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Abstract— The proposed RMS-FlowNet is a novel end-to-end
learning-based architecture for accurate and efficient scene flow
estimation which can operate on point clouds of high density.
For hierarchical scene flow estimation, the existing methods
depend on either expensive Farthest-Point-Sampling (FPS) or
structure-based scaling which decrease their ability to handle a
large number of points. Unlike these methods, we base our fully
supervised architecture on Random-Sampling (RS) for multi-
scale scene flow prediction. To this end, we propose a novel
flow embedding design which can predict more robust scene
flow in conjunction with RS. Exhibiting high accuracy, our
RMS-FlowNet provides a faster prediction than state-of-the-art
methods and works efficiently on consecutive dense point clouds
of more than 250K points at once. Our comprehensive experi-
ments verify the accuracy of RMS-FlowNet on the established
FlyingThings3D data set with different point cloud densities
and validate our design choices. Additionally, we show that
our model presents a competitive ability to generalize towards
the real-world scenes of KITTI data set without fine-tuning.

I. INTRODUCTION

Scene flow estimation is a key computer vision task for
the purposes of navigation, planning tasks and autonomous
driving systems. It concerns itself with the estimation of a 3D
motion field with respect to the observer, thereby providing
a representation of the dynamic change in the surroundings.

Most of the popular scene flow methods use monocular
images [1], [2] or stereo images to couple the geometry
reconstruction with scene flow estimation [3], [4], [5], [6],
[7], [8], [9]. However, the accuracy of such image-based
solutions is still constrained by the images quality and the
illumination conditions.

In contrary, LiDAR sensors provide accurate measure-
ments of the geometry (as 3D point clouds) with ongoing
developments towards increasing their density (i.e. the sensor
resolution). Leveraging this potential is becoming increas-
ingly important for the accurate computation of scene flow
from point clouds.

To this end, many existing approaches [10], [11], [12],
[13] focus on the 3D domain and present highly accu-
rate scene flow with better generalization compared to the
image-based modalities. Such approaches use Farthest-Point-
Sampling (FPS) [14], [15], [16], [17] leading to a robust
feature extraction and an accurate computation for feature
similarities. However, the expensive computation of FPS
decreases their capabilities to operate efficiently on dense
point clouds.
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Fig. 1. Our RMS-FlowNet shows an accurate scene flow (Acc3DR) with
less time-consuming. The accuracy is tested on the FlyingThings3D Subset
(FT3Ds) [18] using 8192 points as input and the run-time is analyzed for
all methods equally on a Geforce GTX 1080 Ti.

We present in this paper our RMS-FlowNet – a hierarchi-
cal point-based learning approach that relies on Random-
Sampling (RS) for scene flow estimation. It is therefore
more efficient, has a smaller memory footprint and shows
comparable results at lower run-times compared to the state-
of-the-art methods as shown in Fig. 1. The use of RS
for scene flow estimation introduces big challenges and
is infeasible together with existing point-based scene flow
techniques [11], [12], [13]. This has mainly two reasons as
clarified in Fig. 2. 1.) RS will reflect the spatial distribution
of the input point cloud, which is problematic if it is far from
uniform. 2.) Corresponding (rigid) areas between consecutive
point clouds will be sampled differently by RS, while FPS
will yield more similar patterns.

To overcome these problems, we propose a novel
Patch-to-Dilated-Patch flow embedding, which consists of
three embedding layers with lateral connections (see Fig. 5)
to incorporate a larger receptive field during matching.
Overall, our fully supervised architecture utilizes RS and
consists of a hierarchical feature extraction, an optimized
flow embedding and scene flow predictions on multiple
scales. Our contribution is summarized as follows:
• We propose RMS-FlowNet – an end-to-end scene flow

estimation network that operates on dense point clouds
with high accuracy.

• Our network uses Random-Sampling for a hierarchical
scene flow prediction in a multi-scale fashion.

• We present a novel flow embedding block (called
Patch-to-Dilated-Patch) which is suitable for the com-
bination with Random-Sampling.

• Exhaustive experiments show the strong results in terms
of accuracy, generalization and run-time over the state-
of-the-art methods.



II. RELATED WORK

Learning-based scene flow from point clouds: Estima-
tion of the scene flow from point clouds is a sub-field that
became prominent with the availability of accurate LiDARs.
In this domain, PointFlowNet [19] learns scene flow as
a rigid motion coupled with object detection. Focusing
more on point-based learning with a single flow embed-
ding, FlowNet3D [10] proposes a learning-based architec-
ture based on PointNet++ [15] and MeteorNet [20] adds
more aspects by aggregating features from spatiotemporal
neighbor points. PointPWC-Net [11] is the first point-based
approach that predicts scene flow hierarchically based on
[16] without structuring or ordering them. Despite of its
high accuracy, the designed architecture is computationally
expensive because of FPS with more memory consumption.
Utilizing FPS, FlowStep3D [13] computes scene flow at the
coarsest level and updates it iteratively through the Gated
Recurrent Unit [21]. However, this method is computation-
ally further expensive due to the iterative update. Unlike
the aforementioned methods, our design uses RS instead of
the expensive FPS over all its modules presenting superior
efficiency and accurate results.

Alternatively, some structure-based learning methods are
employed for scene flow estimation. In this context, Ushani
et al. [22] present a real-time method by constructing occu-
pancy grids and HPLFlowNet [23] orders the points using a
permutohedral lattice. Although their efficiency, the accuracy
of such methods are limited. Different from structure-based
learning methods, our RMS-FlowNet relies on point-based
learning and exhibits more accurate results than the afore-
mentioned methods at lower run-time.

Some other methods [24], [25], [26] lean themselves
to self-supervised category having less accuracy than our
RMS-FlowNet, which is designed in a fully supervised
manner.

Flow embeddings: A flow embedding is a crucial part for
the computation of scene flow. It focuses on the correlation
and aggregation of corresponding features across subsequent
measurements to encode the spatial displacements. In this
context, FlowNet3D [10] proposes a single patch-to-point
embedding block by searching 64 nearest neighbors across
the consecutive point cloud at a low resolution, followed by a
maximum pooling and a series of propagation and refinement
blocks. A patch-to-patch correlation is used by HPLFlowNet
[23] for 3D point clouds through the lattice representation.
Recently, PointPWC-Net [11] aggregated patch-to-patch fea-
tures from unstructured point clouds based on a continuous
weighting [16] which is computationally heavy. Utilizing
the pyramid architecture as in [11], HCRF-Flow [27] adds
a high-order conditional random fields (CRFs) [28] as a
refinement module to explore both point-wise smoothness
and region-wise rigidity.

Utilizing FPS, HALFlow [12] proposes a hierarchical
attention mechanism for flow embedding.

Recently, FLOT [29] built a model utilizing optimal trans-
port based on global matching [30] without the use of any
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Fig. 2. The challenges of Random-Sampling (RS) (right) compared to
Farthest-Point-Sampling (FPS) (left): Both techniques sample two consec-
utive scenes PCt (blue) and PCt+1 (green) into red and pink samples,
respectively.

sampling techniques. Inspired by RAFT [31] to construct
all-pair correlation fields, FlowStep3D [13] proposes point-
based and PV-RAFT [32] computes point-voxel correlation
fields.

Different from all these methods, we propose a novel
and efficient Patch-to-Dilated-Patch flow embedding block,
which works reliably together with RS without sacrificing
accuracy.

III. NETWORK DESIGN

Our RMS-FlowNet predicts scene flow from two
consecutive scans of point clouds. These point cloud
sets are PCt = {pct

i ∈ R3}N
i=1 at timestamp t and

PCt+1 = {pct+1
j ∈ R3}M

j=1
at timestamp t + 1, whereas

(pct
i , pct+1

j ) are the 3D Cartesian locations and (N, M) are
the sizes of each set. Our network is invariant to random
permutations of the point sets.

RMS-FlowNet seeks to find the similarities between
point clouds to estimate the motion as scene flow vectors
SF t = {s f t

i ∈ R3}N
i=1 with respect to the reference view at

timestamp t, i.e. s f t
i is the motion vector for pct

i . The
model is designed to predict the scene flow at multiple lev-
els through hierarchical feature extraction, flow embedding,
warping and scene flow estimation. The following sections
describe the components of each module in detail.

A. Feature Extraction Module

The feature extraction module consists of a feature pyra-
mid network to extract feature sets from PCt and PCt+1

separately. The construction of our module involves top-
down, bottom-up pathways, and lateral skip connections
between them as clarified in Fig. 3.

The top-down pathway computes a hierarchy of feature
sets at four scales L = {l}3

k=0 from fine-to-coarse resolution,
where l0 is the full input resolution and the resolution of the
down-sampled clouds are fixed as {{l}3

k=1 | l1 = 2048, l2 =
728, l3 = 320}. Inspired by RandLA-Net [33], which focuses
on semantic segmentation, we exploit the efficient RS strat-
egy combined with Local-Feature-Aggregation (LFA) [33].
RS has a computational complexity of O(1) and is therefore
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Fig. 3. Our feature extraction consists two pathways: The top-down path-
way constructed of Local-Feature-Aggregation (LFA) and Down-Sampling
(DS) with maximum pooling. The bottom-up pathway consists of Up-
Sampling (US) and Transposed Convolution.

much more efficient compared to O(N2) of FPS. Previous
works [10], [11], [12], [13] take an advantage of FPS at the
cost of expensive computations.

LFA is employed at all scales lk except the finest one
and starts by searching Kp = 17 neighbors with K-Nearest-
Neighbors (KNNs) and aggregates the features with two
attentive pooling layers designed as in [33]. Down-Sampling
(DS) is used to reduce the resolution from lk level to lk+1.
We sample randomly to the defined resolution and merge the
Kp = 17 nearest neighbors in the higher resolution for each
selected sampled with maximum pooling as shown in Fig. 3.

The bottom-up pathway in our module involves
L = {l}3

k=1 layers excluding the Up-Sampling (US) to
the full input resolution. For up-scaling from level lk+1
to lk, KNN is used to assign the Kq = 1 nearest neighbor
for each point of the higher resolution to the lower
one, followed by transposed convolution. To increase
the quality of the features, lateral connections are added
to each level. This module predicts two feature sets
F t

k = { f t
ki ∈ RCk}lk

i=1 and F t+1
k = { f t+1

k j ∈ RCk}lk
j=1

for PCt
k

and PCt+1
k respectively. Here, Ck is the feature dimension

fixed as {{C}3
k=1 | C1 = 128,C2 = 256,C3 = 512}. The

complete feature extraction module with output channels is
visualized in Fig. 3.

B. Flow Embedding

A flow embedding block across two scans is the key
component for scene flow estimation. Using RS requires
a special flow embedding for the mentioned difficulties in
Section I. To overcome the challenges of RS, we design a
flow embedding block that is different from state-of-the-art.

In this context, we establish a novel and efficient concept,
called Patch-to-Dilated-Patch, to aggregate the relation of
features. This embedding block has a larger receptive field
without the need to increase the number of the nearest
neighbors. To achieve this, we combine three sequential steps
with lateral connections as presented in Fig. 5, and apply the
entire block at each scale.

Starting by searching Ko = 33 nearest neighbors for each
point pct

ki within PCt+1
k at each scale lk, the flow embedding
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Fig. 4. Multi-scale scene flow prediction with three Flow-Embedding (FE)
blocks (each consisted of three steps), two Warping-Layers (WLs), four
scene flow estimators and Up-Sampling (US) blocks.

consists of the following:
• 1st Embedding (Patch-to-Point): It starts by grouping Ko

nearest features of F t+1
k with each point pct

ki. Thereafter,
these grouped features will be passed into two Multi-
Layer Perceptrons (MLPs) followed by maximum pool-
ing for feature aggregation. Each MLP yields features
of Ck dimensions at scale lk.

• 2nd Embedding (Point-to-Patch): It aggregates the Kp
nearest features within the reference point cloud into
each pct

ki by computing attention scores and summation,
i.e. the features are weighted.

• 3rd Embedding (Point-to-Dilated-Patch): It repeats the
previous step on the previous result with new attention
scores for the Kp nearest features. This embedding layer
results in an increased receptive field.

Technically, we do not increase the number of the nearest
neighbors for the 3rd Embedding, but we aggregate features
from a larger area by repeating the aggregation mechanism
(see Fig. 5). Overall, the three steps result in our novel
Patch-to-Dilated-Patch embedding. This way, we are able to
obtain a larger receptive field with a small number of nearest
neighbors, which is computationally more efficient.

The attention-based aggregation technique [34], [35]
learns attention scores for each embedded feature f t

ki, fol-
lowed by a softmax to suppress the least correlated features.
Then, the features are weighted by the attention scores and
summed up.

Additionally, we concatenate the features F t
k and add a

residual connection (Res. Conn.) to increase the quality of
our flow embedding (c.f. Fig. 5). This design is validated in
the ablation study (Section IV-E).

C. Multi-Scale Scene Flow Estimation

As mentioned, RMS-FlowNet predicts scene flow at mul-
tiple scales inspired by PointPWC-Net [11], but we consider
significant changes in the conjunction with RS to make
our prediction more efficient. Our prediction of scene flow
over all scales consists of two Warping-Layers (WLs), three
Flow-Embeddings (FEs), three scene flow estimators and Up-
Sampling (US) blocks as shown in Fig. 4. Compared to the
design of PointPWC-Net [11], we save one element from
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Fig. 5. Our novel Flow-Embedding (FE) block consists of three main steps: A maximum embedding across point clouds followed by two attentive
embedding layers. It further uses lateral connections: A feature concatenation (F t

k Concat.) and a residual connection (Res. Conn.).

each category and we base our complete design attention
mechanisms. Consequentially, we speed-up our model with-
out sacrificing any accuracy as shown in our results, c.f.
in Table I. The multi-scale estimation starts at the coarsest
resolution by prediction SF t

3 with a scene flow estimation
module after a first FE. The estimation module consists
of just three MLPs with 64, 32 and 3 output channels,
respectively. Thereafter, we up-sample the estimated scene
flow as well as the coming features from the FE to the next
higher scale using KNN with Kq = 1.

Our Warping-Layer utilizes the up-sampled scene flow SF t
k

at scale level lk to warp F t+1
k towards F t

k . To this end, we add
the predicted scene flow SF t

k to PCt
k to compute the warped

P̃C
t+1
k and then we group the features F t+1

k into F t
k by using

KNN search across PCt+1
k and P̃C

t+1
k . This warping is more

simple and efficient compared to the process in PointPWC-
Net [11] which associates firstly the predicted scene flow to
PCt+1

k by KNN search in order to warp PCt+1
k into P̃C

t
k and

then grouping the features with another KNN search.

D. Loss Function

The model is a fully supervised at multiple scales, similar
to PointPWC-Net [11]. If SF t

k is the predicted scene flow
and the ground truth is SF t

GT,k at level lk, then the objective
can be written as:

L (θ) =
3

∑
k=0

αk

lk

∑
i=1
‖s f t

ki− s f t
GT,ki‖2, (1)

with ‖.‖2 denoting the L2-norm and weights per scale of
{{αk}3

k=0 | α0 = 0.02,α1 = 0.04,α2 = 0.08,α3 = 0.16}.

IV. EXPERIMENTS

We run several experiments to evaluate the results of our
RMS-FlowNet for scene flow estimation. Firstly, we demon-
strate the accuracy and the efficiency of RMS-FlowNet
compared to the state-of-the-art. Secondly, we verify our
design choice with several analyses.

A. Evaluation Metrics and Data Sets

For a fair comparison, we use the same evaluation metrics
as in [23]. Let SF t denote the predicted scene flow, and
SF t

GT the ground truth scene flow. The evaluation metrics
are averaged over all points and computed as follows:

• EPE3D [m]: The 3D end-point error computed in me-
ters as ‖SF t −SF t

GT‖2.
• Acc3DS [%]: The strict 3D accuracy which is the ratio

of points whose EPE3D < 0.05 m or relative error <
5%.

• Acc3DR [%]: The relaxed 3D accuracy which is the
ratio of points whose EPE3D < 0.1 m or relative error
< 10%.

• Out3D [%]: The ratio of outliers whose EPE3D > 0.3 m
or relative error > 10%.

We train our RMS-FlowNet on the established data set Fly-
ingThings3D Subset (FT3Ds) [18] which consists of 19640
labeled scene flow scenes available in the training set. We
exclude the occluded points and the points with a depth
above 35 meters as [10], [11], [12], [13], [23], [29], [32]
considering most of the moving objects within the scenes.

For testing, we evaluate our model on all 3824 frames
available in the test split of FT3Ds. Since FT3Ds scenes are
only synthetic data, we verify the generalization ability of
our model to real-world scenes of the KITTI [36] data set
without fine-tuning. For both data sets FT3Ds and KITTI, the
setup of evaluation is exactly the same as in related works.

Since the existing labeled data does not provide a direct
representation of point cloud information (i.e. 3D Cartesian
locations), we follow the established pre-processing strategy
of HPLFlowNet [23]1 which is commonly used also in the
state-of-the-art methods.

For training and evaluation with a specific resolution, the
pre-processed data is randomly sub-sampled to N points with
random order.

B. Implementation and Training

We use the Adam optimizer with default parameters and
train our model with 800 epochs divided in two phases: To
speed up the convergence of our model, we first train 120
epochs with a fixed set of points for each frame and apply an
exponentially decaying learning rate, initialized with 0.001,
then decreased with a decaying rate of 0.7 each 10 epochs.
For the next 680 epochs, the learning rate is fixed to 0.0001
and 8192 points are sampled randomly for each frame in
each iteration.

1https://github.com/laoreja/HPLFlowNet.



TABLE I
QUANTITATIVE RESULTS OF OUR RMS-FLOWNET COMPARED TO THE STATE-OF-THE-ART METHODS ON FT3Ds [18] AND KITTI [36]. OUR

RMS-FLOWNET IS TRAINED AND TESTED ON 8192 POINTS AS OTHER METHODS. THE SCORES OF THE STATE-OF-THE-ART METHODS ARE OBTAINED

FROM [10], [11], [12], [13], [23], [29], [32]. THE BEST AND THE SECOND BEST SCORES IN ALL METRICS ARE EMBOLDENED AND UNDERLINED

RESPECTIVELY. THE RUN-TIME AND THE MEMORY USAGE ARE COMPARED EQUALLY ON A GEFORCE GTX 1080 TI. WE MENTION THE SAMPLING

STRATEGY OF EACH METHOD TO FACILITATE THE COMPARISON. PREVIOUS WORK EITHER APPLIES LATTICE-BASED SCALING, AVOIDS SAMPLING, OR

APPLIES FARTHEST-POINT-SAMPLING (FPS). OUR RMS-FLOWNET USES RANDOM-SAMPLING (RS) AND SHOWS ROBUST AND ACCURATE RESULTS

AT A LOW RUN-TIME.

Data set Model Sampling EPE3D Out3D Acc3DS Acc3DR Time Memory
[m] [%] [%] [%] [ms] [GB]

FT
3D

s
[1

8]

FlowNet3D [10] FPS 0.114 0.602 0.413 0.771 132 10.85
HPLFlowNet [23] Scaling 0.080 0.428 0.616 0.856 119 1.58

PointPWC-Net [11] FPS 0.059 0.342 0.738 0.928 117 2.86
FLOT [29] - 0.052 0.357 0.732 0.927 376 3.84

HALFlow [12] FPS 0.049 0.308 0.785 0.947 - -
FlowStep3D [13] FPS 0.046 0.217 0.816 0.961 1369 1.31
PV-RAFT [32] - 0.046 0.292 0.817 0.957 1565 4.03

RMS-FlowNet (Ours) RS 0.056 0.324 0.792 0.955 77 1.39

K
IT

T
I

[3
6]

FlowNet3D [10] FPS 0.177 0.527 0.374 0.668 132 10.85
HPLFlowNet [23] Scaling 0.117 0.410 0.478 0.778 119 1.58

PointPWC-Net [11] FPS 0.069 0.265 0.728 0.888 117 2.86
FLOT [29] - 0.056 0.242 0.755 0.908 376 3.84

HALFlow [12] FPS 0.062 0.249 0.765 0.903 - -
FlowStep3D [13] FPS 0.055 0.149 0.805 0.925 1369 1.31
PV-RAFT [32] - 0.056 0.216 0.823 0.937 1565 4.03

RMS-FlowNet (Ours) RS 0.053 0.203 0.818 0.938 77 1.39
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Fig. 6. Three examples taken from KITTI show the impact of our RMS-FlowNet. The first row of each example visualizes PCt as blue color and the
predicted and ground truth scene flow after adding them to PCt in red and green color, respectively. The second row shows the end-point error in meters
for each scene according to the color map shown in the last row. Our RMS-FlowNet shows low errors (dark blue) across a wide range of the observed
scene especially for moving objects (cars).

Moreover, we add geometrical augmentation as in the
related works, i.e. points are randomly rotated around the X,
Y and Z axes by a small angle and a random translational
offset is added to increase the ability of our model to
generalize without fine-tuning.

C. Comparison to State-of-the-Art

Evaluation on FT3Ds: In order to demonstrate the accu-
racy, generalization and efficiency of our model, we compare
to the state-of-the-art methods in Table I. Our RMS-FlowNet
outperforms the methods of [10], [11], [23] over all evalua-
tion metrics and shows comparable results to [12], [13], [29],
[32] with lowest run-time and low memory footprint. Com-

pared to the concurrent methods [12], [13], which use FPS,
our RMS-FlowNet shows comparable accuracy utilizing RS.

Generalization to KITTI: We test the generalization
ability to the KITTI data set [36] without fine-tuning. The
reported scores in Table I provide an evidence about the
robustness on real-world scenes. Our RMS-FlowNet outper-
forms over all the methods of [10], [11], [12], [23], [29] and
presents comparable results to [13], [32].

Visually, three examples on KITTI are shown in Fig. 6
where the scene flow of a moving car and the surroundings
are with low deviations compared to ground truth.

Efficiency: To verify the efficiency of RMS-FlowNet, we
run the official implementations of the state-of-the-art meth-
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Fig. 7. Analysis of the accuracy for different numbers of points compared
to state-of-the-art methods.

ods [10], [11], [13], [23], [29], [32] on a clean environment
with a GeForce GTX 1080 Ti and measure the average
inference time in milliseconds (ms) over the test set. As
shown in Table I, RMS-FlowNet is more efficient in terms
of run-time than any other method for 8192 input points
and it’s near to [13] in terms of memory use. Hence, our
method is ∼1.5x faster than [10], [11], [23], ∼4.5x faster
than FLOT [29] and ∼18x faster than [13], [32] which are
the main competitor to our method in terms of accuracy.

Due to the unavailability of an open source code of
HALFlow [12] and missing efficiency analysis in its original
paper, we can not analyze the efficiency but we assume its
less efficiency than us due to the use of FPS.

D. Varying Point Densities

We evaluate our method against the important competi-
tors [11], [13], [23], [29], [32] on different point densities as
shown in Fig. 7. Acc3DR and inference time on FT3Ds are
measured for a wide range of densities N = {2048∗2i}6

i=0,
and finally all available non-occluded points are used, which
corresponds on average to ∼225K points (see Fig. 7 and
Fig. 8). For the competing methods of FLOT [29], PV-
RAFT [32], PointPWC-Net [11] and HPLFlowNet [23], the
maximum possible densities are limited to 8192, 8192, 32768
and 65536, respectively, due to exceeding the memory limit
of the Geforce GTX 1080 Ti for our tested range. We have
limited as well the number of points for FlowStep3D [13] to
16384 in our test, due to the bad run-time (> 2.5 seconds)
for each frame with more dense scenes.

In contrast, RMS-FlowNet can operate on more than 250K
points efficiently with high accuracy and low run-time. In or-
der to keep the accuracy stable for densities > 32K, we have

TABLE II
ABLATION STUDY ON VARIOUS DESIGN VARIANTS FOR THE FLOW

EMBEDDING OF OUR RMS-FLOWNET. WE TEST ALL VARIANTS ON

8192 POINTS FROM THE TEST SPLIT OF FT3Ds [18].

1st 2nd Ft
k Res. 3rd FT3Ds [18]

Embed. Embed. Conn. Concat. Embed. Acc3DR [%]
3 7 7 7 7 0.792
3 3 7 7 7 0.860
3 3 3 7 7 0.871
3 3 3 3 7 0.885
3 3 3 3 3 0.897

w/ full training and augmentation 0.955
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Fig. 8. Run-time analysis for different numbers of points compared to
state-of-the-art methods.

increased the resolution of the down-sampled features (c.f.
Section III-A) to {{l}3

k=1 | l1 = 8192, l2 = 2048, l3 = 512}
without further training or fine-tuning at all. As a result, the
accuracy remains stable over a wide range of densities (see
Fig. 7). Even with this change, our RMS-FlowNet is more
efficient and faster than previous works for increased input
densities (see Fig. 8). The design of RMS-FlowNet allows
to operate on a much higher maximum density compared to
other methods, due to their memory footprint and the time
consumption. However, the run-time of our RMS-FlowNet
still increases super-linear with growing input density due to
the KNN search.

E. Ablation Study

Finally, we verify our design choices for
the FE on FT3Ds [18] by removing components of
the FE and compare the variants in Table II. The models
in this comparison are trained only for the first phase as
explained in Section IV-B and without augmentation. Each
part clearly adds a contribution to the overall accuracy when
using RS. The 1st Embedding with maximum pooling, as
basically used in FlowNet3D [10], is not able to resolve
the challenges of the RS strategy for scene flow estimation.
The complete design – three embedding layers with lateral
connections – leads to the best results.

V. CONCLUSION

In this paper, we have proposed RMS-FlowNet – an effi-
cient and fully supervised network for multi-scale scene flow
estimation in large-scale point clouds. Utilizing Random-
Sampling (RS) during feature extraction, we could boost
the run-time and memory footprint to allow for an effi-
cient processing of point clouds at an unmatched max-
imum density. The novel Flow-Embedding block (called
Patch-to-Dilated-Patch), resolves the prominent challenges
when using RS for scene flow estimation. Consequentially,
RMS-FlowNet reaches state-of-the-art accuracy on FT3Ds
and generalizes well over a wide range of input densities as
well as to the real-world scenes of KITTI.
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