

EgoFlowNet: Non-Rigid Scene Flow from Point Clouds with Ego-Motion Support

Ramy Battrawy¹, René Schuster¹, Didier Stricker^{1,2}

¹DFKI - German Research Center for Artificial Intelligence, Germany ²RPTU - The University of Kaiserslautern-Landau, Germany

Scene Flow Description:

- 3D Motion field estimation:
 - Represented as 3D translational vector.
- LiDAR-based / Point-based solutions:
 - Impressive results.
 - Strong generalization.
- Challenges:

EgoFlowNet Network Design:

- Hierarchical point-based architecture.
 - Raw points without intermediate representation.
- Our architecture consists of:
 - Feature Extraction Module.
- Shared Cost Volume.
- Ego-Motion Branch.

Our Training:

• Weakly supervised learning.

Self-supervised w/

Smoothness & • $\mathcal{L} = \mathcal{L}_{seg} + \mathcal{L}_{ego} + \mathcal{L}_{sf} \rightarrow$ Chamfer losses

- Point-wise estimation.
- Static points (Background) have apparent motion if the camera moves.

- **Related Work:**
- Excluding ground points.

• Scene Flow Branch.

• semanticKITTI data set [semKITTI].

- Superposition estimation: Dynamic objects + Ego-motion.
- Optimization based on rigidity assumption.

Our EgoFlowNet:

- Multi-task neural network architecture to jointly estimate:
 - Static / Dynamic segmentation mask.
 - Ego-motion estimation.
 - Scene flow estimation.
- Main contributions:

LiDAR Scans

Operates non-rigidly at the point-level.

Binary Masks

- Free of explicit rigidity assumption (no object clustering).
- Avoids strict iterative updates.

Data Set	Method	Supervi- sion	- Rigidity	stereoKITTI				lidarKITTI			
				EPE3D↓	Out3D↓	Acc3DS ↑	Acc3DR ↑	EPE3D↓	Out3D↓	Acc3DS ↑	Acc3DR ↑
				[m]	[%]	[%]	[%]	[m]	[%]	[%]	[%]
FT3Ds	PointPWC-Net	Full	X	0.204	0.645	0.292	0.556	0.71	0.932	0.114	0.219
	FlowStep3D	Full	X	0.109	0.391	0.577	0.765	0.797	0.929	0.087	0.184
	RMS-FlowNet	Full	X	0.199	0.547	0.391	0.618	0.652	0.92	0.12	0.233
	WM3D	Full	X	0.119	0.487	0.488	0.721	0.646	0.928	0.165	0.270
	Bi-PointFlowNet	Full	X	0.135	0.439	0.578	0.760	0.686	0.905	0.179	0.268
	Chodosh et al.	None	\checkmark	-	-	_	_	0.061	-	0.917	0.962
semKITTI	WSLR	Weak	\checkmark	0.068	0.263	0.836	0.897	0.08	0.369	0.742	0.85
	ERC	Weak	\checkmark	0.053	0.269	0.858	0.917	0.065	0.29	0.857	0.940
	Ours	Weak	X	0.039	0.212	0.922	0.966	0.049	0.267	0.918	0.964

Example 3

High accuracy for regions of varying local density (e.g., the red, blue, and green rectangles)

[DBSCAN] Ester et al.: "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: kdd, 1996. **[DGCNN]** Wang et al.: "Dynamic Graph CNN for Learning on Point Clouds". In: (*ToG*), 2019. [KABSCH] W. Kabsch: "A solution for the best rotation to relate two sets of vectors". In: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976. [HRegNet] Lu et al.: "HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration". In: (ICCV), 2021. [RandLA-Net] Hu et al.: "RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds". In: (CVPR), 2020. [stereoKITTI] Menze et al.: "Object scene flow for autonomous vehicles". In: (CVPR), 2015. [lidarKITTI] Geiger et al.: "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite". In: (CVPR), 2012. [semKITTI] Behley et al.: "SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences". In: (ICCV), 2019. [FT3Ds] Mayer et al.: "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation". In: (CVPR), 2016. [PointPWC-Net] Wu et al.: "PointPWC-Net: Cost Volume on Point Clouds for (Self-) Supervised Scene Flow Estimation". In: (ECCV), 2020. [FlowStep3D] Kittenplon et al.: "FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation". In: (CVPR), 2021. [RMS-FlowNet] Battrawy et al.: "RMS-FlowNet: Efficient and Robust Multi-Scale Scene Flow Estimation for Large- Scale Point Clouds". In: (ICRA), 2022. **[WM3D]** Wang et al.: "What Matters for 3D Scene Flow Network". In: (ECCV), 2022. [Bi-PointFlowNet] W. Cheng and J. Hwan Ko: "Bidirectional Learning for Point Cloud Based Scene Flow Estimation". In: (ECCV), 2022. [Chodosh et al.] Chodosh et al.: "Re-Evaluating LiDAR Scene Flow for Autonomous Driving". In: arXiv, 2023. [WSLR] Gojcic et al.: "Weakly Supervised Learning of Rigid 3D Scene Flow". In: (CVPR), 2021. [ERC] Dong et al.: "Exploiting Rigidity Constraints for LiDAR Scene Flow Estimation". In: (CVPR), 2022.

Error 3D Maps

More Details in our Paper

Ramy Battrawy

Contact:

ramy.battrawy@dfki.de http://av.dfki.de/members/battrawy

Fully Supervised