Thus, we provide an overview of state-of-
the-art KG embedding techniques, including their characteristics and prerequisites.
In this context, we emphasized the need for dynamic embedding methods and
their implementation in concrete manufacturing scenarios, describing potential KG
embedding applications in industrial environments, which were identified as a
result of the Teaming.Al project. Furthermore, we introduced the concept of Navi
reconstructions as a real-time and structure-preserving approach for generating
dynamic KG embeddings.

To summarize, KGs and KG embeddings offer significant advantages for the
manufacturing domain. The structured representation of complex relationships
in KGs enables context-awareness, dynamic analysis, and efficient information
retrieval. Furthermore, the utilization of KG embeddings promotes process opti-
mization, leading to improved product quality, reduced errors, and an increased
overall productivity.
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Architecture of a Software Platform for )
Affordable Artificial Intelligence in Qe
Manufacturing

Vincenzo Cutrona (%), Giuseppe Landolfi (%), Rubén Alonso (),
Elias Montini (), Andrea Falconi (®), and Andrea Bettoni

1 Introduction

The huge transformation brought by the fourth industrial revolution into the
manufacturing world has forced any company to take on the digitalization journey,
regardless of its size, sector, or location. In this context, Artificial Intelligence (Al)
technologies are ready to take off as a new approach to solve business issues, and,
recently, Al tools are proliferating [1]. Forward-thinking results can be obtained by
analyzing huge amounts of data from a wide range of sources in the production
system and by identifying deviations and trends in real time for making decisions
[2]. The greater intelligence brought by Al embedded in production systems can
not only bring advantages for large companies but also support Small-Medium
Enterprises (SMEs) and mid-caps in achieving better operational performance. Yet
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several challenges are still preventing them from embracing Al on a large scale.
To reduce the barriers, two conditions have to be satisfied: the technology has to
be affordable and accessible enough for mass use, and the level of awareness of
individuals and companies should be high enough to be able to understand how and
where to use it.

The first condition can be tackled by democratizing Al tools: by exploiting the
“as-a-service-model,” technologies can be made available to SMEs at an affordable
price and on-demand, thus reducing the financial gap with large companies and
avoiding SMEs getting lost in the hype around AI [3]. This is the best solution since,
on the one hand, the adoption of ad hoc solutions for specific company requirements
leads to integration problems, long implementation times, and flexibility limits. On
the other hand, adopting an all-in-one solution requires big investments for complex
systems, which exceed the effective needs and strictly depend on legacy providers.

The second condition is more difficult to be satisfied at the level of single
companies since, often, SMEs lack the skills and knowledge needed to turn Al into a
major boost for their business, thus lagging behind larger organizations in the uptake
level [4]. Successful implementation of Al requires identifying the right tools to
be chosen among a plethora of solutions and their harmonization with existing IT
systems and processes from both a technical and a strategic point of view so that
they can become real enablers for performance improvement. Upskilling workers
is essential to both empower a mutually supportive human—machine interaction and
lower adoption barriers, but building internal competences requires time. Support is
needed now to accompany European SME:s in their digitization journey so that they
can keep the pace with their larger counterparts and be key players in their value
chains. An innovation ecosystem should be created around SMEs so that they can
easily find locally the needed support to draw customized Al adoption plans and be
immersed in a vibrant and stimulating environment that makes them progress across
the digital innovation flow.

At the European level, initiatives have been launched to promote the development
of platforms that could support SMEs in the digital uptake, and the creation of local
Digital Innovation Hubs (DIHs) is promoted to create an innovation ecosystem
providing services to lower the entry barriers for SMEs. The Al uptake has to
pivot on digital platforms that act as one-stop shop for SMEs, showcasing advances
brought forward by synergistic efforts of DIHs, research centers, and technologies
providers and offering services to smooth the adoption. Being able to offer to SMEs
solutions tailored to their specific needs, built on modular kits, at a reasonable
cost, easy and fast to implement is a must to strengthen the European economy’s
competitiveness.

KITT4SME recognizes that SMEs are among the companies that could benefit
the most from the opportunities brought by Al solutions while, at the same
time, being the ones with the least capabilities and resources to embrace them.
KITT4SME specifically targets European SMEs and mid-caps to provide them
with scope-tailored and industry-ready hardware, software, and organizational kits,
delivered as a modularly customizable digital platform that seamlessly introduces
Al in their production systems. Uptake of the resulting packages and of the provided
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services is strongly supported by the clear characterization and market readiness of
the individual components and by the platform grounding on the already established
RAMP marketplace. Seamless adoption of the customized kits is made possible by
a Powered by FIWARE infrastructure,! which flawlessly combine factory systems
(such as Manufacturing Execution System (MES) and Enterprise Resource Planning
(ERP)), Internet of Things (IoT) sensors and wearable devices, robots, collaborative
robots, and other factory data sources with functional modules capable of triggering
data-driven value creation.

The rest of the chapter is structured as follows: Sect. 2 examines existing plat-
forms and alternative methods for delivering Al services to manufacturing SMEs;
Sect. 3 introduces the concept underlying the proposed platform, its architecture,
and the provided functionalities for supporting Al developers; in Sect. 4, a real-
world use case illustrating the advantages of the proposed platform for an SME is
presented; and Sect. 5 concludes with a discussion of limitations and related future
work.

2 Platforms in the AI Ecosystem

The KITT4SME platform aims to assist SMEs in adopting Al-based solutions
by offering various services. These services, ranging from analyzing clients’
requirements and implementing technical solutions to developing Al applications
and training Al algorithms, coexist in an environment with platforms providing Al
solutions, technology providers, Al consulting firms, and DIHs.

Platform-based services and aPaas are cloud computing services that allow
customers to provide, instantiate, run, and manage modular software solutions com-
prising a core infrastructure and one or more applications without the complexity
of building and maintaining the whole system, typically associated with developing
and launching the applications [5]. These solutions allow also developers to create,
develop, and package such software bundles. Gartner sees Al Platform as a Service
(AI PaaS) as a set of separate Al services. However, it is possible to consider the
concept of Al PaaS from the perspective of the classic Platform as a Service (PaaS)
model. Such an environment usually includes two main components required for
application development: hardware infrastructure (computing power, data storage,
networking infrastructure, and virtual machines) and software solutions (tools and
services).

The key hurdle to generalize a similar scheme for the Al PaaS architecture is
that there is no general model for Al PaaS yet. The market is still forming, and
different vendors offer completely different services under the same umbrella term.
Yet many elements are common to the majority of today’s Al PaaS and Al service

Uhttps://www.fiware.org/.
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platforms: infrastructure, data storage, pre-trained AI models, and Application
Program Interfaces (APIs).

Al as a Service (AlaaS) allows individuals and companies to experiment with Al
for various purposes without a large initial investment and with lower risk [6]. In
this market, different Al providers offer several styles of Machine Learning (ML)
and Al These variations can be more or less suited to an organization’s Al needs
since organizations must evaluate features and pricing to see what works for them.
To date, there are two kinds of platforms, depending on how they offer the service:

e Platforms to develop code to build Al programs: comparable to an open-
source solution that allows users to create and configure applications through a
graphical user interface instead of a traditional hand-coding computer program

* Platforms providing already developed applications: similarly to KITT4SME,
these platforms allow users to deploy and implement ready-to-use solutions that
do not require users to have advanced technology and IT skills.

Since KITT4SME addresses SMEs, and very few of them have in-house
competencies (data scientists, analysts, and developers) or a specialized team able
to develop AI models and applications [4], the following paragraphs focus on the
platforms providing already developed applications.

Acumos AI Acumos AI’ is an open-source platform that enables the training,
integration, and deployment of Al models. It was launched in 2018 by the LF Al
Foundation, which supports open-source innovation in AI, ML, and Deep Learning
(DL), making these technologies available to developers and data scientists. The
platform provides a marketplace for Al solutions that are not tied to any specific
infrastructure or cloud service. It aims to create a flexible mechanism for packaging,
sharing, licensing, and deploying Al models securely through a distributed catalog
among peer systems. Acumos Al aims to make Al and machine learning accessible
to a broad audience by creating a marketplace of reusable solutions from various Al
toolkits and languages. This way, ordinary developers who are not machine learning
experts or data scientists can easily create their applications [7].

Bonseyes Bonseyes* was a H2020 project that ended in 2020. It was led by NVISO
SA,’ based in Lausanne, and aimed to create a platform with a Data Marketplace,
DL Toolbox, and Developer Reference Platforms. The platform was designed for
organizations that wanted to implement Al in low-power IoT devices, embedded
computing systems, or data center servers. The platform had an engagement strategy
where platform experts published challenges and requests for AI solutions that
met specific technical requirements based on real industrial problems faced by
companies. Data scientists proposed their own Al applications to be deployed on the

2 https://www.acumos.org/.

3 https://Ifaidata.foundation/.
4 https://www.bonseyes.eu/.
3 https://www.nviso.ai.
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platform. Companies evaluated and paid the winners after the call ended. Bonseyes
used a collaborative AI Marketplace to provide real-world solutions to the industry,
supporting scenarios where data must remain on the data provider’s premises and
online learning with distributed Cyber-Physical Systems (CPSs). The platform
allowed continuous feedback from human actors to evaluate model performance
and obtain metadata about context and users’ perspectives [8, 9].

GRACE AI Grace Al° is an Al platform launched by 2021.Al in 2018, with the
mission to help customers in realizing their vision of Al by identifying innovative
business opportunities in key processes and functions. Grace Al Platform and the
AlaaS portfolio are the company’s main assets. The Grace platform is built for both
organizations at the beginning of their Al and ML journey and organizations that
have already established a data science team but are looking for ways to infuse
continuous intelligence into their business.

Grace Al aims to provide any organization access to Al implementation, includ-
ing automated documentation, validation, and certification through data exploration,
Al development, deployment, and operation.

PTC Inc. PTC Inc.’ is a software and services company founded in 1985, based
in Boston. It offers a range of products and services that support innovation and
Industry 4.0. It is a platform for developing IoT and Augmented Reality (AR)
solutions. PTC Marketplace is a digital space where customers and partners can
access IoT apps, market-ready solutions, and innovative technologies. PTC has
made recent enhancements to its marketplace, making it easier for solution builders
to find market-ready solutions and customized accelerators. It also provides a
platform for PTC partners to showcase their technologies, solutions, services, and
industry expertise to customers and prospects.

The platform offers a rich set of capabilities that enable solutions for design, man-
ufacturing, service, and industrial operations and incorporates modular functionality
that simplifies development. These include pre-built applications for the fast, easy
implementation of Industrial Internet of Things (IloT) solutions for common use
cases in various industries.

3 KITT4SME: A Platform Delivering Al to SMEs

The KITT4SME project aims to provide Al solutions to SMEs in the manufacturing
domain through a five-step workflow. This workflow consists of interconnected
activities designed to facilitate the adoption of Al technologies on the shop floor.
The activities are detailed as follows:

6 https://2021.ai/offerings/grace-ai-platform/.
7 https://www.ptc.com/.
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* Diagnose: In this step, the KITT4ASME platform utilizes a smart questionnaire
to identify how Al can be beneficial in transitioning the shop floor. The
questionnaire helps assess the specific needs and challenges of the SMEs,
enabling a better understanding of where Al technologies can be applied
effectively.

* Compose: The platform recommends a minimal set of Al tools from a market-
place catalog based on the diagnosis obtained in the previous step. It considers
the unique requirements and constraints of each SME, aiming to maximize
the benefits derived from the Al technologies. The platform provides guidance
on the wiring and configuration of these Al tools, ensuring their seamless
integration into the existing workflow.

» Sense: This activity focuses on establishing the connection between the shop
floor and the cloud platform. By enabling this connection, new data become
available to Al services. The KITT4ASME platform provides a tailor-made kit
that can output insights about the status of the shop floor (e.g., to detect and
explain anomalies). Additionally, it offers visualization of Key Performance
Indicators (KPIs), allowing SMEs to gain valuable insights into their operations.

e Intervene: In this step, the platform suggests corrective actions to address
ongoing issues and anomalies identified on the shop floor. Leveraging the
power of Al, the platform provides recommendations for resolving problems
and improving the overall performance of the manufacturing processes.

* Evolve: The final step involves analyzing the outcomes and feedback generated
from the previous steps. The platform uses this information to continuously
improve the Diagnose and Compose steps. It also provides personalized staff
training recommendations to further enhance the adoption and utilization of Al
technologies within the SME.

The underlying concepts of the KITT4SME platform revolve around understand-
ing the specific needs of SMEs, recommending tailored Al solutions, establishing
seamless connections between the shop floor and the cloud platform, providing real-
time analyses and KPI visualization, offering intervention recommendations, and
continuously improving the overall workflow based on feedback and outcomes.

By following this five-step workflow, the KITT4SME platform aims to empower
SMEs in the manufacturing domain to harness the potential of Al technologies,
enhance their operational efficiency, and drive growth and innovation in their
businesses. This section reports on the basic concepts underlying the platform and
explains its main functionalities.

3.1 High-Level Concept and Architecture

The KITT4SME architecture is designed to address the challenges associated with
deploying and utilizing AI models developed by data scientists or Al developers in
SMEs. One of the key challenges is the discrepancy between the pace of Al model
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Fig. 1 KITT4SME platform three-tier architecture

development and the capabilities of SMEs’ IT systems. This often leads to situations
where models are not deployed or where the deployment and update process is time-
consuming.

To tackle these challenges, KITT4SME proposes a conceptual pipeline consist-
ing of six steps, which cover the process from data preparation to the practical use
of the model. The steps (presented in Fig. 1) are as follows:

1. Prepare data: This step involves collecting and preparing the data required for
training the Al model. It includes tasks such as data cleaning, transformation,
and feature engineering to ensure the data are suitable for model development.

2. Develop the model: In this step, Al researchers and developers focus on building
and training the AI model using the prepared data. This is where the core value
of the Al solution is generated.

3. Package the model: Once the model is developed, it needs to be packaged in
a way that it can be easily deployed and integrated into the existing systems
of the SME. Packaging involves encapsulating the model and its associated
dependencies into a deployable form.

4. Validate the model: Before deployment, it is crucial to validate the model to
ensure its accuracy, reliability, and suitability for the intended use. Validation
may involve testing the model’s performance on a separate dataset or using
techniques like cross-validation.



94 V. Cutrona et al.

5. Deploy the model: This step focuses on deploying the validated model into
the SME’s IT infrastructure. It involves integrating the model with the existing
systems, ensuring compatibility, and addressing any technical requirements or
constraints.

6. Use the model: The final step is when the SME can actively utilize the deployed
model in its operations. This includes making predictions, generating insights,
and incorporating the model’s outputs into decision-making processes.

The three intermediate steps, namely packaging, validating, and deploying the
model, are often complex and time-consuming. KITT4ASME aims to simplify and
automate these steps, reducing the overall time and effort required to deploy and
update the Al model. By streamlining these processes, the platform enhances the
repeatability and efficiency of the entire pipeline, making it easier for SMEs to
leverage Al technologies effectively.

The software platform implementing the KITT4SME workflow is based on a
service mesh, multi-tenant cloud architecture. It provides a means to assemble
various Al components from a marketplace and facilitates their connection to the
shop floor while ensuring interoperability, security, and privacy-preserving data
exchange. The platform consists of loosely coupled web services running in a
cluster environment and relies on a dedicated cluster software infrastructure. Several
key concepts and guiding principles underpin the architecture of the KITT4SME
platform:

* Leveraging state-of-the-art technology and standards: The platform utilizes a
dedicated cluster software infrastructure, referred to as mesh infrastructure.
This infrastructure is built on industry-standard technologies such as Kuber-
netes® and Istio?. The platform reuses open communication and data standards
as much as possible to foster service interoperability (e.g., REST principles for
services interaction and NGSI standard for data exchange).

* Platform services: The platform comprises two types of services: application
services, which are integral to the KITT4SME workflow and provide the func-
tionality required for the platform’s core activities, and infrastructure services,
which consist of a network of intermediaries within the mesh infrastructure.
These intermediaries handle essential operational aspects such as routing,
security, and monitoring. By separating these concerns, Al developers can focus
on implementing service-specific features while relying on the platform for
operational support.

* Multi-tenancy: The platform is designed to support multiple SMEs sharing the
same instance. Each company is associated with a security protection domain,
referred to as a renant, which isolates its data and users from other tenants.
The platform also allows for explicit sharing policies that enable companies to
selectively share data and resources if desired.

8 https://kubernetes.io/.
? https://istio.io/.
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* Containerized deployment and orchestration: The platform adopts a container-
based virtualization approach for service deployment and orchestration. Ser-
vices are packaged and executed within containers, enabling independent
development using appropriate technology stacks. This containerization allows
for the decoupling of services and facilitates their independent deployment,
potentially through automated release processes such as Continuous Integration
(CD) and Continuous Delivery (CD).

By adhering to these principles and utilizing modern technologies, the
KITT4SME platform ensures efficient and scalable execution of the AI workflow.
It promotes service interoperability, simplifies deployment and management, and
provides a secure and isolated environment for SMEs to leverage Al capabilities
within their manufacturing processes. The KITT4SME high-level architecture
provides the ecosystem enabling the streamlined Al packaging, validation, and
deployment while also fostering and facilitating the composability and integration
of Al solutions.

As depicted in Fig. 1, the architecture is organized into a three-tier structure on
top of the hardware layer. Each layer comes with a set of components dealing with
certain operational functionalities, as follows:

1. Mesh Infrastructure Layer: This layer, depicted as “mesh infra” in Fig. 1,
is responsible for managing computational resources, network proxies, and
interconnection networks. It utilizes Kubernetes for containerized workloads
and services, while Istio acts as a service mesh for traffic management,
observability, and security. The tasks performed by the mesh infrastructure layer
include:

* Managing computational resources (e.g., CPU, memory, storage) and
allocating them to processes in the upper layers, acting as the Cluster
Orchestration Plane

* Handling the network of proxies for transparent routing, load balancing,
and securing communication, which represents the Control Plane

* Managing proxies and interconnection networks for capturing and process-
ing application traffic, serving as the Data Plane of the mesh infrastructure

2. Platform Services Infrastructure Layer: This layer, labeled as “plat infra
services” in Fig. 1, comprises processes that support the operation of appli-
cation services in the upper layer. It includes components such as IoT sensor
connectors, context brokers, databases, and software for creating dashboards
and visualizations. These components rely on well-known software and IoT
middlewares like FIWARE [10]. Each component exposes interfaces for use by
higher layers while utilizing the lower layer for interconnection.

3. Application Layer: This layer, represented as “apps” in Fig. 1, hosts services and
components that provide functionality to the manufacturing SME. Examples
include anomaly detection, data augmentation components, and dashboards.
The application layer focuses on application-specific concerns while leveraging
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the security, traceability, scalability, integration, and communication mecha-
nisms provided by the lower layers.

Additionally, the KITT4SME platform benefits from its connection to an applica-
tion marketplace. This marketplace, facilitated by discovery solutions like adaptive
questionnaires, enables the identification of new applications and components,
supporting the Compose activity in the KITTASME workflow. A detailed description
of the components and their functionality in each layer is provided in Sect. 3.2.

3.2 Functionalities and Component Description

Pursuing the idea of an open-source platform for the uptake of Al solutions in
manufacturing SME, KITT4SME has chosen FIWARE!? as the underlying open-
source platform for its Al solutions in manufacturing SMEs. FIWARE is renowned
as a top-quality open-source platform for IoT [10]. By leveraging FIWARE, the
KITT4SME platform, branded as ‘“Powered by FIWARE,” inherits a range of
capabilities that are beneficial for managing context information and data in the
manufacturing domain. These capabilities include:

* Handling and managing context information: The KITT4SME platform can
efficiently handle and manage context information from diverse data sources.
This allows for the collection and aggregation of data from various sensors,
machines, and other sources in the manufacturing environment.

* Distributing and streaming data: The platform is equipped with mechanisms
for distributing and streaming data to external components. This enables the
seamless transfer of data to external systems for various purposes, such as
persistence or Al-based processing.

e Integration with Al-based processing: The KITTASME platform can integrate
with Al-based processing components, leveraging the capabilities of FIWARE.
This integration facilitates the application of Al algorithms and techniques to
analyze and derive insights from manufacturing data. The results obtained from
Al processing can be seamlessly integrated back into the platform, enriching
the current context and enabling data-driven decision-making.

Overall, by utilizing FIWARE as the foundation, the KITT4SME platform gains
powerful tools and features that are instrumental in the management of IoT data and
seamless integration of Al-based processing capabilities. Figure 2 depicts the logical
architecture of the platform, illustrating the hierarchical layout in which intelligent
services and Al applications are placed on top of the FIWARE ecosystem. In the
subsequent discussion, we present a comprehensive overview of the platform’s
functionalities, accentuating the advantages derived from harnessing FIWARE as
the bedrock of its technological infrastructure.

10 htps://www.fiware.org/.
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Data Gathering The data gathering aspect of the KITT4SME architecture encom-
passes the collection of data from diverse devices, situated at the lowest layer of
the architecture (as depicted in Fig. 2). These devices, deployed within the factory,
serve to enrich the system’s knowledge base with both raw and preprocessed data.
The following categories of devices contribute to the data gathering process:

Wearable Sensors: These sensors are specifically designed to monitor the health
and well-being of workers within the factory setting. They provide valuable
insights into various physiological parameters and indicators.

Environmental Sensors: Scattered throughout the factory, environmental sensors
play a vital role in monitoring and capturing data related to the prevailing
environmental conditions. This includes parameters such as air pollution levels,
temperature, and humidity.

CPSs: The architecture also incorporates CPSs, with a particular emphasis on
those commonly involved in the manufacturing processes, such as machining
equipment and collaborative robots. These CPSs facilitate the capture of
relevant data pertaining to the operational aspects of the production line.
Information Systems: Information systems represent a valuable source of raw
and value-added data, which contribute to update the contextual information of
the platform also with aggregated data.

Cameras and IoT sensors: Together with environmental sensors, cameras and
IoT sensors are needed to monitor the production, usually requiring a real-time
processing to extract valuable knowledge from data streams.

Communication Interfaces In the subsequent layer, the FIWARE framework
encompasses a collection of Generic Enablers (GEs) that serve as interfaces between
devices, enabling the retrieval of contextual information and the initiation of
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actuations in response to context updates. Examples of FIWARE GEs available in
the catalog'! include:

e Connectors and IoT agents: These modules facilitate the interaction with
devices utilizing widely adopted IoT protocols, including LWM?2M over CoaP,
OneM2M, and OPC-UA. It provides a standardized approach to interface and
communicate with diverse IoT devices. Also, connector supporting FAST Real-
Time Publish—Subscribe (RTPS) for efficient and real-time processing of data
streams is provided, based on the ROS 2 [12] framework.

* Real-Time Media Processing: These GEs are designed to support real-time
processing and manipulation of media streams (e.g., to transform video cameras
into sensor-like devices) to extract valuable information from visual data
streams.

Data Broker In the layer above, the FIWARE Orion Context Broker represents
the fundamental component of any solution powered by FIWARE. This context
broker facilitates the decentralized and scalable management of context information,
allowing data to be accessed through a RESTful API. Serving as the authoritative
source of information, the Context Broker stores the latest update status of all
devices, components, and processes that contribute data to the platform.

However, for the purpose of training and fine-tuning Al tools, it is often necessary
to access historical data. To address this requirement, FIWARE offers dedicated GEs
called QuantumLeap that automatically generate time series data from the evolving
context information, enabling Al tools to leverage the valuable insights gained from
historical data analysis.

Smart Industry Management Services The topmost layer of the architecture
encompasses analytical services and profilers that leverage the knowledge base
within the system. These services include Big Data applications and components
utilizing Al-based detection and optimization tools. It is in this layer that Al
developers and researchers can greatly benefit from the historical data and up-to-
date context information made available by the Powered by FIWARE platform.
Additionally, the KITTASME architecture incorporates utility components in this
layer to extract additional knowledge from persistent information and provide
insights to human actors regarding the factory’s status. These components include:

* Human Description Database, which stores a comprehensive representation of
factory workers derived from physiological parameters, worker information,
machine parameters, and environmental data

* External IDS Connector, a component from the IDSA reference architecture'?
that ensures a trustworthy interface between internal data sources and external
data consumers. This connector plays a critical role in enabling the integration

1 https://www.fiware.org/catalogue/.
12 https://docs.internationaldataspaces.org/ids-ram-4/.
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of external value-added services, where data exchange is governed by IDS
policies

The outputs of analytical models, such as anomaly detection, can be fed back
into the FIWARE Context Broker. This triggers decision-making mechanisms,
whose logic can be modeled and managed during execution by decision support
systems, such as the Manufacturing Process Management System (MPMS). The
activation processes of the platform can involve human-in-the-loop interactions,
such as collective intelligence, or rely on behavioral updates for groups of involved
CPS:s. The decisions thus triggered must be identified by IDAS IoT Agents through
the FIWARE Context Broker to effectively enable feedback to the CPSs.

Marketplace and Identity Management and Access Control To facilitate the
widespread adoption of Al applications and enhance their discoverability, the
KITT4SME platform leverages an existing marketplace called Robotics and
Automation MarketPlace (RAMP). RAMP enables the Software as a Service (SaaS)
provision of these applications, making them easily accessible to users. By
incorporating FIWARE-compatible equipment (e.g., robots, machines, sensors)
on the production floor, businesses can directly utilize the various tools offered by
KITT4SME without the need for complex software deployments and extensive IT
expertise. This allows manufacturing SMEs to focus on their core business activities
and adds value to their operations.

Furthermore, the distributed nature of the architecture promotes collaborative
usage of tools and production data between manufacturing SMEs and technology
providers. It facilitates online co-creation and minimizes the necessity for contin-
uous on-site inspections and system installations. Access to platform resources is
facilitated by an IDentity Management and Access Control (IDM) GE. This IDM
GE provides robust support for secure and private OAuth2-based authentication of
users and devices. It also offers features such as user profile management, privacy-
preserving handling of personal data, Single Sign-On (SSO), and Identity Federation
across multiple administrative domains. These capabilities ensure secure access to
the platform’s resources while maintaining user privacy and data protection.

4 KITT4SME to Bring Al to an Injection Molding Use Case

The KITT4SME platform has been applied in 4 use cases within the KITT4ASME
project and 18 external demonstrators made via Open Calls.'3

In this section, we discuss how the KITT4SME platform has been exploited to
create an Al kit supporting one of the internal use cases. This use case is from
the injection molding industry, and it aims at facilitating an assembly task mainly
composed of screwdriving operations. The assembly task starts with a molding

13 https://kitt4sme.eu/open-call/.
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Fig. 3 The KITT4SME solution for the use case in the injection molding sector

press producing a molded piece every 90 seconds. Then, the task foresees a gantry
robot that automatically extracts the molded piece from the injection molding
machine and places it onto a conveyor belt. Subsequently, a human operator works
at a designated workstation to perform the assembly operations while also being
responsible for periodic quality checks on the molded pieces or quick maintenance
operations on the injection molding machine.

The KITT4SME platform has introduced an Al solution to mitigate workers’
physical stress caused by heavy workloads and the injection molding machine’s
demanding pace during operations. In particular, the use case relies on the concept of
human digital twin [13]. A dynamic task assignment between the collaborative robot
and the operator is performed by creating a digital representation of the operator and
the production system.

The Kit used for this use case, represented with its whole architecture in Fig. 3,
includes:

* Sensing Layer: This module supports the collection and use of IoT sensor data
to be used by data analysis and decision-making modules to take decisions or to
be visualized on dashboards. It provides a solution including the interoperability
elements (APIs and broker client) for bidirectional data exchange between
sensors and the KITT4SME’s Orion Context Broker. Data are also preprocessed
if needed.

* Fatigue Monitoring System: It is an Al model that estimates the perceived
fatigue of the workers based on physiological data (e.g., heart rate) from
wearable devices and on quasi-static characteristics (e.g., age). The estimation
is made using physiological data collected from wearable devices selected
by applying an Analytic Hierarchy Process (AHP)-based methodology [14]
and operator’s characteristics, including age, sex, handedness, exercise/healthy
habits, and routines, collected via interviews.

* Intervention Manager: It monitors the real-time status of the worker—factory
ecosystem, elaborating data from sensors, machines, workers monitoring sys-
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tems, and ERP, and it knows what interventions can be applied and which are
the rules to decide which is the best one given a particular situation. It applies
Al models specifically developed to support decision-making.

The kit has been deployed to the platform to support the task assignment in a
screwdriving process in the following process:

1. The operator retrieves two molded parts from a conveyor belt and positions them
on the working bench.

2. The operator inserts six nuts into each part, flips one part, and places it on top of

the other.

The operator positions nine screws on one side of the assembled parts.

4. The Intervention Manager assigns each screw to the operator or the cobot.
The operator and a cobot simultaneously perform the screwdriving process.
Depending on the number of screws assigned to the operator, they may also
engage in other support activities, such as monitoring other machines, conducting
short maintenance operations, or removing the pallet.

5. The operator flips the assembled parts and repeats steps 3 and 4.

6. The assembled parts are stacked on a pallet.

(O8]

The task assignment, performed by the Intervention Manager and confirmed by
the operator, consists of the allocation of the screwing operations (9x2 for each
assembled part), and it is made considering the following parameters:

 Current perceived fatigue of the operator as estimated by the Fatigue Monitoring
System.

* Work In Progress level.

» Cobot state (idle, current operation, and error).

Discussion The above use case exemplifies how the KITT4SME platform can actu-
ally ease Al adoption by SMEs, compared to other platforms in the Al ecosystems.
Indeed, compared to platforms to develop Al solutions, the SME from the use case
did not spend any effort on developing Al, given that they exploited the existing
application available on the platform. Also, the platform helped the company
compose the best kit to solve a real need, i.e., to facilitate an assembly task mainly
composed of screwdriving operations. The proposed kit already included all the
components needed to be implemented in the factory, i.e., data acquisition (Sensing
Layer), Al solution to derive data-driven knowledge (Fatigue Monitoring System),
and a reasoning engine (Intervention Manager), relieving the company from extra
development activities needed to connect the shop floor to the platform. Instead,
by considering platforms providing already developed applications, a similar use
case has been successfully tested in a laboratory environment [15], exploiting a
different IIoT platform [16]. This kind of platform enables the handling of third-
party applications, with no guarantees about the interoperability of components
in terms of application interfaces and data models, which are covered within the
KITT4SME platform by the FIWARE components. Also, while this kind of platform
comes with a ready-to-use solution, integrating and deploying such solutions is
often a burden solely on the developers. Again, the KITT4SME platform offers a
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distinct advantage since it effortlessly facilitated the integration and deployment of
three distinct modules, two of which leverage Al, resulting in a smooth and reliable
operation.

5 Conclusion

In this chapter, we discussed the potential of AI solutions in increasing the
profitability of SMEs (e.g., by improving product quality or optimizing production
line configurations), and we presented a new platform, namely the KITT4ASME
platform, intended to deliver affordable, tailor-made Al kits to the manufacturing
industry. The cloud platform presented in this chapter supports the KITT4ASME
workflow by relying on widely adopted platforms, e.g., FIWARE, in such a way
to ease the development of new Al services, as well as their deployment in real
industrial settings.

Specifically, the platform is capable of composing Al components from a
marketplace (i.e., the RAMP marketplace) into a tailor-made service offering for
a factory, a functionality that is not provided by any of the existing Al platforms.
Once the factory shop floor is connected to the Al services, the platform enables data
storage and exchange in an interoperable, secure, privacy-preserving, and scalable
way. The architecture has been designed by leveraging state-of-the-art technology
and standards, reusing open-source software and technologies whenever possible,
thus promoting both its adoption by small manufacturing companies on a budget and
further extensions by other researchers and practitioners in the reference community.
The exploitation of the platform has been demonstrated with real-world use cases,
which have been conducted as part of the KITT4ASME project thanks to a platform
prototype publicly available in the KITT4SME online repository.'

Future work will be focused on further increasing the interoperability of platform
services, also relying on semantic data interoperability, to better define the com-
posability of different AI components, possibly available in different marketplaces,
enabling cross-platform service composition.
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Multisided Business Model for Platform )
Offering Al Services St

Krzysztof Ejsmont (), Bartlomiej Gladysz (), Natalia Roczon,
Andrea Bettoni (), Zeki Mert Barut, Rodolfo Haber ), and Elena Minisci

1 Introduction

Platform businesses have become one of the latest research topics in various
management disciplines [10]. A platform is an interface that facilitates interac-
tions between different parties, usually complementors and customers [9]. In the
platform business, the platforms and their complementors have a strong one-way
complementarity, where the total value of the platform and its complementors is
more than the sum of the two combined [18], and this complementarity requires the
interdependencies between the platforms and the complementarities to be managed
in an ecosystem level.

There are two basic types of platforms: innovation platforms (as an intermediary
for direct exchange or transactions) and transaction platforms (as a technological
foundation upon which other firms develop complementary innovations). Some
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companies combine the features of the two and create “hybrid platforms” [13]. Mul-
tisided platforms (MSPs) allow direct interactions between two or more different
entities, where each entity is associated with the platform [17]. Examples of well-
known MSPs include Facebook, Uber, PayPal, Airbnb, Alibaba, eBay. The growing
interest in MSPs is due to two key factors: their essential role in minimizing the
transaction costs between sides [15] and the power of the business models (BM)
in the digital economy because of their ability to adapt and cope with complexity,
rapid scaling, and value capture [1]. Although many companies are opting for MSP
BMs, only a few have been successful. MSPs should strive to attract users and must
achieve direct and indirect network effects to be successful. More importantly, they
ought to solve the chicken-or-egg problem, which refers to a network effect meaning
“one side of the market realizes the value only if another side is fully engaged” [13].

2 Methodologies for MSPs Business Modeling

The pioneering models of MSPs were introduced by Armstrong, Valillaud and
Jullien, Parker and Van Alstyne, Rochet and Tirol, as described in more detail in
Hagiu and Wright [17]. Allweins et al. [2] proposed a Business Model Canvas [21]
to illustrate the MSP businesses. As a result, the cited paper proposed Platform
Canvas. The focus of this study was not on the definition of individual entities
(having different value propositions) but on the modeling of MSPs’ business
transactions. For this purpose, only methodologies dedicated to MSPs’ business
models were considered. The Business Model Kit is proposed by the Board of
Innovation.! It consists of 16 blocks filled with details on various stakeholders
and value propositions, resulting in a marketing tool for communicating the BM
to different entities. Leanstack? offers a Lean Canvas, adjusted from the Business
Model Canvas, with procedures to complete the nine blocks starting with problem
definition, modeling customer segments, and finally, the derived unique value
proposition. Lean Canvas introduces a phase of finding the solution, identifying
channels to reach customer segments, estimating revenue and cost structure, and
defining crucial metrics and unfair advantages.

Most papers develop analytical models focusing on a specific characteristic
of the MSPs business model, such as pricing structure, network externalities, or
competition (i.e., [3, 6, 14, 16]), while a holistic approach to building a business
model for MSPs is lacking. Therefore, a methodology that seems to meet the
expectations of MSPs in the context of business model development is the Platform
Design Toolkit (PDT). This methodology is the first codified platform design
method, released in 2013.3 The PDT was developed by a team led by S. Cicero

U https://www.boardofinnovation.com/tools/business-model-kit/
2 https://leanstack.com/lean-canvas
3 https://www.boundaryless.io/pdt-toolkit/
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to provide companies with support in describing the platform’s vision, the core
and ancillary value propositions, the platform’s infrastructure and core components,
and the characteristics of the platform ecosystem expressed through transaction
dynamics [5, 11]. It was optimized to support the development of multisided,
transformative platform strategies to empower ecosystems to create shared value.
It is an open-source method adopted worldwide by global Fortune 500 leaders,
leading institutions, start-ups, and scale-ups. The PDT covers all stages, from
exploration to design, validation, and growth. The core of the PDT methodology
in developing a business model is the design stage: an extensive and proven step-
by-step process that helps move from contextualizing entities in the ecosystem, their
role and relationships, detailing possible transactions between entities, to designing
the platform experience.

PDT, in the design stage, contains eight templates (canvases) to be completed,
considering as many aspects of the business. The steps are as follows:

1. Mapping the ecosystem: entities present in the ecosystem are mapped onto the
canvas, allowing us to understand the role they may play and identify possible
clusters.

2. Portraying ecosystem’s entities roles: a coherent and deep picture of the role of
each of the entities identified in step 1 is created by defining what their context
is, what they want to achieve, with whom and how they want to integrate, what
potential they can represent and what kind of experience gains they are looking
for, and what the platform shaper can provide them with.

3. Analyzing the potential to exchange value: using the so-called “ecosystem’s
motivation matrix,” entities’ potential to exchange value flows is analyzed. This
is a mapping of what type of value exchange is already being performed (or
attempted to be performed) by the entities and what additional value they could
exchange if adequately enabled.

4. Choosing the core relationships you want to focus on: the platform shaper needs
to identify which entities in the ecosystem they want to focus on and which
relationships will form the core of the platform design.

5. Identifying the elementary transactions: the “transaction board” tool is used to
map how the ecosystem currently exchanges value (focusing on the entities and
relationships prioritized in step 4) and how the platform’s strategy is to help them
make value transactions more manageable, faster, and cheaper by providing and
curating channels and contexts that increase the likelihood of interactions and
transactions.

6. Designing the learning engine: through the “learning engine canvas,” a step-
by-step process has been designed to support/enable services that will support
entities to adopt the platform strategy. These services will not only help them
evolve and become better producers and consumers but also radically evolve and
discover new opportunities and behaviors that were not initially intended.

7. Assembling the platform experiences: with the “platform experience canvas,”
the elements emerged from the transaction board (step 5) and those from the
learning engine canvas (step 6) are combined to create an experience persistence
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model that summarizes the key value propositions arising from the strategy being
developed. This allows consideration of what resources and components need to
be put in place and managed to deliver these experiences and derive value from
them.

8. Setting up the minimum viable platform (MVP): this allows us to test in the
natural environment (market) whether the design assumptions are suitable for
the future. By analyzing design products, in particular the compiled “platform
experience canvases” (step 7), the riskiest assumptions of the strategy are iso-
lated, as well as experiments and indicators to validate them with the ecosystem
are identified.

The resulting business model is then summarized in the platform design canvas,
which is the final output of this reference methodology. According to the author’s
knowledge and experience, by far, the most essential element of business models for
MSPs is to identify the value that can be transferred to the different entities through
the platform [12]. Taking this into account, it was decided to focus on the first five
steps of the PDT methodology.

3 Application of PDT for the Design of AI Platform as
a Service Business Model — KITT4SME Case Study

3.1 Introduction to the KITT4SME Project

KITT4SME (platform-enabled KITs of arTificial intelligence FOR an easy uptake
by SMEs) is a Horizon 2020 project (GA 952119). It is explicitly aimed at
European SMEs and mid-caps to provide them with scope-tailored and industry-
ready hardware, software, and organizational bundles, delivered as modularly
customizable digital platform that seamlessly introduce Al into their production
systems.*

Among the main objectives of the KITTASME project that need to be included
in the business model are [20]:

* to provide SMEs with ready-to-use, customized digital packages to harness the
capabilities of Al at an affordable price and a proper scale,

* seamlessly combine Al and human problem-solving expertise (know-how) into
a single digital platform with unparalleled shop floor orchestration capabilities,
and

» expanding the local ecosystem offerings so that entities with different competen-
cies can grow by collaborating on customizable Al kits.

4 https:/Kitt4sme.eu/
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3.2 Needs Elicitation

The process of creating a BM for Al platform as a service was initiated by
identifying the main stakeholders (manufacturing SMEs, Al developers, DIHs) and
their needs. The needs elicitation process was conducted by adhering to iterative
stakeholder engagement based on interviews and workshops, as proposed by Azade-
gan et al. [4] and confirmed by Bettoni et al. [8]. To identify needs/expectations,
29 interviews were conducted with samples of different types of stakeholders. Al
developers (13 respondents) and SMEs (10 respondents) are the most represented
entities [7], as they will be the primary and direct users of the KITT4SME platform
(supply and demand side). Entities of different sizes, from different EU countries,
and with different scopes of activity (from national to global) were involved (for
more details about this analysis, see [19]).
The following needs were identified:

* modularity of solutions,

* the possibility of integrating implemented Al solutions with already existing
ones,

* increased data transparency and traceability,

* identification of hidden problems to improve processes,

* defining solutions to the identified problems,

» personalizing the platform, allowing to tailor solutions to individual needs,

* matching potential partners,

* access to multilevel knowledge transfer,

» simplified Al implementation algorithms,

* generalization of implementation middleware,

* integration of modules to facilitate deployments,

 ability to integrate with low-digitized infrastructure,

* introduction of preventive maintenance,

* improved analytics and a better understanding of customer behavior and purchase
decisions, and

» personalization of actions in real-time.

3.3 KITT4SME Business Model

The first step in developing the KITT4SME platform BM consisted of identifying
the crucial entities that will form the platform ecosystem and have a significant
impact (direct or indirect) on the functioning of the platform. These entities have
been mapped into a unique canvas, as shown in Fig. 1.

The idea behind the canvas is to divide the entities in the ecosystem into three
main groups: impact entities (platform owners, external stakeholders) — they are
not involved in the continuous interactions happening in the ecosystem; demand
entities (peer consumers) — they are interested in “consuming” the value produced



110 K. Ejsmont et al.

THE KITT4SME ECOSYSTEM CANVAS
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Manufacturing SMEs
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Fig. 1 KITT4SME ecosystem canvas (step 1) 4 core relationships (step 4)

in the ecosystem; supply entities (partners, peer producers) — they are interested in
“producing” the value consumed in the ecosystem.

Considering a single entity, its position in this framework may vary. For example,
an Al developer (peer producer) may become a partner after a certain period of
time if it provides many Al solutions and takes an active part in the development
of the platform. An entity may also have a dual role, as access to the platform may
create new opportunities: a company initially interested in offering its products (peer
producer) may later be interested in using its belonging to the ecosystem to seek
ideas for improving manufacturing processes in SMEs (peer consumer).

In the second step, the aim is to develop a portrait of the leading entities accessing
the platform from both the demand and supply sides. It should be noted that this
second step aims to map what the entities are currently looking for rather than what
the idea behind the platform service is. Thus, it is possibly better to characterize the
value from their point of view. In the KITT4SME ecosystem, six different entities
have been identified (Fig. 1). Figure 2 shows a portrait of Al developers, as they
appear to be the most important in the initial lifecycle of the platform — they will
be responsible for delivering Al solutions/services that can be transacted. Similarly,
portraits should be taken for all other identified entities.

The ecosystem motivation matrix (step 3) maps the values exchanged between
pairs of entities through the KITT4SME platform. Money is undoubtedly exchanged
as a consequence of interactions through the platform, but even more important for
shaping the KITT4SME BM is the identification of intangible values resulting from
the opportunities the platform brings. The matrix shown in Fig. 3 details the central
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Fig. 3 KITT4SME ecosystem motivation matrix (step 3)

values exchanged between peer consumers (PC), peer producers (PP), and partners
(Pa) — previously mapped in the ecosystem canvas (Fig. 1). The cells report what the
entity in the first column from the left can “give to” the entities on the upper axis.
The goal of the fourth step is to decide which subset of relationships to focus
on to ensure that enough attention is paid to defining and implementing the core
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experience. The value flows identified in the ecosystem motivation matrix (Fig.
3) were transferred to the ecosystem map (Fig. 1). Figure 1 shows the division
of relationships into those relating to resource sharing (brown lines) and those
supporting Al solution implementation (blue lines). In the first case, entities contact
each other to share resources. Manufacturing SME:s in this context seek dedicated
Al solutions to develop and improve their production capabilities. The remaining
entities, i.e., Al developers, cloud providers and platform components providers,
are identified as suppliers and partners, offering their knowledge, expertise, and
Al solutions through the platform. Supporting Al solution implementation is a
relationship that involves entities seeking to collaborate on creating and improving
Al solutions.

The identification of the underlying transactions and channels serves to illustrate
how the ecosystem exchanges value (step 5) and highlights the role of the
KITT4SME platform as an intermediary in this process. Most of the interactions
take place through the platform itself, which creates value from the exchange
of information, while the three interactions involving the exchange of software
(AI solution/module), Al service (e.g., support to solving problems using Al,
implementation Al solution, consultation), and payment are realized outside the
platform.

The transaction matrix helps analyze the relationship between the demand side
(entity 1) and supply side (entity 2). It helps identify all transactions/interactions and
their channels that are already taking place or may take place. In addition, for each
transaction/interaction is assigned what is the unit of value. One of the key roles of
the platform (owner) is to create channels that can reduce coordination/transaction
costs.

The transaction matrix (Table 1) confirms that the KITT4SME platform is the
main channel of interaction and, to be successful during each interaction, the
exchange of information must add value for the stakeholders. A crucial role of the
platform is to participate in the facilitation of the communication process actively
and the interaction between stakeholders, thereby reducing transaction costs and
facilitating transactions.

3.4 Business Model Design Canvas

The analyses conducted in the previous chapters were finally aggregated into the
platform design canvas and structured as follows:

* Enabling services (platform to partners): focused on helping partners gener-
ate/create value from their assets and capabilities, access to potential consumers,
increasing competitiveness and visibility, and decisively improving as profes-
sional entities (reputation). For KITT4SME, these are designed services to
facilitate the implementation of technical specifications and core service stan-
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dards for Al developers providing solutions for KITT4SME and disseminating
KITT4SME in the Al field.

* Empowering services (platform to peer producers): aimed at helping peer
producers start executing transactions, improve their capabilities, improve on
the platform, and enter the development stage (growth phase). The KITT4ASME
platform aims to support the development of EU-compliant applications, mod-
ules and services for Al solutions through dedicated consulting, training, success
stories, and best practices.

e Other services (platform to peer consumers): there are many cases in which
platforms provide more classical industrialized services to users. They are com-
plementary to the value exchanged, experiences provided by the ecosystem, and
they provide powerful, robust usability for the individual user. Like empowering
services, support and training will also be provided for those consumers who
intend to use other Al platforms or switch to solutions offered by other Al
vendors.

* Core value proposition: stands for the core value that the platform is trying to
create for the main purpose of its operation. It usually targets consumers, as they
usually represent the broadest market segment of peers and are the customers
who buy products or services. Particularly, in dynamic market networks and in
more niche contexts, where transaction value is higher and transaction volume is
lower, partners or peer producers may be the basic recipients of the core value
proposition.

* Ancillary value propositions: these are ancillary values offered by the platform.
Ancillary value propositions can be aimed at the same market segment as the
core value proposition or at others. It is common for MSPs to supplement the
core value proposition for the demand side of the platform (manufacturing SMEs)
with a proposition aimed at the supply side (Al developers, know-how providers).
KITT4SME provides an entire environment (infrastructure) that enables not
only real interaction between entities in a multisided ecosystem but also the
resources necessary to increase their visibility in the Al field. Ancillary value
propositions for the KITT4SME platform could be SME issues assessment,
modules combination and kit composition, kit deployment and maintenance,
shop floor data acquisition, extraction, synthetization and reporting of data,
generation of real-time interventions, workforce assessment and upskilling, best
practices, and knowledge creation. Most of them can be assigned dedicated
assistance, and these services can be the basis of the membership fee. Advertising
services can also be considered as ancillary values. With the development of the
platform, the growth of the number of users and increasing platform reach —
it will be possible to provide advertising services to interested entities (e.g.,
advertising Al services), which may be the basis of advertiser fees.

At the beginning of the platform’s life, the platform will charge mostly
transaction fees for the transfer of Al solutions and apply membership fees
only for some services while the rest will be offered for free. In the future,
when a critical mass of consumers is reached, the platform will charge mostly
membership fees.
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* Infrastructure and core components: these are assets owned and controlled by
the platform owner. They are managed according to the platform’s governance
rules. Assets can be tangible (e.g., server or venue) or intangible (e.g., common
standard — FIWARE). They guarantee the platform’s operation and use by the
ecosystem. KITT4SME identifies the critical elements of the platform’s IT
environment as the core components of the platform BM, namely the Al module
standards, protocols, the standard enablers (CPS-izers, runtime), codes, and the
functionalities and channels that enable its dissemination (such as RAMP).

» Transactions: are part of a more complex “experience.” They should be under-
stood as a sub-activity during which value is created, delivered, exchanged, or
transferred between typically two (or more) platform users. KITT4ASME assumes
two main types of transactions: the first is intangibles (information), which the
platform completes by providing it through the systems typically used in such
kinds of platforms; the second is monetary and related to Al services that are
exchanged through the platform (Al solutions, applications, modules, services,
runtime).

* Channels and contexts: enable exchanges within the platform and are the
platform’s interface with users. Channels are user touch points that play an
essential role in the user experience. They are crucial in creating added value:
they should be actively created and continuously improved by the platform
owner. The marketplace should be considered the principal channel provided
by the KITT4SME ecosystem, where Al solutions, applications, modules, and
services are purchased, exchanged, transferred, and downloaded, respectively.
Channels for exchanging/obtaining information and processing payments are
also important.

3.5 Revenue Model for the KITT4SME Platform

After a literature analysis of MSPs’ pricing strategies, a review of the monetization
strategies of other platforms offering Al services, and an internal workshop of the
partners involved in developing the KITT4SME revenue model, it seems possible
for the platform to generate revenue through all three main streams [22]:

* subscriptions (membership fee),
 advertising (advertisers fee), and
e transactions (transaction fee).

For the KITT4SME platform, several revenue streams can be combined and
different models can be adopted at different stages of the platform lifecycle.

When designing a business model that assumes revenue from all three main
streams, a fundamental issue to have in mind is the evolving network effects. These
are generated from the interaction of user pairs and strongly influence the level
of interest in the platform. Given the resource-sharing scenario of the platform,
network effects are generated when the availability of more resource providers
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(AI developers, know-how providers) attracts more entities seeking resources
(manufacturing SMESs), which in turn causes more providers (peer producers) to join
the platform. Finding the right balance at the outset is problematic because if there
are not so many providers, there is a risk that the peer consumers may not find what
they are looking for and will use a competitor’s platform. The same consumer could
abandon the KITT4SME platform and not return when it is upgraded with updated
versions of its services, such as an advanced matchmaking mechanism or new Al
solutions/modules. On the other hand, a provider that does not receive contacts may
choose to post its offer in multiple places (e.g., Al platforms) if the cost of staying on
the platform is affordable. The first effort should be to build a good peer producers
base, while the right message needs to be sent to potential peer consumers.

In order to support the creation of this kind of dynamics while generating revenue
for the platform, the following approach can be used, especially in the initial
lifecycle stage of the platform:

* A free trial period is offered to each type of entity. This gives access to a primary
or all set of services. The KITT4SME platform owner has to decide whether to
keep the free access with no time limits forever;

o After the trial period, a peer producer (Al developer, know-how provider) and
peer consumer (manufacturing SME) access fee is required;

* A transaction fee is charged and paid by the peer producer, who will set the final
price offered to the peer consumer.

For the solution implementation scenario, a different revenue mode should be
used. Most likely also, in this case, the initial access will be free of charge for each
type of entity. Then a lead fee model is considered more appropriate than the one
based on commissions, as the final exchange value may be differently related to
creating and improving customized Al solutions.

For both scenarios, some incentives can be offered to active entities of the
KITT4SME platform ecosystem. For example, an opportunity can be created for
a platform member to invite some of their contacts (e.g., suppliers or customers)
to the KITT4SME platform; if onboarding is achieved, the platform member may
receive some benefits (e.g., discounts on the transaction fee, extension of the trial
period, special rates). It can also be more complex and linked to the actual activity of
the invited new members. For example, a platform member may receive the first set
of benefits when their contacts are onboard and the second when their contacts start
transacting on the platform. This can also be valuable for partners who can use the
platform to gain benefits by including their network in the KITT4ASME ecosystem.

All the considerations so far have allowed the construction of an initial revenue
streams model to determine the pricing strategy for the KITT4SME platform and to
assess the financial sustainability of the KITTASME platform (Fig. 4).

Figure 4 illustrates the different revenue streams of the KITT4ASME platform,
which include several interdependent groups of entities (manufacturing SMEs, Al
developers, know-how providers, cloud providers, platform components providers,
consultants, multipliers), the KITT4ASME platform owner, and their interactions.
For instance, a usage externality exists when peer producers and peer consumers
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Fig. 4 Revenue streams in the platform within the KITTASME ecosystem entities defined in PDT

need to work together to generate value using the KITT4SME platform (enhancing
the quality of the match). Interactions can also occur between peer consumers
and advertisers (very often advertisers will be peer producers, but not only,
e.g., consultants). In this case, no transaction is taking place. Furthermore, the
KITT4SME platform can enable advertising services or matching offers and charge
an advertising fee for this and charge a premium fee for continued access to all
KITT4SME services (i.e., a membership fee).
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4 Conclusions and Next Steps

In addition to most traditional strategies for defining business models, this study
allowed us to understand better the users’ needs of the platform offering Al services,
to identify the values that can be exchanged through the platform, and to formalize
the relationships and partnership mechanisms between entities accessing the MSP.
This was done using the platform business model developed for the KITT4SME
ecosystem as a case study.

The adoption of the PDT method has shown that this tool provides a relevant
methodological approach to define business model scenarios dedicated to MSPs
qualitatively. Dividing the development of a business model into a few canvases
allows one to focus on the different steps and to go deeper into the details of their
design. The first five stages of the PDT have made it possible to define which entities
can exchange values through which transaction channels. Although the completion
of the canvases still does not allow a quantitative approach to assess the extent to
which the elaborated BM can remain sustainable under the dynamic evolution of the
boundary conditions.

The following steps should be setting up the MVP and determining the value of
the different fees charged for using the platform. The KITT4SME project will be
used as a case study for these steps. In this way, the canvases proposed by Cicero
[11] will be expanded by developing a methodology that guides the user to quantify
the BM elements required for economic feasibility.
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Alberto Villalonga @, Krzysztof Ejsmont (), Bartlomiej Gladysz (),
Alvaro Flores (), and Patricio Alemany

1 Introduction

In the context of manufacturing systems, reconfiguration refers to the practice of
changing a production system or process to meet new needs or to improve its
performance. This might involve varying the structure of the production process, the
order of the steps in which operations are executed, or the manufacturing process
itself to make a different product.

Reconfiguration may be necessary for several reasons, including changes in
raw material availability or price, changes in consumer demand for a product,
the need to boost productivity, save costs, or improve product quality, among
others. It is a complex process that requires careful planning and coordination to
ensure that production is not disrupted and that the changes result in the desired
outcomes. In return, it may offer substantial advantages including enhanced product
quality, reduction of waste, and greater productivity, making it a crucial strategy for
enterprises trying to maintain their competitiveness in a rapidly changing market.
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Self-reconfiguration is the capacity of a manufacturing system to autonomously
modify its configuration or structure to respond to dynamic requirements. This
concept is frequently linked to the development of modular and adaptive manufac-
turing systems. These systems exhibit high flexibility, efficiency, and adaptability by
allowing the self-reconfiguration of their assets. However, self-reconfiguration is not
directly applicable to all manufacturing systems. To implement self-reconfiguration,
a particular level of technological maturity is required, including the following
requirements [1]:

*  Modularity: The system is made up of a collection of standalone components.

» Integrability: The components have standard interfaces that facilitate their
integration into the system.

* Convertibility: The structure of the system can be modified by adding, deleting,
or replacing individual components.

* Diagnosability: The system has a mechanism for identifying the status of the
components.

* Customizability: The structure of the system can be changed to fit specific
requirements.

* Automatability: The system operation and modifications can be carried out
without human intervention.

Additionally, self-reconfiguration may involve a variety of techniques and
technologies, including IT infrastructure, robotic systems, intelligent sensors, and
advanced control algorithms. These technologies enable machines to automatically
identify and select the appropriate components or configurations needed to complete
a given task, without requiring manual intervention or reprogramming. However, in
some practical scenarios, human validation is still required before executing the
reconfiguration.

Self-reconfiguration in manufacturing typically focuses on process reconfigura-
tion and capacity reconfiguration with success stories in the automotive industry.
Process reconfiguration involves changes in the manufacturing process itself, such
as changing the sequence of operations or the layout of the production line, as
well as modifications to the equipment. On the other hand, capacity reconfiguration
involves adjusting the capacity of the manufacturing system to meet changes in
demand. This may involve adding or removing production lines, or modifying the
parameters of machines. It should be noted that modifying the parameters of existing
equipment can increase production throughput without requiring significant capital
investment; however, it may also require changes to the production process, such as
modifying the material flow or introducing new quality control measures.
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2 Reconfiguration in Manufacturing

2.1 Precursors of Reconfigurable Systems: Flexible
Manufacturing Systems

Current self-reconfigurable manufacturing systems are the result of the evolution
of ideas that emerged more than 50 years ago. During the 1960s and 1970s, the
production methods were primarily intended for mass production of a limited range
of products [2]. Due to their rigidity, these systems needed a significant investment
of time and resources to be reconfigured for a different product. During that period,
supported by the rapid advancements and affordability of computer technology, the
concept of flexible manufacturing system (FMS) emerged as a solution to address
this scenario [3]. FMSs are versatile manufacturing systems, capable of producing a
diverse array of products utilizing shared production equipment. These systems are
characterized by high levels of automation and computer control, enabling seamless
adaptation for manufacturing different goods or products.

FMSs typically consist of a series of integrated workstations, each containing
a combination of assets. These workstations are connected by computer-controlled
transport systems that can move raw materials, workpieces, and finished products
between workstations. When FMSs were introduced, they were primarily focused
on achieving reconfigurability through the use of programmable controllers and
interchangeable tooling. These systems may be configured to carry out a variety
of manufacturing operations such as milling, drilling, turning, and welding. FMSs
can also incorporate technologies such as computer-aided design/manufacturing
(CAD/CAM) and computer numerical control (CNC) to improve efficiency and
quality. This paradigm has been widely adopted in industries such as automotive
[4], aerospace [5], and electronics [6] and continues to evolve with advances in
technology.

However, despite the adaptability to produce different products, the implemen-
tation of FMSs has encountered certain drawbacks such as lower throughput, high
equipment cost due to redundant flexibility, and complex design [7]. In addition,
they have fixed hardware and fixed (although programmable) software, resulting in
limited capabilities for updating, add-ons, customization, and changes in production
capacity [3].

2.2 Reconfigurable Manufacturing Systems

Although FMSs can deal with the market exigence for new products or modifica-
tions of existing products, they cannot efficiently adjust their production capacity.
This means that if a manufacturing system was designed to produce a maximum
number of products annually and, after 2 years, the market demand for the product is
reduced to half, the factory will be idle 50% of the time, creating a big financial loss.
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On the other hand, if the market demand for the product surpasses design capability
and the system is unable to handle it, the financial loss can be even greater [8]. To
handle such scenarios, during the 1990s, a new type of manufacturing system known
as reconfigurable manufacturing system (RMS) was introduced. RMSs adhere to
the typical goals of production systems: to produce with high quality and low cost.
However, additionally, they also aim to respond quickly to market demand, allowing
for changes in production capacity. In other words, they strive to provide the
capability and functionality required at the right time [3]. This goal is achieved by
enabling the addition or removal of components from production lines on demand.

Design principles such as modularity, integrability, and open architecture control
systems started to take more significance with the emergence of RMSs, given the
relevance of dynamic equipment interconnection in these systems [9]. Consider-
ing their advantages, RMSs have been applied to the manufacturing of medical
equipment [10], automobiles [11], food and beverage [12], and so on. Because they
require less investments in equipment and infrastructure, these systems often offer
a more cost-effective alternative to FMSs.

Although these systems can adapt to changing production requirements, the
reconfiguration decisions are usually made or supervised by a human, which means
the systems cannot autonomously reconfigure themselves. This gives more control
to the plant supervisor or operator, but the downside is that it limits the response
speed.

2.3 Evolution Towards Self-Reconfiguration

As technology advanced and the demands of manufacturing increased, production
systems began to incorporate more sophisticated sensing, control, and robotics
capabilities. This allowed them to monitor and adjust production processes in real
time, adapt to changes in the manufacturing environment, and even reconfigure
themselves without human intervention. This shift from reconfigurable to self-
reconfigurable systems was driven by several technological advancements:

o [ntelligent sensors: sensors that are capable of not only detecting a particular
physical quantity or phenomenon but also processing and analyzing the data
collected to provide additional information about the system being monitored
[13].

* Adaptive control: control systems that can automatically adjust the manufactur-
ing process to handle changes in the production environment while maintaining
optimal performance [14].

* Autonomous robots: robots that can move and manipulate objects, work collabo-
ratively, and self-reconfigure. These robots can be used to assemble components,
perform quality control checks, and generate useful data for reconfiguring
production lines [15].
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* Additive manufacturing: 3D printing and additive manufacturing techniques
allow to create complex and customized parts and structures on demand, without
the need for extensive changes in the production system. Additionally, this
technique is very useful for quick prototyping [16].

Compared to conventional RMSs, self-reconfigurable manufacturing systems
enable to carry out modifications to the production process in a faster and more
autonomous way [17]. Today, these systems are at the cutting edge of advanced
manufacturing, allowing the development of extremely complex, specialized, and
efficient production systems that require little to no human involvement. Self-
reconfiguration is receiving significant attention in the context of Industry 4.0,
where the goal is to create smart factories that can communicate, analyze data, and
optimize production processes in real time [18].

3 Current Approaches

Currently, there are several approaches for designing self-reconfiguration solutions
including computer simulation, which is one of the most reported in the literature
with proof-of-concepts based on simulation results. Other alternative techniques
include those based on artificial intelligence (AI), which provide powerful methods
and tools to deal with uncertainty, such as fuzzy and neuro-fuzzy approaches,
machine learning and reinforcement learning strategies. These approaches are not
mutually exclusive and, in many cases, are used in a complementary way.

3.1 Computer Simulation

Computer simulation is a particularly valuable tool for the design and optimization
of self-reconfigurable manufacturing systems. In this context, these tools aim to
enhance the system’s responsiveness to changes in production requirements. The
recent increase in computational capacities has enabled the testing of various
configurations and scenarios before their actual implementation [19]. Currently,
commercial applications such as AutoMod, FlexSim, Arena, Simio, and AnyLogic,
among others, allow to create high-fidelity simulations of industrial processes [20],
that even include three-dimensional recreations of factories for use in augment-
ed/virtual reality applications. Computer simulation becomes a powerful tool when
integrated with the production process it represents. Based on this idea, digital twins
have gained significant attention in both industry and academia [21]. Digital twins
enable real-time data integration from the production process into the simulation,
replicating the actual production environment. By evaluating different options and
identifying the optimal configuration for the new scenarios, digital twins provide
feedback to the production process, facilitating real-time modifications.
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3.2 Fuzzgy Systems

Fuzzy logic is a mathematical framework that can be used to model and reason with
imprecise or uncertain data. This capability makes fuzzy logic particularly useful
in situations where the system may not have access to precise data or where the
data may be subject to noise or other sources of uncertainty. In the context of self-
reconfiguration, fuzzy systems can be used to model the behavior of the physical
processes and make decisions about how to reconfigure them based on imprecise
data. For instance, it is often very complex to assign a precise value to indicators
such as expected market demand, product quality, or energy consumption [22].
These variables can be assigned to fuzzy membership functions and then, following
predefined rules, combined using fuzzy operators to determine how the production
system should be optimally reconfigured depending on the available data.

3.3 Data-Driven Methods

Data-driven methods deal with the collection and analysis of data, the creation of
models, and their use for decision-making. This approach is extensively applied
when historical data of the production process is available. By using data ana-
Iytics, it is possible to identify bottlenecks or the inefficient use of assets in the
production process. Also, data-driven methods make extensive use of machine
learning algorithms for modeling the production process behavior [23]. Machine
learning methods can be trained with datasets containing a large number of features
and samples, learning to identify correlations, patterns, and anomalies that are
beyond human perception [24]. Moreover, by collecting new data of the production
process, machine learning models can be retrained or fine-tuned to improve their
performance over time. Once the machine learning model has been trained with
production data, it can be used as an objective function of an optimization algorithm
to make decisions about how to reconfigure the manufacturing process to optimize
desired indicators.

3.4 Reinforcement Learning

Reinforcement learning is a subfield of machine learning that has shown great
capacity in the development of algorithms for autonomous decision-making in
dynamic and complex environments. In reinforcement learning, an agent learns
to make decisions based on feedback from the environment. The agent performs
actions in the environment and receives feedback in the form of rewards or
penalties. The goal of the agent is to maximize the cumulative reward over time
by learning which actions are most likely to lead to positive outcomes. Self-
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reconfigurable manufacturing systems present a unique challenge for reinforcement
learning algorithms because the environment is constantly changing [25]. The agent
should be able to adapt to changes in the production environment, such as changes
in demand or changes in the availability of resources. The agent can learn which
modules are more effective for specific tasks and reconfigure itself accordingly [18].
Another important benefit of using reinforcement learning is the ability to learn from
experience. These algorithms can learn from mistakes and errors and try to avoid
repeating them.

4 Lighthouse Demonstrator: GAMHE 5.0 Pilot Line

To evaluate how Al tools can be applied for self-reconfiguration in manufacturing
processes and how they can be integrated with one another, an Industry 4.0 pilot
line was chosen for demonstration. The selected pilot line was the GAMHE 5.0
laboratory, which simulates the slotting and engraving stages of the production
process of thermal insulation panels. Figure 1 illustrates the typical workflow of
the process. Initially, a robot picks up a panel and positions it in a machining center
to create slots on all four sides. Subsequently, the same robot transfers the panel to
a conveyor belt system that transports it to a designated location, where a second
robot takes over the handling of the panel. Next, the panel is positioned in a visual
inspection area by the robot. If the slotting is deemed correct, the panel is then
moved to a second machining center for the engraving process. Finally, the robot
transfers the panel to a stack of processed panels.

Occasionally, due to poor positioning in the slotting process, some sides of the
panels are not slotted or the depth of the slot is smaller than required. In those cases,
the visual inspection system should detect the irregularity and the workflow of the
process should be modified to repeat the slotting process. Figure 2 illustrates this

Cell 3

RP: Raw parts A1: Staubli RX90 AZ2: Deckel Maho A3iA4: Conveyor belts —— Normal flow

AS: URSe I: Visual Inspection (Mako G-192) AB: Kern EVO PP: Processed parts

Fig. 1 Normal workflow of the pilot line
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Cell 3

RP: Raw parts A1: Staubli RX90 AZ2: Deckel Maho A3IA4: Conveyor belts —— Normal flow
AS5: URSe I: Visual Inspection (Mako G-192) AB: Kern EVO PP: Processed parts - Reprocess flow
Fig. 2 Workflow for reprocessing in the pilot line

Cell 3

RP: Raw parts A1: Staubli RX90 AZ2: Deckel Maho A3IA4: Conveyor belts —— Normal flow

AS: URSe I: Visual Inspection (Mako G-192) AB: Kem EVO PP: Processed parts DP: Damaged parts

Fig. 3 Workflow for defective panels in the pilot line

situation. Once the slotting irregularities are corrected, the system continues with
the normal workflow.

In some cases, the slotting process may cause damage to the panels. This
can happen when working with new materials or previously unverified machining
configurations. In those cases, the visual inspection system should detect that the
panel is damaged and it should be sent directly to a stack of damaged parts. Figure
3 shows this situation.

Making accurate decisions about the process workflow depending on the quality
of products, specifically on the result of the slotting process, has a direct impact
on the productivity of the pilot line. For instance, in cases where a panel is
damaged during slotting, it is crucial to remove it from the production line to
prevent unnecessary time and resources from being spent on machining it during
the engraving stage. To achieve this, the presence of a reliable visual inspection
system becomes essential. Although a deep learning classifier could be used for
this task, one drawback is that it is very hard to understand how the decision is
made. For this reason, it is proposed a deep learning segmentation model, whose
function is to separate the desired areas of the images from the unwanted regions.
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The output of a segmentation model provides a pixel-level understanding of objects
and their boundaries in an image, enabling a detailed visual interpretation of the
model prediction. Then, using the segmentation result, a reasoned decision can be
made, making the outcome of the system more interpretable. Section 4.1 deals with
this situation.

On the other hand, a common situation is that the pilot line should deal with
small batches of panels made of different materials and with different dimensions.
Thus, the configuration of the assets for reaching an optimal performance varies
frequently. For dealing with this situation a self-reconfiguration approach based on
automated machine learning (AutoML) and fuzzy logic is proposed. Although the
approach proposed in this work is generalizable to multiple objectives, for the sake
of simplicity, the improvement of only one key performance indicator (KPI) will be
considered. Sections 4.2 and 4.3 cover this topic.

4.1 Deep Learning-Based Visual Inspection

The segmentation model developed for application in the pilot line intends to
separate the side surface of the panel from other elements within an image, allowing
for later decisions on the panel quality and modifications of the process workflow.
This model is based on a U-net architecture, which consists of an encoder path
that gradually downsamples the input image and a corresponding decoder path that
upsamples the feature maps to produce a segmentation map of the same size as the
input image. This network also includes skip connections between the encoder and
decoder paths that allow to retain and fuse both high-level and low-level features,
facilitating accurate segmentation and object localization [26].

A dataset containing 490 images with their corresponding masks was prepared
for training and evaluating the model. The image dataset was split into three subsets:
training (70% of the data), validation (15% of the data), and testing (15% of the
data). In this case, the validation subset serves the objective of facilitating early
stopping during training. This means that if the model’s performance evaluated on
the validation subset fails to improve after a predetermined number of epochs, the
training process is halted. By employing this technique, overfitting can be effectively
mitigated and the training time can be significantly reduced.

A second version of the dataset was prepared by applying data augmentation
to the training set while keeping the validation and test sets unchanged. The
dataset was augmented using four transformations: horizontal flip, coarse dropout,
random brightness, and random contrast. This helps increase the number of training
examples, improving the model’s prediction capability and making it more robust to
noise. Using the two versions of the dataset, two models with the same architecture
were trained. Table 1 presents the output of the two models for three examples taken
from the test set. As can be observed, the predictions obtained with the model trained
on the augmented dataset are significantly better than those obtained with the model
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Table 2 Metric values obtained by segmentation models on the test set

Model Accuracy | Fl score |Jaccard index | Precision | Recall
Trained on the original dataset 0.892 0.639 0.563 0.997 0.564
Trained on the augmented dataset | 0.995 0.992 0.984 0.99 0.993

Fig. 4 Squared contours detection for a compliant panel, a panel without slot, and a damaged
panel, respectively

trained on the original dataset. This is also confirmed by the values obtained in
several metrics, which are shown in Table 2.

After the image is segmented by the deep learning model, a second algorithm
is used. Here, a convex hull is adjusted to each separate contour in the segmented
image. Then, a polygonal curve is generated for each convex hull with a precision
smaller than 1.5% of the perimeter of the segmented contour. Finally, if the
polygonal curve has four sides, it is drawn over the original image. After this
procedure, if two rectangles were drawn over the image it is assumed that the
slotting was correct and the panel did not suffer any significative damage; thus, it
can be sent to the next stage of the line. On the other hand, if only one rectangle was
drawn, it is assumed that the slotting was not carried out or the panel was damaged
during this process. Figure 4 shows the results obtained for illustrative cases of a
compliant panel, a panel with missing slots, and a damaged panel, respectively. If
only one rectangle was drawn, depending on its size and location, the panel will be
sent to the slotting stage again or removed from the line. This method was applied
to the test set images and in all the cases the output produced matched the expected
output.

4.2 Automating the Machine Learning Workflow

As outlined in the previous sections, the working conditions of the pilot line are
subject to rapid variations. To effectively address these variations and generate
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Fig. 5 General machine learning steps

optimal parametrizations for the assets, machine learning emerges as a promising
tool.

The usual machine learning workflow is composed of a series of steps that are
executed one by one by a team of specialists. However, this workflow can be auto-
mated. This research area is known as AutoML and recently has gained considerable
attention. AutoML plays a crucial role in streamlining workflows, saving time, and
reducing the effort required for repetitive tasks, thereby enabling the creation of
solutions even for nonexperts. Noteworthy tools in this domain include Google
Cloud AutoML, auto-sklearn, Auto-Keras, and Azure AutoML, among others.
Typically, these tools encompass various stages, from data preprocessing to model
selection. Moreover, in line with the automation philosophy of these systems, the
process optimization step can also be integrated. This way the system would receive
a dataset and return the parameter values that make the process work in a desired
regime. Considering this idea, an end-to-end AutoML solution has been developed
to be applied to GAMHE 5.0 pilot line. The following subsections describe the
typical machine learning workflow, as well as the specificities of its different steps
and how AutoML can be used for optimizing the production process.

4.2.1 Typical Machine Learning Workflow

Machine learning aims to create accurate and reliable models capable of identifying
complex patterns in data. The creation and exploitation of these models is typically
achieved through a series of steps that involve preparing the dataset, transforming
the data to enhance its quality and relevance, selecting and training an appropriate
machine learning model, evaluating the model’s performance, and deploying the
model in a real-world setting. Figure 5 depicts these steps. By following this
workflow, machine learning practitioners can build models that harness the power
of data-driven learning, enabling them to effectively derive meaningful insights and
make accurate predictions in practical applications.

Data Preprocessing

Data preprocessing is the initial step in the creation of a machine learning system.
The data to be used may have a variety of sources and formats, thus it should be
prepared before being used by any algorithm. If data are originated from different
sources, it must be merged into a single dataset. Furthermore, most methods are
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not designed to work with missing data, so it is very common to remove samples
with missing information. Preprocessing may also include filtering data to remove
noise, which can result later in more robust models. In this stage, the data may be
transformed to a format that is suitable for analysis, which can include operations
such as normalization, bucketizing, and encoding. Finally, one common operation
carried out in this stage is splitting. This refers to the partition of the dataset into
two subsets, which will be used for training and evaluation purposes. Additionally, a
third subset can be created if it is planned to carry out a hyperparameter optimization
or neural architecture search over the model.

Feature Engineering

The goal of the feature engineering stage is to convert raw data into relevant features
that contain the necessary information to create high-quality models. One of the
most interesting techniques that can be used in this stage is feature selection.
Feature selection aims to determine which features are the best predictors for a
certain output variable. Then, when these features are selected, they can be extracted
from the original dataset to build a lower dimensional dataset, allowing to build
more compact models with better generalization ability and reduced computational
time [27, 28]. Typically, for problems with numerical input and output variables,
Pearson’s [29] or Spearman’s correlation coefficients [30] are used. If the input is
numerical but the output is categorical, then the analysis of variance (ANOVA) [31]
or Kendall’s rank coefficient [32] are employed. Other situations may require the
use Chi-squared test or mutual information measure [33].

Other techniques that can be applied in the feature engineering stage include
feature creation and dimensionality reduction. Feature creation implies creating new
features either by combining the existing ones or by using domain knowledge [34].
On the other hand, dimensionality reduction techniques such as principal component
analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE) algorithms
are used to map the current data in lower dimensional space while retaining as much
information as possible [35].

Model Selection

The model selection step implies the creation, training, and evaluation of different
types of models to, in the end, select the most suitable for the current situation.
This practice is carried out since it does not exist a methodology for determining a
priori which algorithm is better for solving a problem [36]. Therefore, the most
adequate model may vary from one application to another as in the following
cases: long short-term memory network (LSTM) [37], multilayer perceptron (MLP)
[38], support vector regression (SVR) [39], Gaussian process regression (GPR)
[40], convolutional neural network (CNN) [41], gradient boosted trees (GBT)
[42]. The number and types of models to explore in this stage will depend on
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the characteristics of the problem and the available computational resources. The
selection of the model is carried out taking into consideration one or more metrics.
For regression problems is common to rely on the coefficient of determination (R?),
mean squared error (MSE), and mean absolute percentage error (MAPE), among
other metrics [43]. On the other hand, for classification problems, typical metrics
are accuracy, recall, precision, F1-score,and so on.

Optionally, this stage can also include hyperparameter optimization. Hyperpa-
rameters determine a model’s behavior during training and, in some cases, also how
its internal structure is built. They are set before a model is trained and cannot
be modified during training. The selection of these values can greatly affect a
model’s performance. However, finding an optimal or near-optimal combination of
hyperparameters is not a trivial task and, usually, it is computationally intensive. The
most commonly used techniques for this task include grid search, random search,
Bayesian optimization, and so on.

4.2.2 Process Optimization

Once a model has been created for representing a process, it can be used for
optimizing it. Assuming the model exhibits robust predictive capabilities and the
constraints are accurately defined, various input values can be evaluated in the model
to determine how the system would respond, eliminating the need for conducting
exhaustive tests on the actual system. In other words, the model created can be
embedded as the objective function of an optimization algorithm for finding the
input values that would make the production process work in a desired regime. In
this context, popular strategies such as particle swarm optimization [44], simulated
annealing [45], evolutionary computation [46], and Nelder-Mead [47], among
others, are commonly employed.

4.2.3 Application of AutoML to the Pilot Line

To apply an AutoML methodology to the selected pilot line, it is essential to collect
operational data from the runtime system under varying asset parametrization.
This data should include recorded measurements of variables and KPIs. Since not
all the collected data have to be necessarily recorded using the same rate, it is
necessary to transform the data to the same time base. This is commonly done
by downsampling or averaging the data recorded with a higher rate to match the
time base of the data recorded with a lower rate. In this case, averaging was used.
Once the historical dataset has been prepared, an AutoML methodology can be
applied. While typical AutoML methodologies automate the steps shown in Fig.
5, the proposed methodology also includes the process optimization procedure by
embedding the selected model as objective function of an optimization algorithm
for automatically finding the assets’ configuration as depicted in Fig. 6.
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Fig. 6 Overall description of the proposed AutoML methodology

First, in the data preprocessing step, the dataset is inspected searching for missing
values. If any are found, the corresponding sample is eliminated. Next, the features’
values are standardized and the dataset is divided into training and validation sets.
In this case, hyperparameter optimization was not implemented for making the
methodology applicable in scenarios with low computational resources. For this
reason, a test set is not required. Following that, feature selection is carried out
by computing the Pearson’s correlation coefficient () individually between each
feature and the output variable on the training set, using the following equation:

_ i (i —X) (i =)
r =
I =S i - 92

where n is the number of samples, x; represents the value of the i-th sample of
feature x, y; represents the value of the i-th sample of the output variable, and X and
y represent the mean of the respective variables.

Pearson’s correlation coefficient is a univariate feature selection method com-
monly used when the inputs and outputs of the dataset to be processed are
numerical [48]. By using this method, it is possible to select the features with
higher predictive capacity, resulting not only in a reduction of the dimensionality
of data but also leads to more compact models with better generalization ability
and reduced computational time [27, 28]. In the proposed approach, the features for
which |r| > 0.3 are selected as relevant predictors, and the rest are discarded from
both, the training and validation sets. Typically, a value below the 0.3 threshold
is considered an indicator of low correlation [49]. During the application of the
AutoML methodology to the data of the pilot line for improving the throughput, the
number of features was reduced from 12 to 7. This intermediate result is important
to guide the technicians on which parameters they should focus on while looking
for a certain outcome.

The next step involves model selection. Among the different models to evaluate
in the proposed approach are MLP, SVR, GPR, and CNN, which have been
previously used for modeling industrial KPIs [40, 50-52]. Table 3 presents details
of these models. Each one of these models is trained on the training set and then
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Table 3 Details of the evaluated models

Model | Details

MLP | Architecture: Fully connected layer (128 units, ReLU activation) + Fully connected
layer (64 units, ReLU activation) + Fully connected layer (1 unit, linear activation),
Optimizer: RMSprop, Learning rate: 0.001, Epochs: 5000

SVR Kernel: rbf, C: 1.0, Epsilon: 0.2, Tolerance: 0.001
GPR Kernel: Dot Product + White Kernel, Alpha: le-10

CNN Architecture: 1-D Convolution layer (64 filters, kernel size: 3, strides: 1, padding:
same) + 1-D Max pooling layer (pool size: 2, strides: 1, padding: valid) + Flatten
layer + Fully connected layer (64 units, ReLU activation) + Dropout layer (dropout
rate: 0.1) + Fully connected layer (32 units, ReLU activation) + Fully connected layer
(1 unit, linear activation), Optimizer: RMSprop, Learning rate: 0.001, Epochs: 5000

they are evaluated on the validation set. The metric used for comparison was the
coefficient of determination (R?). After this process is finished, the model that
produced the best result is selected. The model selected during the application of
the methodology to the pilot line was MLP with R?> = 0.963 during validation. The
R? value for the remaining candidate models was 0.958 for GPR, 0.955 for CNN,
and 0.947 for SVR. One of the enablers of these results was the feature selection
process, which allowed to retain the relevant predictors.

Finally, an optimization method is applied for determining the most favorable
parametrization of the production process to minimize or maximize the desired
KPI using the selected model as the objective function. In this case, the goal is to
maximize throughput. The optimization is carried out using random search, which
is a simple, low-complexity, and straightforward optimization method [53]. This
method can be applied to optimizing diverse types of functions, even those that are
not continuous or differentiable. It has been proven that random search is asymptot-
ically complete, meaning that it converges to the global minimum/maximum with
probability one after indefinitely run-time computation and, for this reason, it has
been applied for solving many complex problems [54]. One aspect to consider
before executing the optimization is that the feasible range of the parameters must
be carefully decided to prevent the result of the optimization from being invalid. In
the case analyzed, where the objective is to maximize the throughput of the pilot
line, the obvious choice is to make the assets work at the maximum speed within
the recommended ranges. To evaluate if the proposed methodology was capable
of inferring this parametrization, during the preparation of the dataset the samples
where all the assets were parametrized with the maximum speed were intentionally
eliminated. As desired, the result of the methodology was a parametrization where
all the assets were set to the maximum speed, yielding an expected throughput value
of 163.37 panels per hour, which represents an expected improvement of 55.1% with
respect to the higher throughput value present in the dataset. It is noticeable that the
higher throughput value of the samples that were intentionally eliminated from the
dataset is 158.52. The reason why the proposed methodology slightly overestimates
this value is that the model is not perfectly accurate.
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4.3 Fuzzy Logic-Based Reconfigurator

Once the parametrization of the assets has been determined by the AutoML
methodology to meet a desired KPI performance, it is important to ensure that the
system will continue to work as desired. Unfortunately, some situations may prevent
the system from functioning as intended. For instance, a degradation in one of the
assets may result in a slower operation, reducing the productivity of the entire line.
For such cases, a fuzzy logic-based reconfigurator is developed. The intuition behind
this component is that if the behavior of some assets varies from their expected
performance, the reconfigurator can modify the parameters of the assets to make
them work in the desired regime again, as long as the modification of the parameters
is within a predefined safety range. Additionally, if the deviation from the expected
performance is significant, the component should be able to detect it and inform the
specialists that a problem needs to be addressed.

The proposed reconfigurator has two inputs and generates three outputs using the
Mamdani inference method [55]. These variables are generic, so the reconfigurator
can use them without any modification to try to keep each asset’s throughput level
constant. The first input is the deviation from nominal production time (AT) and
its safety range was defined as =50% of the nominal production time. The second
input is the change in the trend of the deviation from nominal production time (AT?)
and its safety range was defined as +=20% of the nominal production time. There is
an instance of these two variables for each asset in the line and they are updated
whenever a panel is processed. These values are normalized in the interval [—1, 1]
before being used by the reconfigurator. Figure 7 presents the membership functions
defined for the two inputs.

On the other hand, the first output is the operation that the reconfigurator must
apply to the current asset’s working speed (Recol). If the operation is Increase or
Decrease, the values in the interval [—1, 1] are denormalized to a range comprising
+50% of the nominal asset speed. The second output represents the timing when
the modifications should be applied (Reco2), and the third output represents the
operation mode (Reco3), which specifies if the previous reconfigurator outputs

AT Membership functions AT? Membership functions
. | Negative Zero Positive . | Negative Zero Positive |

Degrea of membership
Degres of membership

Fig. 7 Membership functions for inputs AT and AT?
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Fig. 8 Membership functions for outputs Recol, Reco2, and Reco3

should be applied automatically, presented as recommendations for the operators,
or ignored. Figure 8 shows the membership functions of the three outputs.

Once the membership functions of the input and output variables were defined,
a rule base was created for each output variable. Each rule base is formed by nine
If-Then rules that associate a combination of the input membership functions with
an output membership function, as in the following example:

If AT is Negative And AT? is Negative Then Recol is Increase

The defined rule bases allow to obtain the output surfaces illustrated in Fig. 9 for
the fuzzy inference systems corresponding to each output variable.

To evaluate the reconfigurator, the nominal speed of each asset was set to 70%
of its maximum speed and several disturbances were emulated. The first one was
reducing the speed of all assets to 50% of their maximum speed, the second
increasing the speed of all assets to their maximum speed, and finally, the speed
of all assets was set to 30% of their maximum speed. As expected after the first
disturbance the system recommended increasing the speed, after the second it
recommended decreasing the speed, and after the third it recommended stopping
the production. The results are shown in Table 4.

5 Conclusions

This work has addressed self-reconfigurable manufacturing systems from both
theoretical and practical points of view, emphasizing how Al is applied to them.
The emergence and evolution until the current state of these systems have been
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Reco! Output surface Reco? Output surface

Fig. 9 Output surfaces of Recol, Reco2, and Reco3

presented. Likewise, their potential benefits such as improved responsiveness, flex-
ibility, and adaptability have been analyzed. Current approaches for implementing
self-reconfiguration in manufacturing have also been discussed. Additionally, the
application of self-reconfiguration and Al techniques to a pilot line was tested.
First, the integration in the pilot line of an Al-based solution for visual inspection
was evaluated. This component has a direct relation with the workflow of the pilot
line, thus influencing the productivity. Two segmentation models were trained for
the visual inspection task and the best one, with an accuracy of 0.995 and a F1
score of 0.992, was deployed in the pilot line, enabling the correct handling of
products. Furthermore, an AutoML approach that includes generating the models
and optimizing the production process was used for determining the optimal
parametrization of the line. This way, a model with R> = 0.963 was obtained
and the expected improvement in throughput with respect to the data seen during
training is 55.1%, which matches the values reached in real production at maximum
capacity. Then, a fuzzy logic-based reconfigurator was used for dealing with the
degradation in performance. This component demonstrated a correct behavior and
showed robustness when tested against three different perturbations. The findings of
this study suggest that self-reconfiguration is a key area of research and development
in the field of advanced manufacturing. Future research will explore additional
applications of self-reconfiguration in different manufacturing contexts.
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1 Introduction

Production scheduling problems are essential for optimizing manufacturing pro-
cesses and ensuring effective resource utilization. In other words, scheduling defines
where and when production operations will be performed [1]. The production
scheduling aims to optimize resource utilization, minimize the makespan, reduce
global setup time, and satisfy customer demands [2]. According to Lawler et
al. [3], in the majority of the time, scheduling falls under the category of non-
deterministically polynomial (NP) time problems. To address the complex nature of
production scheduling problem, advanced techniques have been developed. Some
of these techniques are the mathematical optimization models, heuristic algorithms,
and machine learning (ML) approaches. Important inputs that the methods above
take into account is information as setup matrices, processing times, quantities
to be produced, material availability, due dates, technical information, production
capabilities of the production lines that such a technique is modelled. Additionally,
the use of real-time data from the shop floor and the use of artificial intelligence
(AI) techniques can improve adaptability in dynamic manufacturing environments.
Moreover, using Al techniques in parallel with real-time data from the shop floor
arises new challenges, i.e., real-time decision-making.

Digital twin (DT) is a technology that allows real-time monitoring and opti-
mization of the physical environment, prosses, or assets [4]. DT is a technology
that enables the user to gain insights on the model’s accuracy [5]. Using data
from sensors and Internet of Thing (IoT) devices, DT creates a digital replica of
the physical environment sharing the same characteristics and interactions of the
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physical counterpart [6]. DT have been used in many different domains, including
healthcare, urban planning and manufacturing [7]. In a variety of industries, the
combination of real-time data and the digital replica of the physical environment
promotes the decision-making and allow the industries to continuously improve
their performance [8, 9].

Asset Administration Shell (AAS) technology was introduced within the Ref-
erence Architecture Model Industry 4.0 (RAMI4. 0) [10] and has become a
ground-breaking idea in manufacturing of how assets are managed and used [11].
AAS are standardized models that allow industries to combine the physical assets
with their digital counterparts (i.e., machines, production systems, or tools), where
AASs provide a framework to control and monitor the physical assets. Al scheduling
agents have been used coupled with AAS concept in the literature [9, 12, 13].
Additionally, AI scheduling agents are intelligent autonomous systems that take as
an input production system information to plan resource allocation tasks [14]. The
Al scheduling agents play an important role due to the fact that they can generate
a real-time efficient schedule. Coupled with the AAS and DT technologies, Al
scheduling agents can be used for the real-time decision-making or for predictions
[14, 15].

Multi-agent system (MAS) are systems that are used to compose many
autonomous agents, where these agents interact to each other [15]. MAS provides
decentralized and collaborative decision-making, where it allows the collaboration
of different agents. Each agent in the MAS has some capabilities, decision-making
abilities and takes decisions. MAS is used in order to solve complex problems where
one agent is impossible to solve. The idea of dived and conquer is used to divide
the problem into subproblems, where each agent solves a subproblem, and provides
solutions that are adaptable, robust, and able to handle real-time uncertainties. MAS
is also combined with DT, AAS, and Al scheduling agents. In a further analysis,
AASs can enable interaction between different agents, where the agents can be
models as different assets.

The contributions of this work are the use of the DT in order to accurately
simulate and validate the Al agents that have been developed, as well as training
some of the agents. Moreover, the use of the AAS technology to exchange data
between the DT and Al agents within the MAS and finally the developed Al
scheduling agents that were developed and modeled based on the bicycle industry’s
requirements and challenges.

This chapter is organized in four sections, where the first section introduces
the concepts of digital twins (DT), Asset Administration Shells (AAS), scheduling
problem, and artificial intelligence (AI) applications. In second section are discussed
related works. In the third section is explained the proposed MAS framework and
explain the optimization tools that have been developed. In the fourth section is
described the case study that the proposed framework is implemented. Finally, the
last section is the conclusion of this work, where some future works are discussed.
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2 Related Works

The manufacturing sector has experienced an evolution thanks to Artificial Intel-
ligence (AI). Al offers innovative methods for increasing productivity, quality,
and efficiency [16]. Due to its capacity to handle complicated issues, evaluate big
amount of information, and make precise predictions, Al approaches have become
utilized more and more in manufacturing. Numerous manufacturing processes,
including quality assurance, preventative maintenance, supply chain management,
and production scheduling, have benefited from the application of Al approaches
[17].

Two of the most important tasks in the industrial sector are production planning
and scheduling. For creating effective and efficient production plan or schedule, a
variety of strategies, methods, and technologies have been developed and deployed.
Production planning comprises considering what to do and how to do something
in advance. Scheduling, on the other hand, entails allocating resources or manu-
facturing facilities to handle work orders. Effective production scheduling lowers
production costs, boosts productivity, and lastly improves customer satisfaction.
Due to their capacity to handle complicated scheduling issues and offer precise
solutions, artificial intelligence (AI) systems have been gaining prominence in
production scheduling. Machine learning (ML) is one of the most frequently used Al
approaches [5]. More effective production planning and scheduling algorithms have
been created using genetic algorithms, artificial neural networks, and reinforcement
learning.

Heuristics is one of the approaches to solve the dynamic flexible job-shop
scheduling problem [18]. Another popular technique, genetic algorithms, has been
utilized in several research to improve production scheduling by describing the issue
as a combinatorial optimization issue [19]. Nevertheless, the rise of Industry 4.0 has
made ML techniques an attractive alternative to address manufacturing difficulties,
due to the availability of data, powerful processing, and plenty of storage capacity.
Neural networks and deep learning have gained more attention in recent years
[20]. Additionally, reinforcement learning (RL), which uses experience to improve
scheduling policies, has been proposed for production scheduling. The scheduling
policy is represented in RL as a function that connects the state of the system at
the moment with an action [21]. In conclusion, future research may concentrate on
combining several Al techniques to develop production scheduling algorithms that
are more potent and effective.

The digital twin (DT) interest is growing from both an academic and an industry
perspective. However, the definition of that concept in the scientific literature lacks
distinctiveness. DT provides virtual representations of systems along their lifecycle.
Then, decisions and optimizations would be based on the same data, which is
updated in parallel with the physical system [22]. DT can be briefly described
as a framework or concept that combines the physical and real environment with
the digital and virtual one, with the use of novel interconnection methods and
technological innovations [23]. This physical to virtual connection for addressing
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real processes and assets to their digital representative ones can be characterized as
twinning.

One of the main technologies used, in order to realize most of DT implementation
approaches, is simulation [24]. As already mentioned, the idea of DT is to build a
virtual version of a real system. This replica can be used to simulate and forecast
how the physical system will respond to certain situations. Thus, one of the best
methods to construct a virtual representation of the physical system seems to be
simulation, which enables engineers to test and improve the system before it is built,
lowering costs and increasing efficiency. Digital twin and simulation technology
are being used more and more frequently in sectors such as manufacturing and
aerospace, exhibiting their ability to completely change how complex systems are
created and optimized [25].

Furthermore, digital twin implementation methods can support decision-making
related to the scheduling task for a production system with potential uncertainties
[26]. A crucial aspect for the development of a digital twin is the achievement of a
high level of standardization and interoperability with systems outside the digital
environment. The digital twin simulates some of the behaviors of the physical
environment, and thus requires some kind of seamless information exchange with
the physical entities and the information they provide. OPC UA is a standard that
can provide standardization in the data exchange between the digital twin and
production hardware, achieving real-time monitoring and control, interconnectivity,
security, access control, while also data modelling and semantics [27].

The Asset Administration Shell (AAS) could be also used in order to standardize
the description and management of assets. The digital twin technology can exchange
information with the asset via the establishment of a common information language
[28]. In addition, the AAS and OPC UA are complementary standards that can be
both used to define the framework and protocol for that communication [29]; it
is worth noticing that AAS is a collection of standards, namely IEC 62875, DIN
SPEC 91345, IEC 62541 (OPC UA), and RAMI 4.0. In cases where the digital twin
composes a higher level system such as a production line, a station, or a production
system, it is usually composed of multiple assets and thus AAS models. From the
digital twin side, the AAS can be the middleware for exchanging information with
the assets or managing their behavior. It is important, however, to highlight that there
is no standard way for describing an asset using the AAS; although the metamodel
will always be the same, there is a freedom to the different submodels and submodel
elements that will be selected in order to describe any different asset. It is thus usual
to exploit additional information modelling standards or framework to define the
specific components and information structures within the AAS metamodel — e.g.,
ISA-88, ISO 22400, and ISA-95.

Digital twin is not only about simulating the environment but also taking
decisions over the next actions, which can then be used on the physical environment.
Simulation on its own cannot address this issue, and Al agents is a way that this
challenge can be solved. Multi-agent systems are preferred over centralized software
components in cases where the problem is hard enough to be solved from a mono-
lithic software component. It is a decentralized approach that breaks the problem
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into subproblems and each agent has access only to the subproblems compatible
with its skills. In the case of production scheduling, this is a useful approach as it
enables different types of scheduling problems being solved by different Al methods
based on which method best satisfies the requirements. Al is a broad term and in
scheduling in particular the most common methods are heuristic, metaheuristic,
mathematical optimization, machine learning, reinforcement learning, and policy-
making.

Mathematical optimization, also referred as mathematical programming, is an
optimization model consisted of input sets and parameters, decision variables,
constraints/expressions, and the objective function. Based on the constraints and
the objectives, the model may be classified as linear, nonlinear, convex, integer, and
mixed-integer problem, with different type of algorithms to optimize the objectives.
As such, as important as the model, the algorithm that is used in order to find a
both feasible and accurate solution is also crucial for the quality of the solution. The
algorithms may be exact or heuristic-based, while metaheuristic methods are also
popular for various optimization problems.

Heuristics have been deployed to solve various production scheduling opti-
mization problems. A combination of constructive heuristics and iterated greedy
algorithm was used to solve the distributed blocking flowshop scheduling problem
(DBFSP) and lead to makespan minimization [30]. Montiel et al. (2017) proposed
an approach for the stochastic optimization of mine production schedules with the
use of heuristics, implementing iterative improvement by swapping periods and
destinations of the mining blocks to create the final solution [31]. Heuristics can also
be successfully deployed to optimize the scheduling task, aiming at reducing total
energy consumption [32]. Jélvez et al. (2020) worked for a new hybrid heuristic
algorithm to solve the Precedence Constrained Production Scheduling Problem
(PCPSP) for an open-pit mining industry [33].

Heuristic and metaheuristic algorithms focus on an intelligent search along the
solution space, which does not ensure the quality of the solution, and in complex
optimization problems require flexible time delays. Deep learning methods, on the
other hand, do not depend on searching the solution space, but rather predicting
the solution based on patterns from historical information. Although in most cases
the results are guaranteed to be fast, it is not necessarily of high quality. In
reality it depends on the deep learning model that was used, the dataset quality
and quantity. In some cases, there is also a dataset shortage which makes the
problem even more difficult to solve. In practice, researchers may address this
problem via the utilization of a system digital replica which is able to simulate
the behaviors of the actual system in a realistic manner. This can support the
development of either reinforcement learning methods that use the simulation as
a reward retrieval plugin or for extracting artificial dataset that can then be used in
supervised learning models to learn and adapt to the actual system implementation.
Especially, deep reinforcement learning has showed great potential in recent years in
dealing with complex scheduling optimization problems. Researchers have focused
on the implementation of deep reinforcement learning techniques for production
scheduling-related problems where there is lack of data, and the problem appears
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high complexity. The Job-Shop Scheduling Problem (JSSP) is one of the most
common optimization problems related to production scheduling that the scientific
community has tried to solve with the application of deep reinforcement learning.
Zhang et al. (2020) developed a deep reinforcement learning agent, able to select
priority dispatch rules to solve the JSSP [19]. Liu et al. (2020) followed a similar
deep reinforcement learning approach to solve both the static and dynamic JSSP
[34]. Rather than only solving the JSSP, there have been also solutions for the
optimization of the whole production system with the use of deep Q-learning, a
very popular deep reinforcement learning technique in the last decade [35].

While all the technologically innovative techniques have helped to develop
smarter and more efficient systems and tools, these solutions could also be integrated
in an efficient way in the actual production system through a digital twins (DT)
and can help in integrating such solution to increase productivity. Villalonga et al.
(2021) proposed a framework for dynamic scheduling with the use of digital twins to
represent actual production assets in order to enhance decision-making [36]. Zhang
et al. (2021) use the digital twin concept to gather real-time data from the shop
floor and realize an effective dynamic production scheduling [37]. To achieve real-
time decision-making, the implementation of a digital twin appears a great potential,
since uncertain and dynamic events are addressed effectively. Dynamic interactive
scheduling method can be enhanced and strengthened by the use of DT [26, 38].
However, digital twin concept can also be implemented to support production
scheduling in an offline mode, such as the offline simulation of a production system.
This gives the ability to train scheduling agents in more dynamic environments and
respond to uncertainties even when they have not yet been identified. Nevertheless,
a main challenge in implementing production scheduling solutions and digital twins
is the lack of a well-defined data model. A solution to this issue can be offered by the
Asset Administration Shell (AAS) concept. AAS is basically a method to represent
data in a defined architecture [13, 39]. While in other problems there is some effort
made by the literature to implement AAS concept, in production scheduling it is not
explored.

The need to explore and address well-defined standards for production opti-
mization agents is clearly revealed when there is a need for cooperation between
different production agents, in order to formulate a multi-agent system. Researchers
from a variety of fields have given multi-agent systems (MASs) a great deal of
attention as a way to break down complicated problems into smaller jobs. Individual
tasks are assigned to agents, which are autonomous entities. Using a variety but
well-defined inputs, each agent chooses the most appropriate plan of action to
complete the task [40]. Agents make decisions based on the information provided
in the environment they are integrated and choose their actions proactively or
reactively [41]. In manufacturing, multi-agent systems have gathered attention of
many researchers during recent years. MAS can limit the complexity of order
scheduling in production systems through a cooperative multi-agent system for
production control optimization [42]. A similar approach was followed for the
implementation decentralized scheduling algorithms in a test-bed environment [43].
A scheduling strategy to assist a manufacturing system experiencing learning and
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forgetting was supported by a multi-agent system to carry out the scheduling tasks in
conventional production systems in close to real-time, and a simulation was utilized
for validation [44].

While the multi-agent systems implementation methods have been explored in
recent years, further investigation to address challenges is required. For example,
the use of standards in a scheduling multi-agent system is something crucial, in
order to develop systems that could be easily transformed to a “plug & play”
application. In addition, agents that control or implement different applications
and software should follow a hierarchical implementation to achieve better multi-
agent system utilization and agents’ distribution. Lastly, if external applications are
controlled through a multi-agent system functionality, Application Programming
Interface (API) and standards are almost inevitable for the proper scheduling MAS
integration for the actual production system. The implementation of the scheduling
multi-agent system proposed in this work addresses the aforementioned issues and
gives the opportunity for a more flexible implementation of scheduling algorithms,
with different functionalities and heterogenous optimization techniques.

3 Multi-Agent System Framework

3.1 System Architecture

The architecture presented in Fig. 1 merges numerous Industry 4.0 technologies
within a single framework with the goal of creating quality decision-making support
for the production manager in his/her daily tasks. Specifically, there is used a (1)
user interface for production manager interaction, (2) a multi-agent system for
decentralized production scheduling, (3) a production digital twin for performance
validation, and (4) Asset Administration Shell concept for the description of
production information and agents as assets within the 14.0 environment.

The first aspect of the proposed framework is defining the information exchange
mechanisms and the corresponding information model to pass data over the different
components. This is one of the interoperability issues associated with enterprise
software as it is usual to utilize different information format and structures for
the same information context. In this architecture the AAS is used in order to
represent production information, such as work orders, process plan, and production
resources. However, AAS is a metamodel, and although it may specify some abstract
modelling objects and interaction mechanisms, it does not specify the detailed
model to be used for the description of the asset. In other words, there could be more
than one AAS descriptions for the same asset, structuring differently the same asset
components and behaviors. To this end, there is a whole other topic of choosing the
“right” information model for describing the production data so that it is achieved
standardization over the information exchange. However, this is not within the
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scope of this framework, and although the AAS is used for exchanging information
between ERP software and the agents, the underlying model is not standardized.

As displayed in Fig. 1, information from the enterprise resource planning (ERP)
are described within AASs for the corresponding work orders that the manager is
called to satisfy within the following production period. This type of information is
restored from the user interface (UI), allowing the user (in this case the production
manager) review the workload of the upcoming days. The connection between the
AAS and the ERP is performed via an ERP-to-AAS connector so that the proposed
UI platform depends on the AAS model rather than the specific ERP information
model structure. The UI rather than visualization of production information, it is
also an enabler for interaction of the user with the MAS as well as the production
digital twin. It is important to highlight that, unlike other systems, the integration of
decision-making results to the actual system is not a trivial task. In practice human
interferences is required to review and apply the production plan.

The exchange of information between the UI and the MAS is achieved via a
MAS API, which is in practice a way of passing and receiving data regarding the
production workload and status. The MAS is responsible for handling the data and
provide scheduling decisions for the user given the current production scenario.
There are multiple Al agents that were developed to address this problem each one
giving its own benefits for the user. The reason for using more than one agent for a
scheduling problem arises due to complexity of the problem, the user requirements,
as well as the problem itself. Scheduling problems are widely diverse with respect to
the environment, constraints, objectives, and equivalently the optimization methods
are usually compatible with a small portion of the overall set of scheduling
problems available. To this end, there cannot be a monolithic approach capable
of addressing all production scheduling problems without lacking on satisfying the
user requirements. In order to address this issue, there was proposed the concept of a
meta-scheduling agent, which in practice was a compound of multiple Al scheduling
agents each one providing different optimization attributes.
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The AAS was developed for the description of agent, which was retrieved by
the MAS framework in order to deploy the corresponding entities and bring the
algorithms to life. The AAS model for the meta-agent was consisted of a toolbox
of optimization methods, with the description of connection dependencies as well
as capabilities and skills provided by the specific method. During the initialization,
there were spawned individual entities within the MAS, each one carrying a specific
set of skills (operations) corresponding to the AAS operations. It is important to
highlight though that the deployment of the agent within the MAS with the actual
algorithm runtime may differ. Specifically, the MAS is operating within a single
framework, which is usually a local installation of all the partial components, and in
this case the deployment of the algorithms is better to be remote. Figure 2 illustrates
this aspect for an example case of a scheduling agent. It can be displayed that a
scheduling agent AAS may contain more than one scheduling methods, which are
spawned as individual agents within the MAS framework. On top of that a meta-
scheduling agent is spawned within this framework in order to support the scheduler
selection and orchestration process within the MAS. The scheduling algorithms,
however, may be deployed in different remote servers depending on the case. While
a scheduling operation is requested from one of the schedulers, the AAS interfaces
support the communication between the agent installation and the actual algorithm.

In the previous architecture, it is important to clarify the need for the meta-
agent as well as the requirement for generating multiple agent entities within
the MAS framework. In essence, the notion of an agent, as an independent
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entity, is useful when there is achieved some kind of communication within a
network of agents. This type of communication is achieved usually via a MAS
framework implementation, which allows all the messages exchange and events to
be broadcasted between the inner entities seamlessly. As such, a MAS framework
facilitates the interaction between the agents; however, the implementation of the
agent logic does not have to be within the same software component as the MAS.
This is because, usually the MAS is a unique software component with all of its
agents and events operating within the same software container. It thus makes sense
not to include complex computational process (such as scheduling) within the same
resources.

To this end, the actual optimization processes are kept aside from the agent
interfaces within the MAS. However, the reason that the scheduling agent AAS that
contains multiple scheduling methods is not spawned within the single agent in the
MAS is dues to easier management of the different scheduling operations. Although
this is most of a design decision, it is easier to distribute a network of agents, each
one responsible for a specific scheduling method, because on the contrary side, all
scheduling requests independent of method selection would flow through the same
agent, making it less efficient to work with two different scheduling requests in
parallel. The meta-agent is thus present to support the selection of the algorithm
based on the scheduling problem and allocate the optimization process to the
different agents. In practice, this specific agent is aware of the different scheduling
methods available within the system and is capable to analyze the request before
selection.

In order to accurately assign the scheduling problems to the scheduling algo-
rithms, there were used a problem classification method based on three notations:
environment, constraints, and objectives. This notation method is widely used in
the description of scheduling problems and has the ability to classify any type
of problem. The environment expresses the production system equipment and
process flow, the constraints express the job-related characteristics or specific
equipment/buffer requirements, while the objectives have to do with the criteria that
the scheduler need to optimize. The following are some examples for each case:

* Environment: job shop, flexible job shop, parallel machines, single machine, flow
shop, flexible flow shop, conveyor line, batch machine (e.g., oven), and so on.

* Constraints: job release time, block (no buffer capacity before the machine),
deadline, sequence-dependent setup time, recirculation, stochastic processing
time, and so on.

e Objectives: makespan, flowtime, tardiness, energy consumption, and so on.

In order to classify the problem based on these notations in an automatic way,
the meta-agent was enriched with different rules (per characteristic per notation) in
order to check whether the specific type of problem complies with these conditions.
For example, identifying a Job Shop schedule has to contain exactly one route per
product and no alternatives. As a results, in cases that the agent was given with a
schedule request that did not specify the type of scheduler to use, these rules were
applied and the scheduler that complied with the rules was selected. In some cases,
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Fig. 3 Simulation model of the wheels assembly department utilized as a digital twin to apply the
schedule outcome from the MAS and observe performance

more than one scheduler would comply with the rules and more than one responses
may be produced.

It is also important to highlight that within a request there was used a specific
information structure for providing the production data and similarly the scheduling
outputs were contained within a specific scheduling response. The structure of the
information may vary based on the implementation and thus it was not specified
within this section. There are different alternative standards also to be used, while
in some cases a specific ERP data model could be also utilized. In any case, this
is another important aspect that is not specified within the chapter. However, the
methodology remains the same, with the exception that the problem classification
should be applied to a different model.

The digital twin was the final component of the architecture and ensured that
information is validated in a close-to-reality scenario and the system performance
is approved by the user. The production schedule was received by the MAS and
then sent (on-demand) to the digital twin in order to calculate its performance (see
Figs. 3 and 4). This step was executed before the schedule was displayed in detail
to the user as there could be one of multiple competitive schedules available for a
single case from different schedulers. The reason for using a digital representation
of the production system was to give the ability to the user to evaluate the resulted
schedule.
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Fig. 4 Simulation model of the painting department utilized as a digital twin to apply the schedule
outcome from the MAS and observe performance

3.2 Paint Shop Scheduling Agents
3.2.1 Mathematical Optimization

The paint shop scheduling agents were designed in order to be able to give
solution to the Paint Shop Scheduling Problem (PSSP) as it can be found in the
literature. This problem addresses the sequence of the items entering the painting
line of the factory in order to optimize the performance indicators. This problem is
different from other scheduling problems as it usually encounters higher detail in the
combination of items and sorting before entering the line. The line itself is usually a
moving conveyor of carriers with some specific spatial constraints, setup delays due
to color, and a constant speed. The objective is to find the optimal combination of
the items within the “bill of material” of the products and sequence them in order to
comply with the desired performance.

Figure 5 illustrates the PSSP in a simplistic way. As it can be seen the goal
is to create a schedule — sequence and combination of items — for entering the
painting line so as to create the maximum utilization of the line, which will reflect
in reducing the makespan for the system. There are some requirements, however,
that the decision-making system needs to comply with in order to be in line with
the physical characteristics of the system. The following aspects were taken into
consideration:

* The conveyor speed is constant and the carriers are equally spaced along the line.
This ensures that the input and output rate of the line is also constant.
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» Each carrier has a unique capacity (100%) similar of all the carriers that cannot
be exceeded.

e Items with different color cannot be placed within the same carrier. This is
because in most cases the items are painting all together within the painting
cabins.

* In cases where two consecutive colors are placed within the line there should be
a setup delay, expressed in empty carriers so that the operators have the time to
setup the new color.

» Each item type occupies a specific percentage of the carrier and can be mixed
with others as long as the max capacity is not violated.

¢ In cases where an item cannot fit into one container/carrier, then it will be used
the next consecutive carrier in order to hold the remaining capacity of the item.
It is made the exception, however, that no item needs more capacity than two
carriers.

Based on the proposed conversions, the following mathematical formulation can
be created:
Sets:

P Set of production orders that need to be painted
I Set of different items (types) that need to be painted
C Set of color codes

Parameters:

qp, i Quantity of items i € I included in production order p € P, g, ; € Z>¢

c¢; Capacity a carrier required in order to carry item i € I; ¢; € Ry

dp, p» Setup delay required between the items of two different production orders
(p.p ) EP.dy, p € Lo

Auxiliary variables:

s; Defines whether item 7 € I has a size higher than one carrier, s; € {0, 1}

ac,; Defines whether this color ¢ € C has entered the line on time ¢ € Zxo,
ac, € (0,1)

ep, 1 Defines whether this item i € [ has entered the line on time t € Z>, ep, ; € {0, 1}

Decision variable:
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Xp, i, The number of items i € I from product p € P that will enter the line on time
1, Xp, i, € L>0,
Counters:

n; Number of timesteps available in the schedule
n; Number of item types in I-set

n, Number of products in P-set

n. Number of colors in C-set

Constrains:

First, in a feasible schedule, we need to ensure that all items enter the resource
exactly once at some point during production time. This can be covered from the
following linear equality:

o0
pr,i,t =qpie(l+s;),YVpe P Viel
=0

Number of constrains : n,* n;

Limitation for not allocating into the same carrier more than the items that can
hold based on its capacity can be achieved via the following inequality:

1
) Zc,..<1_si§).x,,,i,t <1V € Zg
VpePViel

Number of constrains : n;

In addition, for cases when items require more than one carrier, it needs to be
placed in two consecutive carriers. This can be ensured by the following nonlinear
expression:

N
Z Z Z si (xp.ive @ Xpivy1) = 1
t=0 VpeP Viel

Number of constrains : 1

In order to transition to the linear version of the above expression, we start from
the logical expression:

(xp,i,, > O) A (xp,,-,pr] > 0) \% (xp,i,,,l > O)

Then, we define two auxiliary variables to carry the outputs of the above logical
expressions:
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Zpii = (Xpiit1 > 0) V (xpii—1 > 0)
Yp,it = (xp,i,t > 0) NZpit

Then, we use the linear expressions for A and V operators:

Zpit = Xp,it+l
Zpist = Xpijt—1
Zpit = Xpial ¥ Xpia-t Ly o povic [ Wi eZog |5 > 0
Ypiit = Xplit -
Ypit = Zpit
Ypit = Xpit + 2Zpit — 1

Number of constrains : 6n, n,™ n;

In addition, when changing color between subsequence items the setup delay
must be applied. This can be achieved by the following linear inequalities:

Axp.ire [
deyr > ZVPZZVI (Zp i C),Vt € [0, ZzO] ,VeeC
vp 2.vi 9p.i

_ /
uv (c.c') € C. V1 € Lo, V1 € [t,t +de o] | c#

deq agp <1+ o=
C,C

Number of constrains : n.* n; + n;* (delay)* (n. — 1)
The same constraint can be achieved via the following nonlinear equation:
N H_dc,r’

dlacie D (1—aop)|=0¥(e.c)eClc#d

=0 =t

Number of constrains : (n, — 1)°

Objective function:
Liota1 The total flowtime of the production:

o0
Liotal = Z ([ L4 ac,t)
t=0

Lyeighted The total weighted flowtime of the painting line:
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00
Lyeighted = Z Z (t ewpye el’>’)

t=0Viel

where x,;, <gpi®ep;,Yp e P,Viel Vtelx

Ai, k The output (production) rate for an item type in a specific interval can be
defined as a moving average in the series of allocations for an item:

(k+1)L )
Dotk L ZVpEP Xpit
Aik = 2

k=0,1,2,..,n;

Figure 5 shows where the requirements for this objective come from, and what
implications could come from missing to apply this objective. It is clear that in this
example, missing to produce the items at the average rates that are departed from
the buffer afterwards will cause an overflow, and in this case it is illustrated that the
circle needs to be at a much slower output rate than the cube item.

The ways that this can be applied are more than one, specifically the user may
require this to be a constrain to the scheduler, by means that at no times this rate is
exceeded, which can be applied by the next inequality, or via the objective function
trying to approach a specific value, yet this does not necessarily ensure that this
value will not deviate in the final results.

Mg < adesied gk —0,1,2,..,N,Viel

ad N2
min Z Z (Ai,k _ A;_iesned)

Viel k=0

The above mathematical formulation is a very complex optimization problem to
solve for a real-scale production problem. As shown in the results section, real-scale
industrial problems may require scheduling up to 20,000 items from different orders,
colors, and types, making the problem extremely difficult to solve in a considerably
short time frame. Thus, following the previous mathematical formulation, three
different versions were formed, each utilizing the expressions presented above
differently.

* The first model is the nonlinear version (MINLP) of the problem, which applies
the nonlinear inequality constraints presented above. This allows lower number
of constrains (thus lower memory utilization), but a very complex solution space
that most of the times requires more sophisticated optimization algorithms and
more demanding computational delay.
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Fig. 6 Actual diagram from example case displaying the CPU delay differences of the modeling
approaches as the number of orders increase

The linear version (MILP) was also considered where only the linear constrains
are utilized, improving the computational demand but increasing the require-
ments for memory utilization in computational resources.

The last one was a simpler form of the linear version (two-stage MILP) in
which constrain #4 is removed from the model, running the optimization only for
mixing the items of order that acquire the same color. This allows a much faster
response horizon, since there were no setup constrains to apply in the schedule.
In a second stage, once the allocation of items is achieved, the optimization
process is repeated, but this time it schedules the sequence of colors as a function
of minimizing the setup delay. In this way, the model manages to reduce the
solutions space and the constrains limitations. The problem with this model,
however, is that it decreases the flexibility of the solution as a trade-off for lower
CPU time because it is not capable of providing good solutions for the production
rate issue.

In Fig. 6, the implications of the different models on the CPU duration of the

computational resources is clearly shown. The graphs are in a logarithmic scale in
the Y-axis and is clearly shown that both MILP and MINLP cannot outperform the
simplified-MILP, which can cover up to a very high number of items (100 orders
are usually 18,000 items) in a relatively short period of time (20 min).

Indices:

Discrete sets: np, n, e, iy
Decision variables: n,,2 +ni (np +1)
Input variables: n,,2 +n; (np + 1)
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Fig. 8 Output layer (vector) encoding mechanism displaying the output can be encoded into the
allocation per product per item type per timestep

Auxiliary variables: n; + n; (n; + nc)
Constrains: ny n; + 6n, n; np + ne ny +ny d (ne + 1)

3.2.2 Data-Driven Optimization

In order to avoid this long CPU delays and demanding RAM utilization, the
utilization of data-driven (i.e., ML) approaches was investigated in order to rather
predict the output of the scheduler. First, a feed-forward neural network (FFNN)
was developed, which uses as an input information over the workload data (i.e.,
orders, items, colors, and sizes), as well as produces the sequence of orders/items
allocated into the painting line. The input layer to the model was based on the
same parameters that were used for the mathematical formulation of MIP models,
resulting in the following encoded input vector (X), while also the decision variable
Xp,iy was described the output vector () (Figs. 7 and 8):
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X =[(((qlpllil¥i € D), (f [pllc]Vc € C))¥p € P), cli],d[c][]]
y =[x [Vp][Vi][Vt]]
Lz = pmaximax + PmaxCmax + imax + (Cmax)2

LY = imax fmax Pmax

Ly and Ly shown in the above equation represent the dimensions of the input and
output layers, respectively. In contrast to the model-based methodologies, neural
networks are consisted of a static number of I/O parameters, which contradicts to
the arbitrary scale of the scheduling problems. In order to address this issue, the
encoded input considers a prefixed maximum number of orders (pmax), items (imax),
color codes (cmax), and production duration (fmax). For cases where less than this
maximum number is provided as an input, the encoder generates additional orders
so as to fulfil the I/O layers of the neural network (NN) although sets the items
quantity to zero, which will have no effect on the allocation process; for cases with
more than the maximum numbers, the model is unable to encode the input. The
number of neurons per layer and the total number of trainable parameters for the
whole NN model are provided by the following formula:

neurons# = 2% Ly

params# = kazlayer [2" Lz <2k_1Ly + 1)]

Another data-driven approach has been developed that treats the scheduling
output as a time series from which the next allocations can be predicted based on
known previous values of the sequence. As such, the whole production schedule can
be generated in a recursive manner, reducing the model’s prediction variables which
improves the accuracy as well as avoiding any limitations regarding the problem’s
scalability. Similar to the above-mentioned approach, the ultimate objective is the
prediction of xj;, for all the given orders, items, and timesteps; however, in this
model a prediction is only applied for one timestep and is repeated for all the output
sequence. The input features of the LSTM neural network consist of a dynamic and
a static part. The dynamic part as presented below are the features that change as
moving in the time axis.

The allocation of all items over a specific timestep (carrier) is given by the
following vector:

x[1i] =[x [Vpl[Vil[]], 6 € N
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Fig. 9 Overview of LSTM RNN I/O layers design and how the specific input is derived as well as
how the output is represented

The following defines a variable that provides the number of remaining items of
an order at that given timestep, given the sequence of previous allocation selections:

I
Olpllillnl=qlplli]l - Zx [p1li11r]

t=0

Given the above formula, the following vector is defined:
Qi1 =[QVpIVills]], t; €N

Moreover, similar to the feed-forward NN model, some static information of the
workload revealing the colors, sizes, and setup delays must also be provided. The
final configuration of the input layer is shown in Fig. 9.

Figure 9 presents the format of the I/O model, which is required for the LSTM
model. Unlike MIP models, this method arises a problem in defining the first
allocations (¥ [0 : L]) as it requires historical information of a window (L), which
are not defined as the face a totally new schedule request. This problem is more
apparent in the training procedure as multiple scheduling results from different
workloads merged together into a single sequence to train the LSTM model. This
issue was addressed by adding L number of timesteps in the beginning of each
schedule, where L is the window of previous allocations that the model is using
for the prediction. These timesteps contained zero allocations of items and were
responsible only for fulfilling the input layer of the LSTM neural network model
(Fig. 10).
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Fig. 10 Each graph (row) shows the total number of allocations from a product over time. Each
graph contains two lines for display purposes

3.3 Deep Reinforcement Learning Scheduling Agent

The deep reinforcement learning (DRL) agent was selected to solve the dynamic
scheduling problem (DSP). According to Chien and Lan [45], the DSP is susceptible
to a number of uncertainties, including machine failures, the arrival of new, urgent
jobs, and changes to job due dates. In the literature there are several articles on
the DSP [46—49]. DRL agent is also combined with DNNs and deep Q-network to
approximate of a state action value function [50, 51]. The proposed DRL agent is
combined with a discrete event simulator in order for training and testing the DRL
model. In details, the DES that was used is the Witness Horizon from Lanner [52].
The DRL and DES communicated via API, where the API is provided by Witness
Horizon. In addition, except from API files, text files were used to exchange data
among the DES and DRL (see Fig. 11). The concept that was used for the DRL
agent is to purpose task allocation to resources via the use of dispatch rules. In the
literature there are several research works that study the use of RL agent combined
with dispatch rules [53].
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Fig. 11 DRL agent operation architecture

The Q-learning is an off-policy temporal difference algorithm and is based on
the idea of Q-function [54]. In the following equation, the Q7 (s, a;) is the expected
return of the discounted sum of rewards at state s; by taking action a;:

0" (st,a;) = maxzE [rz+1+Vrz+2+V2rz+3+-..ISx=s,az=a,n]

The main concept of the Q-learning is to use the Bellman equation as a value
iteration update. The agent in a decision point ¢ in a state s; € S selects an action
a; € A according to a policy m. Taking the action g, the agent gets to a state s, 4 |
with transition probability p(s;+1]s:, a;) € P(S x A — §) and reward r; € R.
Additionally, y is a discount factor at each timestep ¢. Also, a is a learning rate,
where 0 < a < 1. The objective for the agent is to find the optimal policy s> that
maximizes the expected sum of rewards. The Q-leaning has some limitations when
the environment is huge. For that reason, the deep Q-network (DQN) concept was
used. Coupled RL with deep learning techniques Q-tables can be replaced with
Q-function approximator with weights [55]. In order to solve the DSP problem,
due to the fact that the environment is huge, DRL DQN concept was used. Let
us denote as Q(s,a;0;) the approximate value using deep convolutional neural
network. Additionally, the ; are the weights at iteration i of the Q-network. The
experiences are denoted as e; = (s;,a;, 11, S; + 1) Where each time ¢ are stored to a
dataset D; = {eq, ..., e;}. Chosen uniformly at random an instance from the pool of
stored instances, a Q-learning update is applied of each experience (s, a, r, 5 )~U(D).

—_ 2
Li (0:) = E(s,a,r,5')~U(D) [(V +y maxy Q (s',a’;67) — Q (s, a; 6;)) ]
6; are the weights of the Q-network at the iteration i and 6, are the network

weights used to compute the target in iteration i. Target network parameters (6, ) are
updated with the Q-network parameters every c step, where c is a constant number.
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The state is a tuple of feature that characterizes a given input. This chapter
contains the stats of the resources (down, busy, and available), the stats of the tasks
(waiting, pending, on-going, and finished), and finally a list with the quantities or
the product orders. Moreover, an action describes the dispatch rule that is selected
by the DRL agent to propose the task allocation over resources.

3.4 Heuristic Optimization

The hierarchical scheduler is a decision-making module for extracting an efficient
order of required tasks [56]. The problem that the scheduler solves is the resource
allocation problem [57], where the problem seeks to find an optimal allocation
of a discrete resource units to a set of tasks. The heuristic algorithm is based
on the scientific research of [58]. It is based on the depth of search concept,
except the number of layers for which the search method looks ahead. The main
control parameters are the decision horizon (DH), the sampling rate (SR), and the
maximum number of alternatives (MNA). In each decision point, a decision tree
is created based on the DH, SR, and MNA. Figure 12 shows the nodes A; .... Ay
that represents decision point where a task is assigned to an operator. The proper
selection of MNA, DH, and SR allows the identification of a good solution. For
example, it is proven in [59] that the probability of identifying an alternative of good
quality (i.e., utility value within a range A with respect to the highest utility value)
is increasing with the MNA and A. The pseudocode of the algorithm is defined as
follows [60]:

Decision Horizon

[R1, T3] e [R2, T1]
~

. [R1, T5] el [R4, TJ]:. r Sample Rate

Maximum | Sl

Numberof | ( Root
Allernatives \\____/4\__

MR, T3 n[RE,TTY) oy

"oy [R7, T6]p-—»/[R15 T2]

Fig. 12 Search methodology example in tree-diagram showing the generation of different
branches and layers based on the MNA, DH, and SR
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Algorithm:
Three adjustable parameters, MNA, SR, DH
Initialize: MNA, SR, DH
while full schedule is not generated
Generate MNA-alternative-branches of allocations for DH-steps in
the future.
for each branch in alternatives:
Generate SR sub-branches of allocations from DH-step and for-
ward.
Calculate average score of SR sub-branches on each MNA branch.
Select alternative with the highest score.
Store allocations of the alternative for up to DH-steps
return: best alternative

For each decision tree, the algorithm returns a list with valid task-resource
allocations [61-64]. MNA and DH control the breadth and DH the depth of the
search, respectively. On the other hand, SR is used to direct the search toward
alternatives that can provide better quality solutions. Thus, the quality of the solution
depends on the selection of the MNA, DH, and SR.

4 Case Study

The proposed multi-agent scheduling framework was implemented, validated, and
evaluated for a case study from the bicycle production industry. For this work
and the deployment of Al scheduling agents in a production environment capable
of producing optimized long- or short-term scheduling, two departments were
chosen: painting and wheels assembly department. As already mentioned, there
were different types of scheduling agents. The purpose of using a multi-agent
system for the deployment of various scheduling applications is twofold. The first
reason is that with the realization of a multi-agent system, one can use an integrated
solution without affecting the other entities of the production system. An algorithm
can be developed separately, as a stand-alone application in a multi-agent system.
The second reason is that with a multi-agent system, there is the possibility for
automated cooperation between different applications to coordinate multiple assets
or functionalities. To combine both benefits of a multi-agent system capable of
solving different scheduling problems and combine its assets to solve more than
one scheduling problems at one, the implementation method proposed in this work
follows the deployment of different scheduling algorithms integrated in a multi-
agent system.
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The multi-agent system for the scheduling agents was developed with the use of
JANUS, an efficient and flexible agent-oriented programming framework that gives
the opportunity for easy and fast deployment of virtual assets. JANUS multi-agent
system framework is compatible with the programming language SARL and also
with JAVA. In this multi-agent system, there are four main concepts that need to be
defined before the deployment of any agent: agents, events, capacities, and skills.
The agent instance stands for all the operating sequences required for a specific
batch of functionalities and operations to happen when the agent needs to operate.
Agents’ communication and behavior is controlled by events, which are predefined
patterns that allow all the agents in the framework to interact one with another.
The term capacity refers to an abstract description for an implementation in skills,
which is used to define reusable capabilities of agent patterns without defining
implementation details. Lastly, the concept of skills is a manner of implementing
a capability, which allows exchange and modification of implementations based on
own or adapted skills without modifying the agent’s behavior or the template agent’s
characteristics. To address the scheduling multi-agent system using the JANUS
framework, the scheduling agents are modeled as agents in the JANUS framework,
capable of spawning and operating under the control of a meta-agent, which is
the orchestrator agent inside the multi-agent system. The scheduling agents have
specific skills, related to the problem-solving algorithm and the meta-agent concept
was integrated, in order to realize an automated and distributed cooperation of the
different agents inside the multi-agent system, when there is a scheduling request.
The user is able to interact with the multi-agent system in the backend of a Ul,
developed for the scheduling tasks visualization.

In practice, the meta-agent receives the scheduling request from the UI. This
scheduling request is modeled in an AAS, as already described in previous sections,
and the meta-agent is able to spawn the corresponding scheduling agent to solve a
particular scheduling problem. A scheduling agent is the parent “class” in JANUS
that implements events, skills, and methods, and can also consist of local variables.
Each one of the scheduling agents accommodated three MAS events:

* “Initialization,” where the scheduling agent has been spawned by the meta-agent
during the initialization of the framework and waits for a scheduling request
notification from the meta-agent. During the initialization of the agent, specific
scheduling agent parameters are defined and initialized, able to serve a specific
scheduling request type in the future.

e “Scheduling request,” where the meta-agent is requested to notify the corre-
sponding scheduling agent in order for the required scheduling computation to be
performed. After this event call, specific skills and operations are performed by a
scheduling agent in order for the scheduling algorithm to calculate the schedule.

e “Schedule response,” where the output of the scheduling task is emitted to all
other agents of the multi-agent system. When the scheduling agent finishes its
operation, the event notices every other agent in the framework that can listen to
this event.
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When a scheduling request reaches the multi-agent system, the meta-agent is
responsible for identifying the correct scheduler based on the request from AAS.
This AAS also contains information that, in addition to the scheduling task infor-
mation, will indicate the required scheduling agent, which is capable of performing
the scheduling task based on some predefined characteristics. After the scheduling
request, the meta-agent performs simple filtering in the provided information in the
AAS to choose the corresponding scheduling agent. Each scheduling agent has its
own input format. Since the JANUS meta-agent is responsible for the orchestration
of the scheduling task, it will pass the information to the appropriate scheduling
agent capable of performing the correct algorithm to compute the schedule.

As it was mentioned above, the reason for realizing a multi-agent system is
that a scheduler can be developed as a stand-alone application. Hence, to give
the ability to each scheduling agent to perform its scheduling skills without the
development of the algorithmic part inside the multi-agent system framework,
interfaces were utilized to perform the scheduling algorithms through the scheduling
agents’ skills. Moreover, a REST API was used for the agents to be able to reach
out the scheduler’s endpoint and pass information to the algorithm. On the other
hand, since there is not a certain point in time that the resulted response is expected,
RabbitMQ message exchange channel was utilized for the scheduler’s responses. Of
course, this is a design decision, and other protocols can be used to pass information
around the different entities.

In the case study, three different scheduling agents were implemented in the
multi-agent system, each one with its own characteristics and functionalities. To
validate the aforementioned multi-agent system implementation, the schedulers
developed and utilized were the following: (1) heuristic multi-objective scheduling
framework, (2) mixed integer programming (MIP) model optimizer for production
scheduling [65], and (3) a deep reinforcement learning (DRL) scheduler for dynamic
production scheduling. The first two agents were utilized to solve the scheduling
problem for the painting department of the bicycle industry, while the third one was
utilized to solve the scheduling problem of the wheels assembly department. The
first two agents were deployed with the goal of optimizing the scheduling sequence
of a painting line. The DRL agent was deployed with the goal of solving the dynamic
scheduling problem of a production system with uncertainties included.

The scheduling agents were deployed in the multi-agent system to support the
scheduling task of the bicycle production system. Nevertheless, since the application
should be used by a production manager in an industrial environment, a Ul was
required. The UI was developed with the scope to showcase the scheduling task with
all the mandatory assets in an efficient and user-friendly manner. The UI consists of
the scheduling task formulation tab, where the production manager selects the orders
that need to be scheduled and chooses the corresponding scheduler. There is also a
feature where the user can run all the supported schedulers and compare the results
before one actually can apply the schedule in the real production system. Results
are shown in another tab, and this is a common table for the scheduled production
orders. In addition, there is the opportunity for the user to show some production
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Multi-Agent System

Fainting Orders

Bk Assormbdy Agent

Bike Assambly Cyches
Scheduler Agent
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Fig. 13 UI multi-agent system tab

KPIs through the digital twin tab where a DES run of the resulted scheduling is
performed.

To validate the whole framework performance, discrete event simulation (DES)
was utilized. Two DES models were developed, representing the production envi-
ronments of the two departments from a bicycle production system. These DES
models were used to showcase the results of the scheduling request that the multi-
agent framework handled, as well as for the actual operation of the agent for
solving the dynamic scheduling problem. The heuristic and the MIP schedulers were
deployed for the painting department whereas the DRL scheduler was deployed
for the wheels assembly department. JANUS multi-agent system spawned all three
scheduling agents when the necessary information for accessing them is provided
within the AAS definition after the scheduling request formulated in the UL As
such, the user could choose any of the scheduling agents and, using the toolbox
of schedulers provided in the UI, address similar or different kinds of problems.
The user sent scheduling operations to the multi-agent system in an abstract manner
without the need to specify the corresponding problem. After the scheduling request
arrival, the meta-agent was responsible to spawn the required scheduling agent.
Seamless integration between the SARL software and the individual schedulers was
achieved.

The resulted framework implementation showed great potential in achieving
multi-agent scheduling optimization. The UI (Figs. 13 and 14) allows the user
to evaluate the resulted scheduling through the use of DES. Production KPIs are
presented and through the evaluation of the system performance on each occasion,
one can decide if the resulting schedule is efficient. Manual tests were made
in collaboration with the production manager, and the results were validated for
their accuracy and precision. Hence, the proposed scheduling multi-agent system
implementation for the bicycle production industrial environment can effectively
handle the workload distribution among its different scheduling agents in order to
propose the most appropriate production sequence.

Table 1 summarizes the agent results from testing the framework over some real-
life examples of the industrial use-case. The results do not directly translate on
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Digital Twin

Execute

Fig. 14 Ul digital twin tab

business KPIs and are the log from the schedulers. This is why the digital twin
component is necessary to reflect how these solutions fit into the overall production
scenario and inspect the performance.

5 Conclusion

In conclusion, the multi-agent system (MAS), digital twin (DT), Asset Administra-
tion Shell (AAS) concept, and artificial intelligence (Al) technology are part of the
Industry 4.0, and more and more researchers and industrial experts aim to combine
these technologies. Digital manufacturing is an important step for industries and
researchers, where there are many gaps and challenges to overcome. Digitalization
will enable automation, increase efficiency, real-time decision-making, flexibility,
and adaptability in industries. This work proposes a MAS framework that was
developed for the bicycle industry using the concept of AAS, DT, and MAS for the
production scheduling problem. A mathematical optimization, deep reinforcement
learning, heuristic algorithm, and deep learning algorithm have been developed
to address the identified problems. The key contribution of this work is the
use of the DT to accurately simulate the production environment and increase
the efficiency of the developed AI agents. The AAS concept is also used to
guarantee interoperable data transfer within MAS. Future research directions could
be considered the continuous exploitation of the DT and Al integrations. Moreover,
the AAS technology was used to fully parameterize the agents and the production
environment on the simulator.
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A Manufacturing Digital Twin )
Framework Qe

Victor Anaya, Enrico Alberti, and Gabriele Scivoletto

1 Introduction
1.1 Definition, Usages, and Types of Digital Twins

The manufacturing industry is continuously evolving, and digital twin (DT) technol-
ogy has become a prominent driving force in this transformation. DTs play a crucial
role in optimizing manufacturing processes, increasing productivity, and enhancing
product quality.

A digital twin (DT) is a digital representation of a physical entity or process
modeled with the purpose to improve the decision-making process in a safe and
cost-efficient environment where different alternatives can be evaluated before
implementing them. The digital twin framework (DTF) for manufacturing is a set
of components for making and maintaining DTs, which describe the current state of
a product, process, Or resource.

DTs have pace momentum due to their seamless integration and collaboration
with technologies such as 10T, machine learning (ML) algorithms, and analytics
solutions. DTs and ML solutions benefit in a bidirectional way, as DTs simulate
real environments, being a source of data for training the always data-eager ML
algorithms. DTs are a source of data that would be costly to acquire in other
conditions such as private data tied to legal and ethical implications, data labeling,
complex data cleaning, abnormal data, or data gathering that require intrusive
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processes. In the other direction, ML models are a type of simulation technique
that can be used to simulate processes and other entity behaviors for the DT. Some
of the algorithms that can be used for simulation are deep learning neural networks,
time-series-based algorithms, and reinforcement learning.

DTs are not specific software solutions, but they are a range of solutions that
support the improvement of physical products, assets, and processes at different
levels and different stages of the lifecycle of those physical assets [3]. Therefore,
in the manufacturing domain, DTs can have different scopes such as [1] the
following:

1. Process level—recreates the entire manufacturing process. Plant managers use
process twins to understand how the elements in a plant work together. Process
DT can detect interaction problems between processes at different departments
of a company.

2. System level—monitors and improves an entire production line. System-level
DTs cover different groups of assets in a specific unit and can be used for
understanding and optimizing assets and processes involved in the production
of a specific product [12].

3. Asset level—focuses on a single piece of equipment or product within the
production line. Asset DTs can cover cases such as the optimization of energy
consumption, the management of fleet performance, and the improvement of
personnel assignment based on skills and performance.

4. Component level—focuses on a single component of the manufacturing process,
such as an item of a product or a machine. Component-level twins help to
understand the evolution and characteristics of the modeled component, such
as the durability of a drill or the dynamics of a fan.

The creation of a digital copy of a physical object offers significant advantages
throughout its entire life cycle [4]. This includes the design phase, such as
product design and resource planning, as well as the manufacturing phase, such as
production process planning and equipment maintenance. Additionally, during the
service phase, benefits include performance monitoring and control, maintenance of
fielded products, and path planning. Finally, during the disposal phase, the digital
replica can facilitate end-of-life reuse, remanufacturing, and recycling efforts.

A DL framework is a toolkit that allows developers the creation of specific DT
instances, and as such is a complex system composed of several tools such as data
gathering and synchronization platforms, multi-view modelers, simulator engines,
what-if analytic reporting, and vast integration capabilities.

Data collection is a crucial aspect of feeding a digital twin in the manufacturing
industry. To ensure the accuracy and reliability of the DT’s representation, a robust
and efficient data collection platform is essential. Such platforms must possess
certain characteristics to meet the requirements of flexibility, availability, and
support manufacturing communication protocols, while also ensuring efficiency and
security. The data collection platform must have the ability to adapt to different types
of data inputs, including sensor readings, machine data, process parameters, and
environmental variables. This adaptability enables comprehensive data gathering,
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capturing a holistic view of the manufacturing process and all its interconnected
elements.

Ensuring availability is essential for a data collection platform to be effective.
Manufacturing operations typically operate continuously, demanding a constant
flow of real-time data. The platform should guarantee uninterrupted data acquisition,
seamlessly handling substantial data volumes promptly. It should offer dependable
connectivity and resilient infrastructure to prevent data gaps or delays, thereby
maintaining synchronization between the DT and its physical counterpart.

To connect to a range of devices, machines, and systems, support for manufactur-
ing communication protocols is crucial. Networked devices that adhere to specific
protocols are often utilized in production environments. The data collection platform
should therefore be able to interact via well-established protocols like OPC-UA!,
MQTT2, or Modbus?3. Rapid data transfer, synchronization, and seamless integration
are all made possible by this interoperability throughout the production ecosystem.

Finally, security is of utmost importance in data collection for DTs. Manu-
facturing data often includes sensitive information, trade secrets, or intellectual
property. The data collection platform must implement robust security measures,
including encryption, access controls, and data anonymization techniques, to protect
the confidentiality, integrity, and availability of the collected data. This ensures that
valuable manufacturing knowledge and insights remain protected from unauthorized
access or malicious activities.

The rest of this chapter is organized as follows: in the next subsection, we
explain DT usages in the manufacturing sector. In Sect. 2, we present the digital
twin framework. In Sect. 3, we present the case study and the methodology to
experimentally evaluate the proposed method. In Sect. 4, we discuss the conclusion.

1.2 Digital Twin in Manufacturing

Digital twin technology has a wide range of applications in manufacturing, includ-
ing predictive maintenance, quality management, supply chain management, and
customer experience. This technology can help predictive maintenance break-
through data fatigue and turn data into a competitive advantage [7]. By monitoring
equipment data in real time, the DT can predict equipment failures before they
occur, reducing downtime and increasing productivity. In a study, DTs of well-
functioning machines were used for predictive maintenance, and the discrepancies
between each physical unit and its DT were analyzed to identify potential issues
before they become critical [8].

1 OPC Unified Architecture. https://opcfoundation.org/about/opc-technologies/opc-ua/
2 MQTT. https://mqtt.org/
3 Modbus. https://modbus.org/
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* Predictive Maintenance and Process Optimization: DTs enable manufacturers to
monitor equipment performance and predict potential failures or malfunctions,
leading to timely maintenance and reduced downtime. Additionally, DTs can
optimize manufacturing processes by simulating different scenarios and identi-
fying bottlenecks and inefficiencies [9].

* Quality Control and Inspection: DTs can play a critical role in quality control
and inspection processes in manufacturing. By creating a virtual replica of the
manufactured product, DTs can detect deviations from the desired specifications
and suggest corrective actions to ensure optimal quality [10]. Additionally,
DTs can help in automating inspection processes, reducing human error, and
increasing efficiency [11].

* Production Planning and Scheduling: By simulating the production environment,
DTs can assist in creating optimized production schedules and plans, considering
various constraints such as resource availability, lead times, and capacity utiliza-
tion [13]. DTs can also support real-time adjustments to the production plan,
allowing manufacturers to adapt to unforeseen events or disruptions [14].

» Workforce Training and Skill Development: The integration of DT technology
in manufacturing can facilitate workforce training and skill development. By
simulating the production environment and processes, DTs enable workers to
practice and enhance their skills in a virtual setting, reducing the learning curve
and minimizing the risk of errors during real-world operations. Furthermore, DT's
can provide personalized training and feedback based on individual performance,
promoting continuous improvement [15].

e Supply Chain Integration and Visibility: DTs can enhance supply chain inte-
gration and visibility in manufacturing by providing real-time information and
analytics about various aspects of the supply chain, such as inventory levels, lead
times, and supplier performance [16]. This increased visibility enables better
decision-making and collaboration among supply chain partners, ultimately
improving the overall efficiency and responsiveness of the supply chain.

2 knowlEdge Manufacturing Digital Twin Framework

2.1 Digital Twin Standardization Initiatives

There are many articles referencing potential DT architectures, which provide
different forms of naming for the main components and layers of the DT architecture
[2, 5, 6].

Most of those DT architectures summarize a DT from a mathematical point of
view as a five-dimensional model defined as follows [4]:

DT = F (PS, DS, P2V, V2P, OPT) (1)
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where DT refers to digital twin, that is expressed as a function (F) aggregating: the
physical system (PS), the digital system (DS), an updating engine that synchronizes
the two words (P2V), a prediction engine that runs prediction algorithms (V2P), and
an optimization dimension containing optimizers (OPT).

One of the most relevant initiatives to standardize a DT’s main building blocks
is the one proposed by ISO 23247 [17] comprising a DT framework that partitions
a digital twinning system into layers defined by standards. The framework is based
on the Internet of Things (IoT) and consists of four main layers:

* Observable Manufacturing Elements: This layer describes the items on the
manufacturing floor that need to be modeled. Officially, it is not part of the
framework, as it already exists.

* Device Communication Entity: This layer collates all state changes of the
observable manufacturing elements and sends control programs to those elements
when adjustments become necessary.

* Digital Twin Entity: This layer models the DTs, reading the data collated by the
device communication entity and using the information to update its models.

» User Entities: User entities are applications that use DTs to make manufacturing
processes more efficient. They include legacy applications like ERP and PLM, as
well as new applications that speed up processes.

On the other hand, the Digital Twin Capabilities Periodic Table (CPT) [16] is a
framework developed by the Digital Twin Consortium to help organizations design,
develop, deploy, and operate DTs based on use case capability requirements. The
CPT is architecture and technology agnostic, meaning it can be used with any
DT platform or technology solution. The framework clusters capabilities around
common characteristics using a periodic-table approach:

The CPT framework clusters capabilities into the following main clusters:

* Data Management: This cluster includes capabilities related to data access,
ingestion, and management across the DT platform from the edge to the cloud.

* Modeling and Simulation: This cluster includes capabilities related to the
creation of virtual models and simulations of real-world entities and processes.

* Analytics and Artificial Intelligence: This cluster includes capabilities related
to the use of analytics and artificial intelligence to analyze data and generate
insights.

» Visualization and User Interface: This cluster includes capabilities related to the
visualization of digital twin data and the user interface used to interact with the
DT

» Security and Privacy: This cluster includes capabilities related to the security and
privacy of DT data and systems

» Interoperability and Integration: This cluster includes capabilities related to the
integration of DT systems with other systems and the interoperability of DT data
with other data sources.

ISO 23247 and the Digital Twin Capabilities Periodic Table are generic frame-
works that are worth taking into consideration when developing a digital twin
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framework because they provide a consistent and structured approach to digital
twin implementation. Section 2.3 presents the alignment carried out between the
knowlEdge Digital Twin Framework and the ISO 23247.

2.2 knowlEdge Digital Twin Framework

The knowlEdge DT framework is a toolkit solution composed of a set of modeling,
scheduling, visualization, analysis, and data gathering and synchronization compo-
nents that is capable to create instances of manufacturing digital twins at different
scopes and phases of the product, process and asset lifecycle.

The components composing the solution (see Fig. 1) are described as follows:

o Sensor Reader Interface: This interface is composed of the set of field protocols
needed for connecting the pilots’ sensors to the knowlEdge Data Collection
Platform [18]. The interface has to be aware of the details of the protocols in
terms of networking, configuration, and specific data model.

e Sensor Protocol Adapter: Once one data has been read, the sensor protocol
adapter can distinguish whether the data is meaningful for the Data Collection
Platform or has to be collected and presented as raw data.

* Unified Data Collector: The module is responsible to add the semantic to the
lower-level object and make them available to the upper level.

* Data Model Abstractor: The Data Model Abstractor unifies the different infor-
mation models that depend on the specific field protocol to hide that information
when the data is presented to the real-time broker.

* Data Ingestion: This interface is responsible for offering different mechanisms to
communicate with the DTS’ framework, such as MQTT or REST API services.

* Platform Configurator: The platform configurator exposes a REST API for the
configuration of all the internal and external modules. Examples of configura-
tions are the topic where the platform publishes the data, the configuration of
the platform when a new sensor is been plugged into the system, its information
model, etc.

e DT Designer UI Interface:

— DT Domain Model UI: this is the Ul interface that allows an IT person or a
skilled operator to define the DT domain data model, that is, the digital assets
containing the model, with their features and to assign to them their behavior
and its graphical representation. This UI will provide subsections to specify
simulation services.

— DT Visual Editor: this component allows to edit 3D elements that will be used
to animate 3D visualization when needed.

e DT Ul Interface: It is the end-user UI set of interfaces used for running
simulations and visualizing results through reports.
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Fig. 1 Digital twin framework architecture

* DT User View Backend: It is the backend engine that according to the decision
view of the digital twin can represent the different widgets (indicators, tables, 3D
view) that were defined in design time.

e Digital Domain Model Manager: This is the main backend of the DT. It is in
charge to create new DT instances based on data model definitions and connect
them to existing simulators and other Al algorithms (such as reinforcement
learning for production scheduling, neural networks for simulating the energy
consumption of manufacturing machines). Domain Data Models contain the
digital entities that will be part of the digital twin model, that is, the machines,
resources, places, and people. The Digital Domain Model Manager will support
the decomposition of digital elements in their parts through trees, and their
connection with the physical objects through the knowlEdge real-time brokering
component.

e DT Data Aggregator: It is the backend component in charge of maintaining the
DT model synchronized with the physical counterparts and offering APIs with
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the rest of the components of the architecture. One of its components is the
context broker, which is based on the FIWARE Stellio Context Broker®.

* 3D Visualization Engine: This component can render 3D scenes of the simula-
tions when a design is provided. Their results can be embedded into dashboards
used by the operators when running simulations.

* Behavior Manager: This component is in charge of keeping a linkage with
endpoints of the algorithms that define the behavior of digital things, for instance,
a linkage to the knowlEdge HP Al component that provides a REST API to the
repository of knowledge Al algorithms that are to be tested using the DT. This
subcomponent is also in charge of keeping a repository of linkages to simulators
and other algorithms through a REST API that can be third-party solutions
provided by external providers. The behavior manager has a scheduler engine
that runs simulations according to time events or data condition rules that are
executed against the DT model that is being filled with data from the IoT devices.

2.3 knowlEdge Digital Twin Framework Alignment
with Current Initiatives

The importance of aligning the knowlEdge DT framework to the ISO 23247
standard on DTs cannot be overstated. The ISO 23247 series defines a framework
to support the creation of DTs of observable manufacturing elements, including
personnel, equipment, materials, manufacturing processes, facilities, environment,
products, and supporting documents. Aligning the knowlEdge DT framework to
the ISO 23247 standard can help ensure that the framework follows recognized
guidelines and principles for creating DTs in the manufacturing industry. The
following are the specific blocks of the ISO 23247 standard that have been aligned
to the knowlEdge DT framework:

e The knowlEdge DT has considered the terms and definitions provided by ISO
23247 standard to ensure that the framework is consistent with the standard.

¢ The knowlEdge DT provides many of the ISO 23247’s functional entities (see
Fig. 2, where the different colors are used to emphasize which functional entity
from the ISO 23247 is covered by each functional block of the knowlEdge DT). It
supports all the ISO 23247 functional entities based on the rest of the components
provided by the knowlEdge project. This ensures that the framework meets the
needs of the manufacturing industry.

e The knowlEdge DT provides a Graphical DT Domain Data Modeler Editor that
has been customized with the ISO 2347 Observable Manufacturing Elements,
so users define the digital things using the exact terminology of the standard,

4 https://stellio.readthedocs.io/en/latest/index.html
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such as Personnel, Equipment, Material, Manufacturing Processes, Facilities,
Environment, Products, and Supporting Documents.

e The knowlEdge DT provides integration mechanisms that make its usage in the
application and services described in ISO 2347 possible.

3 knowlEdge Digital Twin for Process Improvement

DTs have become an essential tool for improving shop floor processes in the
manufacturing industry. One specific application of a DT is for scheduling process
improvement. By using a DT, manufacturers can optimize their production sched-
ules to improve efficiency and reduce costs. The following is a description of how
the DT framework was applied to a dairy company within the knowlEdge project to
improve the management, control their processes, and automatize the scheduling of
the weekly production of yoghurt.

The knowlEdge Data Collection Platform (DCP) is used to connect to the shop
floor for gathering production and demand data. The platform was integrated with
various sensors and devices to collect data in real time. The DCP was also used to
collect data from various sources, such as the company’s ERP>. By collecting data
from various sources, manufacturers can get a complete picture of their production
and demand data. The data was passed through the data collection platform for
filtering, formatting and normalization. This assured the proper quality of data and
ensured that the DT is accurate and reliable (see Fig. 3).

"timestamp":"<Timestamp of msg reception>",

"originalTimestamp": "<Original timestamp in payload (optional)>",
"sourceType":"<same as in topic specs>",

"sourceID":"<same as in topic specs>",

"infoType":"<same as in topic specs>",

"dataType":"<same as in topic specs>",

"dataItemID":"<same as in topic specs>",
"metricTypelID":"<identifies how to interpret the metricValue>",
"metricValue":"<Value>",

"measureUnit":"<Measure Unit related to the Value (optional)>"

Fig. 3 Standard format for exchanging information among knowledge components

5 Enterprise Resource Planning.
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The processed data is pushed through an MQTT broker to the DT framework.
The DT uses the data to model the behavior and performance of the manufacturing
process. The DT framework was used to model the plant using ISO 2347 Observable
Manufacturing Elements concepts (see Fig. 4).

The DT framework was also used to simulate different mechanics of scenarios
to identify opportunities for process improvement, specifically for computing a
production schedule based on metaheuristic rules provided by the company and
for simulating the execution of the schedules based on what-if scenarios, allowing
the manufacturing operators to select the optimal production plan according to a
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range of aspects such as timestamp, resource occupation, uncertainty resilience, or
customer satisfaction. Figure 5 shows a partial view of the dashboard generated
using the DT Decision View and populated with the information and the results of
the DT simulators.

4 Conclusions

Digital twin technology has the potential to revolutionize the manufacturing industry
by optimizing processes, increasing productivity, and enhancing product quality.
By leveraging advanced digital techniques, simulations, and hybrid learning-based
modeling strategies, DT technology can help overcome the challenges faced by
traditional manufacturing methods and pave the way for the next generation of smart
manufacturing.

This chapter has presented the knowlEdge DT framework, an open-source toolkit
of DT modules supporting the modeling of physical assets and processes, and
the execution of functional and Al-based simulators for the execution of what-if
scenarios for improving the decision-making process. The tool has been used to also
for the generation of synthetic data for training Al algorithms. It is composed of a
set of modules as a DT Data Modeler, 3D twin modeler, IoT Ingestion Connector,
Simulator/Al Manager and Repository, Event Scheduler, DT Live Dashboard, and
the Data Collection Platform.

The DT Framework proposed was successfully used for creating a manufacturing
DT instance for generating weekly manufacturing schedules based on a rule-based
simulator and a discrete event simulator. The company where it was applied has
improved their reactiveness to incidents occurring on the shop floor, optimizing the
rescheduling process accordingly.

As more case studies and practical implementations emerge, the true potential of
DT technology in manufacturing will become increasingly apparent, driving further
transformation and innovation in the industry.
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Approaches in Manufacturing ke
Environments
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Alberto Botana Lépez, Jose Angel Segura Muros, Afra Maria Petrusa Llopis,
Jawad Masood, and Santiago Muifios-Landin

1 Introduction

Over the past few decades, there has been a significant surge in the digitalization and
automation of industrial settings, primarily driven by the adoption of Industry 4.0
principles. At its essence, Industry 4.0 aims to establish a world of interconnected,
streamlined, and secure industries, built upon fundamental concepts such as the
advancement of cyber-physical systems (CPS) [1-3], the Internet of Things (IoT)
[4-6], and cognitive computing [7].

Computer numerical control machines (CNCs) play a pivotal role in aligning
with the principles of Industry 4.0 [8-10], facilitating automated and efficient
manufacturing of intricate and high-quality products. They have revolutionized
various industries such as woodworking, automotive, and aerospace by enhanc-
ing automation and precision. By automating industrial processes, CNCs reduce
the need for manual labor in repetitive and non-value-added activities, fostering
collaboration between machine centers and human operators in factory settings
[11]. Moreover, CNCs’ modular design and operational flexibility empower them to
perform a wide range of applications with minimal human intervention, ensuring the
creation of secure workspaces through built-in security measures. These machines
often incorporate advanced sensing and control technologies, optimizing their
performance and minimizing downtime.

In parallel with the rapid adoption of CNCs in the market, simulation techniques
have evolved to meet the industry’s latest requirements. The emergence of the digital
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twin (DT) [3] concept has particularly contributed to advancing cyber-physical
systems (CPS) by establishing seamless coordination and control between the cyber
and physical components of a system [12]. While there is no universally accepted
definition of digital twin, it can be understood as a virtual representation of a
physical machine or system. DTs offer numerous advantages for controlling and
analyzing the performance of physical machines without the need for direct physical
intervention. By conducting research and testing on virtual representations instead
of physical machines, specialists can experiment and evaluate process performance
from technological and operational perspectives, conserving physical resources and
avoiding associated costs such as energy consumption, operational expenses, and
potential safety risks during the research and development stages [13, 14].

The exponential growth of data generated by machines, coupled with the inte-
gration of information from their digital twins [3], has opened up new possibilities
for data-driven advancements [12]. These developments leverage state-of-the-art
analysis techniques to optimize processes in an adaptive manner. In the realm of
robotics and automation, reinforcement learning has emerged as a foundational
technology for studying optimal control. Reinforcement learning [15—17], a branch
of Artificial Intelligence (AI), revolves around analyzing how intelligent agents
should behave within a given environment based on a reward function. The
underlying principle of RL draws inspiration from various fields of knowledge,
including social psychology. In RL algorithms, intelligent agents interact with
their environment, transitioning between states to discover an optimal policy that
maximizes the expected value of their total reward function. These algorithms hold
tremendous potential for overcoming existing limitations in the control of robotic
systems at different length scales [18], offering new avenues for advancements in
this field.

A significant challenge in the realm of mobile industrial machinery lies in
designing path trajectories that effectively control robot movement [19-22]. Tradi-
tionally, computer-aided design (CAD) and computer-aided manufacturing (CAM)
systems are utilized to generate these trajectories, ensuring adherence to security
specifications such as maintaining a safe distance between the robot-head and
the working piece to prevent product damage. However, these path trajectories
often exhibit discontinuities and encounter issues in corners and curves due to the
mechanical limitations of the physical machinery. Moreover, factors such as overall
distance or the number of movements between two points, as well as the possibility
of collisions among the robot’s moving parts, are not efficiently optimized by these
systems.

The optimization of path trajectories becomes increasingly complex as the
number of movement dimensions and potential options for movement increases. In
this context, reinforcement learning emerges as a promising solution for addressing
high-dimensional spaces in an automated manner [23, 24], enabling the discovery
of optimal policies for controlling robotic systems with a goal-oriented approach.
Reinforcement learning algorithms offer the potential to tackle the challenges
associated with path trajectory optimization, providing a framework for finding
efficient and effective movement strategies for robotic systems [25]. By leverag-
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ing reinforcement learning techniques, mobile industrial machinery can navigate
complex environments and optimize their trajectories, taking into account multiple
dimensions of movement and achieving superior control and performance through
an enhanced perception that represents the knowledge developed by reinforcement
learning systems.

2 Reinforcement Learning

Reinforcement learning (RL) [15, 16] is widely recognized as the third paradigm of
Artificial Intelligence (Al), alongside supervised learning [26, 27] and unsupervised
learning [28]. RL focuses on the concept of learning through interactive experiences
while aiming to maximize a cumulative reward function. The RL agent achieves
this by mapping states to actions within a given environment, with the objective of
finding an optimal policy that yields the highest cumulative reward as defined in the
value function.

Two fundamental concepts underpin RL: trial-and-error search and the notion of
delayed rewards. Trial-and-error search involves the agent’s process of selecting
and trying different actions within an initially uncertain environment. Through
this iterative exploration, the agent gradually discovers which actions lead to the
maximum reward at each state, learning from the outcomes of its interactions.

The concept of delayed rewards [15, 26] emphasizes the consideration of not only
immediate rewards but also the expected total reward, taking into account subse-
quent rewards starting from the current state. RL agents recognize the importance of
long-term consequences and make decisions that maximize the cumulative reward
over time, even if it means sacrificing immediate gains for greater overall rewards.

By incorporating trial-and-error search and the notion of delayed rewards,
RL enables agents to learn effective policies by actively interacting with their
environment, continuously adapting their actions based on the feedback received,
and ultimately maximizing cumulative rewards.

Reinforcement learning (RL) problems consist of several key elements that work
together to enable the learning process. These elements include a learning agent, an
environment, a policy, a reward signal, a value function, and, in some cases, a model
of the environment. Let’s explore each of these elements:

1. Learning agent: The learning agent is an active decision-making entity that
interacts with the environment. It aims to find the optimal policy that maximizes
the long-term value function through its interactions. The specific approach and
logic employed by the learning agent depend on the RL algorithm being used.

2. Environment: The environment is where the learning agent operates and
interacts. It can represent a physical or virtual world with its own dynamics and
rules. The environment remains unchanged by the actions of the agent, and the
agent must navigate and adapt to its dynamics to maximize rewards.
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3. Policy: The policy determines the behavior of the learning agent by mapping
states in the environment to the actions taken by the agent. It can be either
stochastic (probabilistic) or deterministic (fixed), guiding the agent’s decision-
making process.

4. Reward signal: The reward signal is a numerical value that the agent receives as
feedback after performing a specific action in the environment. It represents the
immediate feedback obtained during state transitions. The goal of the agent is to
maximize the cumulative rewards over time by selecting actions that yield higher
rewards.

5. Value function: The value function represents the expected total reward obtained
by the agent in the long run, starting from a specific state. It takes into account
the sequence of expected rewards by considering the future states and their
corresponding rewards. The value function guides the agent in estimating the
desirability of different states and helps in decision-making.

6. Model (optional): In some cases, RL algorithms incorporate a model of the
environment. The model mimics the behavior of the environment, enabling the
agent to make inferences about how the environment will respond to its actions.
However, in model-free RL algorithms, a model is not utilized.

In a typical reinforcement learning (RL) problem, the learning agent interacts
with the environment based on its policy. The agent receives immediate rewards
from the environment and updates its value function accordingly. This RL frame-
work is rooted in the Markov decision process (MDP) [28], which is a specific
approach used in process control.

RL has been proposed as a modeling tool for decision-making in both biological
[29] and artificial systems [18]. It has found applications in various domains such
as robotic manipulation, natural language processing, and energy management.
RL enables agents to learn optimal strategies by exploring and exploiting the
environment’s feedback. Inverse RL, which is based on hidden Markov models, is
another extensively studied topic in the field. Inverse RL aims to extract information
about the underlying rules followed by a system that generate observable behavioral
sequences. This approach has been applied in diverse fields including genomics,
protein dynamics in biology, speech and gesture recognition, and music structure
analysis. The broad applicability of RL and its ability to address different problem
domains make it a powerful tool for understanding and optimizing complex systems
in various disciplines.

Through iterative interactions, the agent adjusts its policy and value function to
optimize its decision-making process and maximize cumulative rewards. Figure 1
illustrates the common interaction flow in an RL problem.

As previously mentioned, the learning agent is situated within and interacts with
its environment. The environment’s state reflects the current situation or condition,
defined along a set of possible states denoted as S. The agent moves between states
by taking actions from a set of available actions, denoted as A. Whenever the
agent chooses and performs an action o from A, the environment E undergoes a
transformation, causing the agent to transition from one state S to another S’, where
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Fig. 1 Reinforcement learning classic feedback loop

(S, §")eS. Additionally, the agent receives a reward y based on the chosen action .
The ultimate objective of the agent is to maximize the expected cumulative reward
Rt over the long term, which can be estimated and reestimated through the learning
process of the agent to include and adapt to the new knowledge acquired.

A significant challenge in RL is striking the right balance between exploration
and exploitation. On one hand, it is advantageous for the agent to exploit its existing
knowledge gained from past experiences. By selecting actions that have previously
yielded high rewards, the agent aims to maximize the cumulative reward over time.
On the other hand, exploration is crucial to enable the agent to discover new states
and potentially identify better actions, thus avoiding suboptimal policies. Different
RL algorithms employ various approaches to address this trade-off.

A fundamental characteristic of MDPs and RL is their ability to handle stochastic
influences in the state—action relationship. This stochasticity is typically quantified
by a transition function, which represents a family of probability distributions that
describe the potential outcomes resulting from an action taken in a particular state.

By knowing the transition function, the agent can estimate the expected outcomes
of applying an action in a state by considering all possible transitions and their
corresponding probabilities. This analysis allows the agent to assess the desirability
or undesirability of certain actions.

To formalize this process, a value function U is defined [16]. The value function
assigns a numerical value to each state, representing the expected cumulative reward
the agent can achieve starting from that state and following a specific policy. It
serves as a measure of the desirability or utility of being in a particular state.

The value function helps guide the agent’s decision-making process by allowing
it to compare the potential outcomes and make informed choices based on maximiz-
ing the expected cumulative reward over time.

U*(s) = m]?xE (Z y'r,)

=0

Indeed, the parameter y in the value function equation is widely referred to as the
discount factor. It plays a pivotal role in regulating the importance of future events
during the decision-making process, considering the delayed nature of rewards.
By adjusting the discount factor, one can determine the relative significance of
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immediate rewards compared to future rewards. In the optimal value function
equation, the discount factor appears to discount future rewards geometrically
[15, 16]. This means that rewards obtained in the future are typically weighted
less compared to immediate rewards. However, it’s important to note that the
specific value and impact of the discount factor depend on the chosen model of
optimality. There are three main models of optimality that can be considered: finite
horizon, infinite horizon, and average reward. In the infinite horizon model, which
we are focusing on here, the discount factor is used to discount future rewards
geometrically.

In the equation, the policy function 7 represents the mapping from states to
actions and serves as the primary focus of optimization for the RL agent. It
determines the action to be taken in each state based on the agent’s acquired
knowledge. The asterisk (*) symbol signifies the “optimal” property of the function
being discussed, indicating that the equation represents the value function associated
with the optimal policy.

One can extend the expression of the optimal value by writing the expected value
of the reward using the transition function T as

U*(s) = max | r (s,a) ~|—y2 T (s, a, s/) U* (s)

ses

This is the Bellman equation, which is a fundamental concept in dynamic
programming. It encompasses the maximization operation, highlighting the non-
linearity inherent in the problem. The solution to the Bellman equation yields the
policy function, which determines the optimal actions to be taken in different states.

n*(s) = argmax |:r (s.a)+y) T (s, a, s/) U* (s'):|

seS

As mentioned above, it returns the action to be applied on each state so that once
converged it returns the best action to be applied on each state.

The value function within a MDP can be also expressed or summarized in a
matrix that stores the value associated with an action a in a given state s. This matrix
is typically called Q-matrix and is represented by

U*(s) = rn;le* (s, a)

so that the Bellman equation results

Q% (s,a) =r(s,a) + YZ T (s, a, s/> m;le* <s,, al>

ses
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The opening to what is commonly known as Q-learning is generally facilitated
by this approach. It is important to note that the system’s model, also known as the
transition function, may either be known or unknown. In the case of model-based
Q-learning, the model is known, while in model-free Q-learning, it is not. When
dealing with an unknown model, the temporal differences approach has proven to
be an effective tool for tackling strategy search problems in actual systems. In this
approach, the agent is not required to possess prior knowledge of the system’s
model. Instead, information is propagated after each step, eliminating the need
to wait until the conclusion of a learning episode. This characteristic renders the
implementation of this method more feasible in real robotic systems.

2.1 Toward Reinforcement Learning in Manufacturing

Teaching agents to control themselves directly from high-dimensional sensory
inputs, such as vision and speech, has long been a significant challenge in RL. In
many successful RL applications in these domains, a combination of hand-crafted
features and linear value functions or policy representations has been utilized. It is
evident that the performance of such systems is heavily dependent on the quality of
the feature representation employed.

In recent years, deep learning has witnessed significant progress, enabling
the extraction of high-level features directly from raw sensory data. This break-
through has had a transformative impact on fields such as computer vision and
speech recognition. Deep learning (DL) techniques leverage various neural network
architectures such as convolutional networks, multilayer perceptrons, restricted
Boltzmann machines, and recurrent neural networks. These architectures have
successfully employed both supervised and unsupervised learning approaches.
Given these advancements, it is reasonable to inquire whether similar techniques
can also benefit reinforcement learning (RL) when dealing with sensory data.

The advancements in deep learning (DL) [30] have paved the way for deep
neural networks (DNNs) to automatically extract compact high-dimensional rep-
resentations (features). This capability is particularly useful for overcoming the
dimensional catastrophe, commonly encountered in domains such as images, text,
and audio. DNNs possess powerful representation learning properties, enabling
them to learn meaningful features from raw data. Deep reinforcement learning
(DRL) [31] refers to a class of RL algorithms that leverage the representation
learning capabilities of DNNs to enhance decision-making abilities.

The algorithm framework for DNN-based RL is illustrated in Fig. 2. In DRL, the
DNN plays a crucial role in extracting relevant information from the environment
and inferring the optimal policy % in an end-to-end manner. Depending on the
specific algorithm employed, the DNN can be responsible for outputting the Q-value
(value-based) for each state—action pair or the probability distribution of the output
action (policy-based). The integration of DNNs into RL enables more efficient and
effective decision-making by leveraging the power of representation learning.
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DNN
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¢ Reward
State Samplig
observation . action
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Fig. 2 Representation of the deep reinforcement learning (DRL) feedback loop

Such scenario made much more accessible or tractable classic problems in
manufacturing frameworks to RL approaches. In the following section we present
two cases where RL has migrated to DRL to address specific problems within
manufacturing environments.

3 Deep Reinforcement Learning in Virtual Manufacturing
Environments

In this section, we present two distinct examples that demonstrate the advancements
made in RL, specifically in the context of deep reinforcement learning (DRL). These
examples involve the application of RL within a virtual environment, which allows
for the development of strategies that can later be translated to real systems. This
approach opens up the possibility of deploying this technology in manufacturing
environments.

One key advantage of utilizing virtual environments is that it mitigates the
significant amount of learning episodes typically required by RL agents to develop
an optimal policy. In a real manufacturing system, the time needed to explore numer-
ous strategies would make the process highly inefficient for reaching an optimal
solution. Moreover, certain strategies may introduce risks, such as safety concerns,
that cannot be easily managed or assumed in a manufacturing environment. For
instance, in the second example, robotic systems operating collaboratively may pose
safety risks, while in the first example, machines with high power consumption may
introduce operational risks.

By leveraging virtual environments [32, 33], RL techniques can be effectively
applied to develop optimal strategies while minimizing risks and reducing the time
and costs associated with experimentation in real systems. This approach enables
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the integration of RL technology into manufacturing environments, paving the way
for enhanced efficiency, productivity, and safety [34-36]. Considering these issues,
the development of digital environments (such as simulation platforms or digital
twins) has been taken as the ideal scenario to train RL agents until the systems
reach certain level of convergency or, in other words, trustworthiness. Once, certain
strategies have reached a reasonable point, they can be tested in real scenario, and
even a reduced optimization process can take place at that point to finally find the
optimal strategy in the real context.

In this sense, the quality of the virtual context or the divergency with respect to
the real process, becomes critical for the achievement of an optimal strategy later in
the real world. However, the optimal digitalization of processes is out of the scope
of this chapter.

The two scenarios presented in this section address the optimization of two
different systems. The first one is the optimization of trajectories in a CNC cutting
machine designed for different operations over large wood panels. The problem in
this case is the optimization of the path between two different operations (cutting,
drilling, milling, etc.). The second scenario faces the robotic manipulation of a
complex material. In particular, the problem is the manipulation of fabric by two
robotic arms in order to reduce wrinkles. These problems have been addressed
within specifically developed digital environments to deliver optimal strategies that
are later tested in the real system.

3.1 CNC Cutting Machine

The digital twin (DT) of the physical CNC presented here was developed and shared
by one of the partners along the MAS4AI Project (GA 957204) within the ICT-38 Al
for manufacturing cluster for the development of the RL framework. The DT is built
on X-Sim, and it incorporates the dynamics of the machine, its parts, and the effects
on the working piece, simulating the physical behavior of the CNC. The CNC of
our study was a machining center for woodworking processes, more specifically for
cutting, routing, and drilling.

The machine considered (not shown for confidentiality issues) consists of a work-
ing table in which wood pieces are located and held throughout the woodworking
process and a robot-head of the CNC, which is responsible for performing the
required actions to transform the raw wood piece into the wood product (Fig. 3).

The model-based machine learning (ML) agent developed in this context aims at
optimizing the path trajectories of the five-axes head of a CNC within a digital twin
environment. Currently, the DT CNC enables the 3D design of the wood pieces by
users, creating all the necessary code to control the physical CNC.

Controlling a five-axes head automatically in an optimized way is yet an
engineering challenge. The CNC must not only perform the operation required to
transform the wood piece into the desired product, but it must also avoid potential
collisions with other parts of the machine, control the tools required by the head
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- Jif

Fig. 3 Movements of the robot head in its five-axes

of the robot, and keep times short reducing unnecessary movements to enhance
productivity and save energy, while ensuring the machine integrity and safety of
operators throughout the process, as well as high-quality products.

In this context, a model-based ML agent based on a DRL framework was trained
to optimize the path trajectories of the five-axes head of the CNC in order to avoid
potential collisions while optimizing the overall time operation. The difficulty of
working in a five-dimensional space (due to the five-axis robot head) is increased by
the dimensions of the working table of the CNC, which goes up to 3110 x 1320 mm.
In the DT environment, the measurement scale is micrometers, resulting in more
than 4,105,200 million states to be explored by the agent in a discrete state—action
space only in the plane XY of the board, without considering the extra three-axes of
the robot head. This complex applicability of discrete approaches is the reason why
only a continuous action space using Deep Deterministic Policy Gradient (DDPG)
[37] is shown here.

The model-based AI CNC agent was trained to work considering different
operations. The ultimate goal of the agent is to optimize the path trajectories
between two jobs in a coordinated basis considering the five-axes of the CNC head.
For this reason, the inputs of the model are the coordinates of the initial location, i.e.,
state of the five-axes head, and the destination location or a label representing the
desired operation to be performed by the CNC. The agent returns the optimized path
trajectory to reach the goal destination by means of a set of coordinates representing
the required movements of the five-axes head. Currently, the agent has been trained
separately to perform each operation independently. In a future stage, a multi-goal
DRL framework was explored in order to enhance generalization.

Different operations and different learning algorithms were explored during the
development of the deep RL framework, including 2-D, 3-D, and 5-D movements
of the five-axes head of the CNC, different path trajectories to be optimized, and
different learning algorithms including Q-learning [15, 38], deep Q-learning (DQL)
[39], and DDPG.

As seen previously, Q-learning is a model-free, off-policy RL algorithm that
seeks to find an optimal policy by maximizing a cost function that represents the
expected value of the total reward over a sequence of steps. It is used in finite
Markov decision processes (stochastic, discrete), and it learns an optimal action-
selection policy by addressing the set of optimal actions that the agent should take
in order to maximize the total reward (R;). The algorithm is based on an agent, a set
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Fig. 4 Actor—critic architecture workflow [41]

of actions A, a set of states S, and an environment E. Every time the agent selects and
executes an action a € A, the environment E is transformed, and the agent transitions
from one state, s, to another, s’, with (s, s”) € S, receiving a reward r according to
the action selected.

DDPG is an off-policy algorithm that simultaneously learns a Q-function and a
policy based on the Bellman equation in continuous action spaces. DDPG makes
use of four neural networks, namely an actor, a critic, a target actor, and a target
critic. The algorithm is based on the standard “actor” and “critic” architecture [40],
although the actor directly maps states to actions instead of a probability distribution
across discrete action spaces.

In order to solve the problem of exhaustively evaluating all possible actions from
a continuous action space, DDPG learns an approximator to Q(s, a) by means of a
neural network, the critic Qy(s, @), with 6 corresponding to the parameters of the
network (Fig. 4).

Qp learns from an experience replay buffer that serves as a memory for storing
previous experiences. This replay buffer contains a set D of transitions, which
includes the initial state (s), the action taken (a), the obtained reward (r), the new
state reached (s’), and whether the state is terminal or not (d). In other words, each
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transition is represented as (s, a, 1, s’, d), where s, a, r, s’, and d are elements of the
set D.

In order to evaluate the performance of Qp in relation to the Bellman equation,
the mean-squared Bellman error (MSBE) can be computed. The MSBE quantifies
the discrepancy between the estimated Q-values produced by Qg and the values
predicted by the Bellman equation. It is typically calculated by taking the mean
squared difference between the Q-value estimate and the expected Q-value, using
the current parameters 6. The MSBE provides a measure of how well the O-function
approximated by Qp aligns with the optimal Q-values as defined by the Bellman
equation. Minimizing the MSBE during training helps the DRL algorithm converge
toward an optimal Q-function approximation.

L= %Z (Qg (s,a) —y(r, s, d)2

y (r, s, d) =r+y (1 —d) OQorarget (S/v M ptarget (S/))

where the Qgarget and gprarget networks are lagged versions of the Qg (critic) and
H¢ (actor) networks to solve the instability of the minimization of the MSBE due
to interdependences among parameters. Hence, the critic network is updated by
performing gradient descent considering loss L. Regarding the actor policy, it is
updated using sampled policy gradient ascent with respect to the policy parameters
by means of:

1
Vo 2 Qo (5, 19())

seD

Finally, the target networks are updated by Poliak averaging their parameters
over the course of training:

QQtarget <~ ,09Q +(1 - ;0) tharget
Putarget < '0¢M +{-p) P utarget

During training, uncorrelated, mean-zero Gaussian noise is added to actions to
enhance exploration of the agent. The pseudocode for training a DDPG algorithm
would be as in Table 1.

The CNC AI agent has a multi-goal nature within the environment. First, the
agent shall learn not to collide with other machine parts. Collisions correspond to a
penalty of —1000 and the reset of the environment. Second, the agent shall learn how
to reach a goal destination by exploring the environment, which has an associated
reward of 4500 and causes the reset of the environment as well. Third, the agent
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Table 1 Pseudocode for training a DDPG algorithm

1. Randomly initialize critic Qg (s, @) and actor 4 (s) with weights 6 and ¢,.
2. Initialize target networks Qparget and [gtarget With 0 grarget <= 00, @ ptarget < Pp
3. Initialize replay buffer D
4. For episode=1, M do
5. Initialize random process N for action exploration
6. Receive initial state s
7. For t=1, max-episode-length do
8. Observe state s and select action a =4 (s)+N according to current policy and
exploration noise
9. Execute action a in environment E and observe reward r, new states’, and done
signal d
10. Store (s, a, 1, s’, d) in replay buffer D and set s <— s’
11. If s’ is terminal (done=True), reset environment E
12. If update network, then
13. For i=1, G updates do
14. Sample a random minibatch of B samples (s, a, 1, s’, d) from D
15. Compute targets [2]
16. Update critic by minimizing L [3]
17. Update policy by gradient ascent [4]
18. Update target networks [5, 6]
19. End for
20. End if
21. End for

shall optimize its policy considering the operational time and quality of the path.
The operational time is calculated based on the distance that the robot head needs to
travel to reach the goal destination following the proposed path. The quality of the
path is calculated based on the number of actions needed to reach the destination.
The former two aspects are favored by an extra reward of 4100 to the agent (Fig.
5).

Figure 6 shows four exemplary paths found by the agent in a 2-D movement
for visualization. In this problem, the agent needs to learn how to move from
right to left without colliding with any machine parts. Since the action space is
continuous, the goal destination does not correspond to a specific coordinate but to
a subspace of the environment. The circles draw on the paths represent the subgoal
coordinates proposed by the agent (each action correspond to a new coordinate to
which the robot head is moved). From the figure, it can be seen that the yellow
and pink trajectories comprise more actions and a longer path than the blue and
green trajectories. Although these latter contain the same number of actions (three
movements), the green trajectory requires a shorter path, and thus is preferred.
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Fig. 5 Information flow in the DDPG framework during training phase

Fig. 6 Exemplary trajectories for simplicity in a 2-D movement. Circles in the path correspond
to set of coordinates obtained after performing the action proposed by the framework in the
environment. The total length of the trajectory and the number of actions are considered in the
reward function. The red square corresponds with the starting point, while the red rectangle
corresponds to the final region (target)

3.2 Robotic Manipulation of Complex Materials

The challenge of manipulating complex materials involves the identification of
measurable quantities that offer insights into the system, which can then be
utilized to make informed decisions and take appropriate actions [42, 43]. This
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essentially involves combining a perception system with a decision-making process.
The Markov decision process (MDP) framework, as described earlier, is well-
suited to address the task of defining optimal strategies for material manipulation.
RL is particularly suitable for this purpose due to its probabilistic nature. RL
accommodates the inherent uncertainty associated with characterizing the state of
complex materials, which often presents challenges in traditional approaches.

The first step for the robotic manipulation of a fabric is the definition of the
information required to perform the optimal actions for the manipulation of a
material [44—46]. For that purpose, the state of the system needs to be characterized,
a prediction needs to be done to infer what is the next state of the system under the
application of a given action, and a criterium to decide what action to take for a
given target needs to be chosen.

To address these points, on the one hand, a procedure for the generation of
synthetic data has been deployed to generate automatically thousands of synthetic
representations of a fabric and their transitions under the application of certain
actions. On the other hand, in order to exploit such tool and build a solution based on
data, a neural network has been developed and trained. Given that in a real system,
in the real scenario for this work, a point cloud camera was used to detect the fabric,
the entropy of the cloud has been calculated and taken as a reference magnitude to
evaluate the goodness of a transition in terms of wrinkledness reduction.

In order to quantify the amount of knowledge in the system, we use entropy
as a measurement of the information of the system. Using entropy maps, the
wrinkledness of the fabric has been characterized. This entropy maps are calculated
from the distributions of normal vectors within local regions using the classic form
of information entropy for a distribution as follows:

H(X) ==Y p(x)logp (x;)

i=1

Entropy is usually thought as a measurement of how much information a message
or distribution holds. In other words, how predictable such a distribution is. In the
context of the work presented here, entropy gives an idea about the orientation of
the normal vectors of a given area of points taken from a reference one.

In order to address the massive complex manipulation of fabrics to reduce
wrinkles over the surface, a specific digital environment has been developed as it
is the clothsim environment made available as open access as part of the results of
the MERGING Project. The detailed description of the simulation can be found on
its own repository and is out of the scope of this chapter.

The clothsim environment has been used for the cloth initial random config-
uration and later the training of the system. The learning routine has suggested
different actions considering the Q-values (Q-matrix) by an argmax function. After
the application of t