
The 8th International Engineering Conference on Renewable Energy &

Sustainability (ieCRES 2023)

Accelerating the Run-Time of Convolutional Neural Networks through Weight

Pruning and Quantization

Rajai Alhimdiat, Wesam Ashour

Computer Engineering dept.

Islamic University of Gaza, IUG

Gaza, Palestine

e-mail: rajaihimdiat@hotmail.com,

washour@iugaza.edu.ps

Ramy Battrawy, Didier Stricker

German Research Centre for Artificial Intelligence.

DFKI.

Kaiserslautern, Germany

e-mail: ramy.battrawy@dfki.de, didier.stricker@dfki.de

Abstract— Accelerating the processing of Convolutional Neural

Networks (CNNs) is highly demand in the field of Artificial

Intelligence (AI), particularly in computer vision domains. The

efficiency of memory resources is crucial in measuring run-time,

and weight pruning and quantization techniques have been

studied extensively to optimize this efficiency. In this work, we

investigate the contribution of these techniques to accelerate a

pre-trained CNN model. We adapt the percentile-based weights

pruning with focusing on unstructured pruning by dynamically

adjusting the pruning thresholds based on the fine-tuning

performance of the model. In the same context, we perform

uniform quantization for presenting the weights values of the

model’s parameters with a fixed number of bits. We implement

different levels of post-training and aware-training -fine-tuning-

the model with the same learning rate and number of epochs as

the original. We then refine-tune the model with a lower learning

rate and a factor of 10x for both techniques. Finally, we combine

the best levels of pruning and quantization and refine-tune the

model to explore the best-pruned and quantized pre-trained

model. We evaluate each level of the techniques and analyze

their trade-offs. Our results demonstrate the effectiveness of our

strategy in accelerating the CNN and improving its efficiency,

and provide insights into the best combination of techniques to

accelerate its inference time.

Keywords: Pruning and Quantization, CNN’s Run-Time,

Inferences acceleration.

I. INTRODUCTION

The demand for efficient processing of Convolutional
Neural Networks (CNNs) in the field of Artificial
Intelligence (AI) has led to the development of weight
pruning and quantization techniques. These techniques
optimize memory resources and reduce run-time, making
CNNs more suitable for deployment on devices with limited

hardware resources and strict latency requirements [1].
Pruning involves removing unnecessary weights from the

CNN by selectively setting weights to zero based on their
magnitude [2]–[4]. Quantization reduces the precision of
weights and activations by representing them using a smaller
number of bits [1], [3], [5]–[9]. Weight pruning and
quantization are straightforward strategies to post-process
pre-trained models by using fewer bits for memory
allocation, which can accelerate the inference time of CNNs
[10], [11]. These techniques can be used individually or in
combination to reduce the complexity of the CNN and

improve its efficiency, without significantly degrading its
performance. Combining pruning and quantization can be
particularly effective, but the optimal combination of
techniques for a given CNN and application [9], [12], [13],
must be carefully identified.

Our study investigates the impact of pruning and
quantization on the performance of CNN-based solutions.
Mainly our study focuses on a solution for scene flow
estimation, which is crucial for applications such as
autonomous vehicles, robot navigation, and advanced driver
assistance systems. Specifically, we examine the
DeepLiDARFlow [14] model, which fuses LiDAR
measurements and monocular camera inputs for a dense
scene flow estimation as 2D representations. This model
achieves accurate results, but its large memory footprint and
high computational requirements hinder its use in real-time
applications.

As the pre-trained model of DeepLiDAFlow [14] is
already trained by FlyingThings3D [15] dataset, we do not
need to do training from scratch when applying pruning and
quantization techniques. Using the KITTI [16] dataset
benchmark, we evaluate the performance of the pre-trained
DeepLiDARFlow [14] model after applying various levels of
pruning and quantization techniques, on both post-training
and aware-training. We fine-tune the model using the same
learning rate and number of epochs as the original [14] and
then refine-tune it with a lower learning rate and a factor of
10x for both techniques. Finally, we combine the best levels
of pruning and quantization to obtain the best pruned and
quantized pre-trained model.

Our results demonstrate the effectiveness of our approach
in improving the efficiency of the CNN and accelerating its
inference time, while maintaining high accuracy. Moreover,
we provide insights into the trade-offs between pruning and
quantization and the best combination of techniques for a
given CNN and application. Our work makes several
significant contributions to the field of CNN optimization for
real-time applications:
- We explore the efficacy of post-training for pruning and

quantization techniques on a certain pre-trained CNN
solution, fine-tuning it with the same number of epochs
and learning rate as the original model.

- We investigate aware-training for pruning and
quantization of the CNN's pre-trained model at various
levels and different learning rates to identify the optimal

20
23

 8
th

 In
te

rn
at

io
na

l E
ng

in
ee

rin
g

C
on

fe
re

nc
e

on
 R

en
ew

ab
le

 E
ne

rg
y

&
 S

us
ta

in
ab

ili
ty

 (i
eC

R
ES

) |
 9

79
-8

-3
50

3-
00

75
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ie
C

R
ES

57
31

5.
20

23
.1

02
09

46
0

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

level for achieving the best balance between model size
and accuracy.

- We demonstrate the effectiveness of our approach by
evaluating it on a real-world dataset, showing that our
optimized model achieves a lower memory footprint and
runtime than the original model.

- We identify the best quantization level and pruning
percentage for the CNN’s pre-trained model and provide
generalizations that can be applied to other solutions.

- Our findings can inform the development of efficient
CNN architectures that can be deployed in resource-
constrained environments, such as self-driving cars,
where latency and memory constraints are critical
factors.

II. RELATED WORKS

A. Weight pruning for CNN compression
Weight pruning is a popular technique for reducing the

storage and computation requirements of neural networks. It
aims to eliminate unnecessary connections between neurons,
such as those corresponding to redundant or unimportant
features, without sacrificing accuracy [8], [13]. Different
studies [13], [17]–[20], have proposed various methods for
weight pruning, such as pruning entire filters, channels, or
layers, or selectively removing individual weights or filters
based on certain criteria. Recently, several researchers have
proposed methods for coordinated weight pruning [2], such
as structural sparsity learning or group LASSO regression
[21], which aim to prune filters, channels, or neurons in a
coordinated manner, while others have focused on individual
weight pruning, using techniques such as L1 norm or Taylor
expansion to identify and remove unimportant weights or
filters [22]–[24]. However, these methods often lead to a
significant decrease in accuracy Additionally, some studies
have incorporated batch normalization or long short-term
memory (LSTM) [25] based decision-making to improve the
efficiency and accuracy of weight pruning.

Weight pruning can be categorized as structured or
unstructured pruning, depending on whether it leads to
changes in the network architecture [10], [13], [17], [18],
[26]–[28]. Structured pruning methods aim to remove entire
filters, channels, or layers, while unstructured pruning
involves selectively removing individual weights or filters.
Our work focuses on unstructured pruning, where we adapt a
strategy of dynamically adjusting the pruning threshold
based on the fine-tuning performance of the network on the
dataset used.

Overall, weight pruning is a promising approach for
accelerating the run-time of convolutional neural networks
while minimizing storage and computation requirements.
Different pruning methods and criteria have been proposed,
and the choice of pruning strategy may depend on factors
such as network architecture, dataset, and performance
objectives.

B. Weight quantization for CNN compression
Weight quantization is a technique used to reduce the

number of bits required to store pre-trained model
parameters and feature values in memory [1], [8], [23], [29],

[30]. Various quantization techniques and approaches have
been explored to speed up CNNs. Some studies have
implemented full-precision quantization to convert low-
precision CNN models, while others have attempted to train
binary networks directly [30]. Some researchers have
explored the use of low rank factorization to reduce the
number of calculations and improve inference speed [24],
[31]. However, these methods often lead to a significant
decrease in accuracy, especially when used on larger
networks.

Despite ongoing research, there are still challenges
associated with weight quantization in deep neural networks
(DNNs) and CNNs. One of these challenges is the accuracy
loss that occurs during the quantization process, which often
requires an increased number of training iterations and fine-
tuning epochs to achieve convergence. In this study, we
investigate the use of conscious training quantization and
compare the results with post-training quantization in an
effort to address the issue of low weight accuracy during
quantization.

Quantization involves converting a pre-trained model's
full-precision weights (i.e., 32-bit floating-point) into a low-
precision version where the weights are constrained to be
either a power of two or zero, similar to [1]. This method is
advantageous because it reduces the memory required for the
original floating-point multiplication operation. During either
post-quantization or aware-quantization, very small weight
values are pruned based on a percentile threshold. Our
experimental results show the percentage of pruning that
occurs during the quantization process. This combination of
quantization and pruning can accelerate the CNN and
decrease the memory footprint, as demonstrated in [3],
which inspired us to merge quantization and pruning as part
of our approach. Other researchers have also explored
merging pruning and quantization techniques to avoid over
pruning [12]. Merging these techniques can compress the
model storage and improve the model's inference speed. Our
proposed method and strategy have been extensively tested,
and the results are presented in the experiments and results
section.

III. PROPOSED METHOD

Convolutional Neural Network implementations on
Graphical Processing Units (GPUs) use power-inefficient
Floating Operation Points (FLOPS). This paper aims to
develop a compressed version of a CNN. To reduce the
storage and computational requirements of a CNN by
quantizing and pruning its weights and activations, we
propose a strategy in which it is hypothesized that quantizing
and pruning the weights and activations of a CNN will
reduce its storage and computational requirements without
significantly degrading its performance.

Our method is summarized according to the following:
1- Identify a CNN solution as available. Therefore, we

identify a DeepLiDARFlow [14], which is a model
for estimating dense scene flow from monocular
camera and sparse LiDAR.

2- Profile the solution and identify the size and
computational cost of its components.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

3- Since its pre-trained model is available, there is no
need to train it from scratch with full precision. We
can directly implement the post-training quantization
and post-training pruning. Then, it is to fine-tune the
pre-trained model with pruning and quantization in
aware-training/fine-tuning.

4- Quantize the weights and activations: The
quantization is implemented in post and aware
training quantization, and comparing the results and
performance with the full precision version.

5- Prune the weights and activation: Pruning is to reduce
the memory footprint by pruning unnecessary weight
values. Similar to quantization procedures, pruning is
also implemented in post and aware training, and
comparing the results with full-precision version.

6- Evaluate and compare the performance for each with
the original version.

7- The experimental procedures are followed, where the
quantized version and pruned versions of the CNN
are fine-tuned and are evaluated on the same dataset
to assess the impact of both techniques on
performance.

A. Profiling CNN solution – DeepLiDARFlow
In this work, we notice that state-of-the-art basic

architectures such as DeepLiDARFlow [14] has becomes
less efficient in extremely small networks because of the
costly dense convolution. However, it is one of the state-of-
the-art in the way of fusing LiDAR measurement data with
monocular camera setups for scene flow estimation as 2D
representations. It is worth implementing compression
through pruning and quantization to accelerate its inference
time to be convenient with real-time use.

We start our work by profiling the DeepLiARFlow [14]
model. Profiling is necessary to study the modules that are
on a high budget. In order to determine the road map of our
work and which modules or components can be targeted.
This profiling establishes the model components and their
budget costs for each. Table I summarizes the modules and
components of DeepLiDARFlow [14], parameters, FLOPS,
and inference time for the entire model. Model parameters,
which are in general weights that are learnt during training,
are measured according to [32] as shown in hereunder
equations. However, they are weight matrices that contribute
to the model’s predication power, changed during the back-
propagation process. FLOPS are also measured based on the
equations [28]. This process aims to overview which
components occupy a high budget for running.

For measuring Convolutional layers’ parameters, it is
satisfied as in (1):


(1)

1 ((* *) * .1)
l l l ll

lparameters
Conv m n d k



   

Where m is the shape of width, n is the height, d is the
layer’s filters, l is layer number and k is the account for all
such filters in the current layer, 1 is added as a bias term for
each filter. When l = 0, as it is, the input layer has nothing to
learn, as its core, which provides the input images’ shape.

Thus, the number of parameters = 0. Hence, Pool Layer:
generally, the pooling layer has no backpropagation learning
involved, thus the number of its parameters = 0.

TABLE I. DEEPLIDARFLOW MODEL SUMMARY PROFILE.

Item
FE Module SF

Module

CN

Module

CV

Module

Warping

Module
Total

FPN FM

Number of

parameters

3,849,028

(% 46.40)

1,006,720

(% 12.14)

2,916,852

(% 35.16)

522,436

(% 6.30)
0 0 8,295,036

Number of

CNN layers

240

(% 61.70)

65

(% 16.7)

76

(% 19.5)

8

(% 2.1)
0 0 389

FLOPs
33.45 B.

(% 24.92)

24.50 B.

(% 18.25)
45.38 B.

(% 33.81)

30.48 B.

(% 22.71)

0.406 B.

(% 0.3)

0.011 B.

(% 0.01)
134.227 B.

Inference time 137.4 ms = 0.1374 seconds

FE= Feature Extraction Module, FPN= Feature Pyramids Network, FM=
Fusion Model, SF= Scene Flow Module, CN= Context Network Module,

CV= Cost Volume Module, ms. = 10-3 seconds, and B= Billion. Yellow

marker means the highest cost. Inference time is computed using GPU

GTX 1660. 6. Giga Byte (GB).

Additionally, for measuring the Fully Connected (FC)
layer, since every neuron has been connected to every other
neuron for the next layer, it has the highest number of
parameters. Hence, the number of parameters for FC is
satisfied as in (2):


(1)

1 (((*) 1) *).
l l ll

lparameters
FC c p c



   

Where, c is the current layer neurons, p is previous layer
neuron. Equation (2) is also used to measure learnable
parameters for soft max layers.

The convolution is implemented by a sliding window on
the layer, for computing the FLOPS from the following
equation (3):


2

1 (2 (1) *).
l
lFLOPS in out

Conv HW c K c   

Where:

 H,W and cin are height, width and number of channels

of the feature map respectively.

 K is the kernel width.

 l is the layer.

 cout is the number of output channels.

For measuring FLOPS of fully connected layers is satisfied

as in (4):

 1 2 * *).
l
lFLOPS input out

F size sizeC    

In computing, FLOPS is a measure of computer
performance, useful in fields of scientific computations that
require floating-point calculations. For such cases, it is a
more accurate measure than measuring instructions per
second. The size means the size of feature maps.

Table I. shows that the current CNN has hundreds of
layers, thousands of channels and millions of parameters,
thus requiring computation at billions of FLOPS. This report
examines the opposite extreme: pursing the best accuracy in
very limited computational budgets, focusing on common
computer vision high-level tasks and platforms such as
robots.

The following section previews the quantization and
pruning strategy which are implemented on the
DeepLiDARFlow [14] model and its pre-trained model.

B. Pruning

Weight pruning is a technique for reducing the number of
parameters in a neural network by removing weights that are
not important for the model's performance [3], [9]. We
adapt the Percentile-based weight pruning, which involves

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

identifying the weights in the network that are within a
certain percentile range of the distribution of weights, and
then setting these weights to zero [28], [33].

One advantage of percentile-based weight pruning is that
it is flexible, as the percentile threshold can be adjusted to
control the amount of pruning as is done.

To perform percentile-based weight pruning, we
generally follow these steps: we compute the distribution of
weights in the network. Then identify the percentile
threshold that we want to use for pruning in both post and
aware training. For example, we may want to prune the
lowest 10% of weights. We identify the range of weights
that corresponds to the percentile threshold. If we are using
a 10% threshold, we identify the range of weights that
corresponds to the lowest 10% of the distribution. Finally,
we set all of the weights within the identified range to zero.

Notably, weight pruning can also negatively affect the
performance of the model if the pruning is not done
carefully. For example, if the pruning threshold is set too
high, the model may not be able to learn effectively, as it
will have fewer weights available to use. Therefore, the
model may not be able to learn effectively. On the other
hand, if the pruning threshold is set too low, the model may
not be able to achieve a significant reduction in the number
of weights. As such, the percentile threshold to find the right
balance between model complexity and performance, so
careful tuning is necessary.

In general, pruning too many weights or biases can
degrade the accuracy of the CNN, so careful evaluation is
necessary. It may also be necessary to fine-tune the CNN
after pruning it further to improve its performance. This is
detailed in Experiments and Results section IV. Therefore,
we implement post-pruning experiments and compare the
experiments with the original version of DeepLiDARFlow
[14] pre-trained model. Then we apply aware-training
pruning by fine-tuning the model using the original pre-
trained model version, using the same datasets and learning
as [14]. Then, following the same procedures which are
applied in quantization, the same thing in aware-training for
pruning, using the same the lr and epochs to compare each of
the pruning aware training and quantization aware-training
and its effects on accuracy. The run-time is also measured
and compared with the original, to get a better picture of the
impact of each of what is applied on the model’s
performance. Hence, these results can be generalized to other
similar models targeting compression and reducing memory
allocation.

C. Quantization

There are several ways to decrease the number of bits in
a Convolutional Neural Network. One approach is to use
low-precision data types, such as 8-bit integer (int8) or 16-
bit floating point (float16), to represent the weights and
activations. These data types use fewer bits than the
standard 32-bit floating point (float32) data type, which is
typically used to represent weights and activations in deep
learning models.

 Another approach is to use quantization techniques,
which involve approximating the values of the weights and

activations with values from a smaller set of discrete values.
For example, weight quantization involves rounding the
weights to the nearest value in a set of discrete values, while
activation quantization involves rounding the activations to
the nearest value in a set of discrete values.

We follow uniform quantization, which is a technique for
representing the weights and activations of a CNN with a
fixed number of bits. It works by dividing the range of
possible values into a fixed number of equally sized
intervals, and assigning each interval a unique quantization
level. This is the following by rounding the weights to the
nearest value. We generally follow these steps: we
determine the range of values that we want to quantize. This
will typically be the minimum and maximum values of the
data that are quantized. We then choose the number of
discrete values that we want to use for quantization. This
will typically be a power of 2, as this allows the quantized
values to be represented using a fixed number of bits.
Further, we divide the range of values into intervals of equal
size. The number of discrete values, which are used for
quantization, determines the size of the intervals. Then, we
assign a quantized value to each interval based on the
midpoint of the interval. For example, if the first interval
has a midpoint of 9.5, we could assign the value 10 to this
interval, and so on. Finally, for each data point, determine
the interval that it falls within, and replace the original value
of the data point with the quantized value for that interval.
However, this is also followed by aware training/fine-tuning
to improve the accuracy of results.

Notably, uniform quantization can introduce some loss of
accuracy, as the original values of the data points are
approximated with the quantized values. As such, tuning
carefully the number of discrete values and the size of the
intervals, to find the right balance between accuracy and the
number of bits needed to represent the data. Therefore, in
the first case, we apply the quantization directly to the pre-
trained model and save a new version of the quantized pre-
trained model for each percentage.

Then we investigate the experiments and compare those
with a full-precision version. The second case, aware-
training quantization, we apply quantization during fine-
tuning once with the same number of epochs and learning
rate (lr) stated in [14], and others using lower lr and more
epochs for fine-tuning to improve the accuracy, which lost
during the quantization versions.

IV. EXPERMENTS AND RESULTS

Several experiments are conducted to verify the results of
our method. As shown in section E, ablation study, we ablate
the process by implementing evaluation first to the original
version of DeepLiDARFlow [14] using the same dataset
mentioned in [14], which is detailed below in section A.

Second, we ablate a few steps of post and aware-training
for both pruning and quantization. Third, we conduct several
training implementations for aware-training quantization and
pruning. Finally, we implement several experimental results
compared to the original. We start this section overviewing
the datasets and evaluating metrics used in our experiments.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

The pruning is accomplished in two phases; which is
post-training pruning and aware-training pruning in different
percentages. Similarly, the same approach for quantization is
applied in post-training quantization, and aware-training
quantization. However, we apply quantization using (16 bits,
14 bits, 12 bits, 8 bits, and 6 bits) for both post and aware-
training quantization.

A. Datasets and Evaluation Metrics

Following DeepLiDARFlow [14] instructions for fine-
tuning on the KITTI dataset.

KITTI [16]. This benchmark, known as the KITTI Scene
Flow benchmark, is used to assess scene flow techniques.
There are 200 training and 200 test scenes. We follow
DeepLiDARFlow [14] preprocessing for the KITTI dataset,
referred to as KITTId.

The same percentage of dividing the dataset used in [14],
however, 9:1 of the frames as training : testing.
We use the same evaluation metrics used in [14]. In this
context, we evaluate the accuracy using End Point Error
(EPE), the endpoint error is > 3 pixels, and the relative error
is > 5 % compared to the ground truth. Additionally, the
KITTI outlier rate for scene flow (KEO) is mentioned in this
study, mainly in the ablation study.

Further to compute the run-time, we perform the
evaluation on a computer with GPU-GeForce GTX 1660Ti
6 Giga byte concerning the same environment, same dataset
and same frames of input.

B. Implementation

Furthering to the ablation study and the process to ablate
our strategy; we implement post-quantization, to reduce
memory usage by quantizing the model on various bit
scales. We systematically increase the bit scales to evaluate
their impact on model quality and run-time performance
while reducing memory usage. We apply first the fine-
tuning with the same dataset, learning rate and number of
epochs for aware-training quantization, and pruning. We
fine-tune the DeepLiDARFlow [14] pre-trained model with
a batch size of 1, following the same procedures as in [14].
All subsequent fine-tuning experiments also use a batch size
of 1. We gradually decrease the learning rate and increase
the number of epochs during fine-tuning until the model
converges on the training set. We use a validation set to
monitor performance during this process and stop fine-
tuning when the model starts to over fit.

C. Quantitative Results

Our research aims to accelerate the available CNN
solution using pruning and quantization, and maintaining
accuracy at the same time. This section evaluates the
efficiency of our proposed strategy in implementing the
quantization and pruning on the available CNN,
DeepLiDARFlow [14], for scene flow estimation. From this
part, we can explore one of the best quantization levels as
well as the pruning level, so we implement a hybrid
quantization and pruning with the chosen. Then, study the

effects of each level of pruning and quantization and
compare them with the hybrid one and the original one in
terms of the accuracy and run-time. We start the quantitative
results with quantization.

Fig. 1 shows the impact of quantization and pruning on
the DeepLiDARFlow [14] model and its pre-trained .

On the left, the effect of post and aware-training
quantization is demonstrated for the model with 4096 input
points, with 6 and 8-bit quantization excluded due to their
significant decrease in accuracy. On the right, EPE results
are presented for post-training pruning, aware-training
pruning with the original learning rate, and aware-training
pruning with a lower learning rate. The red line represents
the original benchmark for comparison. The results indicate
that while post-pruning with high percentages can decrease
accuracy, aware-training with fine-tuning in pruning can
maintain accuracy, particularly at lower learning rates.

Fig. 2 demonstrate the impact of post and aware-training
quantization on EPE accuracy metric for DeepLiDARFlow
[14]. We explore the effect of different numbers of input
samples and weight bit representations on the architecture's
behavior towards weight quantization.

The left on in Fig. 2 illustrates the accuracy redundancy
when using post-quantization, indicating that the
architecture's behavior is not constant for different samples.
For example, there are minimal effects on accuracy when
testing post-quantization with 8192 input samples, and the
accuracy improves with post-quantization for a number of
samples such as 2048 and 8192. However, quantization with
different bits, such as 16 and 12 bits, yields better accuracy
for a specific number of input samples (e.g., 4096), and the
accuracy deteriorates for other bits of post-quantization with
the same number of samples. In contrast, the right one in
Fig. 2 demonstrates the effect of aware-training quantization
on EPE accuracy. Different numbers of samples are
explored, and the results show a significant improvement in
the CNN's behavior towards aware-quantization, which is
further improved with fine-tuning. The smoothing of
accuracy improvements is clearly shown, and the best
results are obtained with aware-training quantization using
16 bits, leading to a significant improvement in EPE.

To verify our results, we conducted further evaluation on
the pre-trained model using post-training pruning on
different LiDAR data sample sizes. As seen in Fig. 3, left
one, the behavior of the network remained unchanged,
unlike post-quantization. The red line in both figures
represents the original benchmark.

After fine-tuning with a lower learning rate, accuracy
was improved, as shown in the right one in Fig. 3.
However, some results, depicted below the red line, showed
an accuracy improvement of 5% and 10% pruning.
Meanwhile, other percentages did not affect accuracy
significantly. Unlike post-training, aware-training achieved
minimal accuracy drops in some cases while achieving
accuracy improvements in others, making the reduction in
accuracy negligible.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

Figure 1. End Point Error metric using quantization and pruning on post and aware-training.

Figure 2. End Point Error metric with quantization on post and aware training. Left one is post quantization and right one is aware quantization

Figure 3. End Point Error metric with pruning on post and aware-training. The left on is post pruning and right one is aware pruning.

TABLE II. THE METRICS RESULTS QUANTIZATION AND PRUNING ON DEEPLIDAFLOW WITH INPUTS SAMPLES 4096.

kind Pruning Quantization EPE ↓ KEO ↓ kind Pruning Quantization EPE ↓ KEO ↓ Time (ms)

Original 2.997 11.565 Original 2.997 11.565 137.4

Post 5% 32 bits 2.955 11.282 Aware 5% 32 bits 2.835 10.568 133.8

Post 10% 32 bits 3.074 12.603 Aware 10% 32 bits 2.884 11.132 133.4

Post 15% 32 bits 3.577 18.197 Aware 15% 32 bits 3.002 11.537 132.7

Post 20% 32 bits 4.004 22.752 Aware 20% 32 bits 3.209 12.925 129.4

Post 25% 32 bits 5.536 35.992 Aware 25% 32 bits 3.147 12.771 128.7

Post 0.07% 16 bits 2.959 11.722 Aware 0.07% 16 bits 2.766 10.418 131.7

Post 0.29% 14 bits 3.071 12.268 Aware 0.29% 14 bits 2.877 10.556 130.7

Post 1.17% 12 bits 2.89 11.071 Aware 1.17% 12 bits 2.796 10.485 130.1

Post 4.69% 10 bits 3.047 11.375 Aware 4.69% 10 bits 2.828 10.035 129.5

Post 15.48% 8 bits 3.927 18.422 Aware 15.48% 8 bits 3.968 18.013 128.9

Post 33.77% 6 bits 7.836 60.558 Aware 33.78% 6 bits 8.106 56.934 128.5

Table II provides quantitative metrics and their

corresponding effects on accuracy for both pruning and
quantization, as well as the run-time for each method. The
table also includes the percentage of each pruning level used
in the hybrid strategy, which applies both pruning and
quantization to the pre-trained model. All results are
compared to the original model. The yellow labels indicate
the best results in terms of accuracy. The findings presented
in this table can be useful for future work on optimization,
targeting FLOPS and weight parameters, as these factors
play a significant role in run-time.

Figures in Fig 4 shown depict the best strategies for
compressing the pre-trained model of DeepLiDARFlow
[14] using post-training pruning and quantization and
aware-training pruning and quantization.

The green circle in both figures represents the original
pre-trained model with float-32 bit precision. The right
figure demonstrates that 12 bits of weight quantization with
1.17% weight pruning provides the best results in terms of
accuracy and run-time for post-training compression, while
10 bits with approximately 5% weight pruning needs
optimization. The left figure illustrates the best quantization
bits and pruning percentages for aware training with a
learning rate of 0.00001. 12 bits with 1.17% weight pruning
provides the best accuracy results, which are better than the
original accuracy, and 10 bits with approximately 5%
weight pruning have been significantly optimized compared
to post-pruning and post-quantization. They provide better
results than the original, and the run-time for both is reduced
by approximately 7 ms.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

Post-training/fine-tuning

Quantization and Pruning

Aware-training/fine-tuning

Quantization and Pruning

Abbreviations: Q = Quantization, P = Pruning, EPE = End Point Error,

T = Time, ms = 10-3 seconds

Figure 4. Combining pruning and quantization versus original

D. Qualitative Results

We visually compare the results of DeepLiDARFlow
[14] as shown in Fig 5. In this section, the qualitative results
are demonstrated after testing each step of pruning and
quantization in post and aware-training/fine-tuning. Then,
we compare the results with the original. Since there are
many figures can be visualized, we have enough the
visualization for the best, which are related to Table II in the
quantitative results. In addition, we visualize part of pruning
with high and low percentage to show the pruning effects on
accuracy.

The visualization shows that our pruning and
quantization does not drop the accuracy of the model. In
contrast, our work improves the accuracy and the
visualization more robust after some percentages of pruning
and quantization levels. The visualizations proof the
quantitative results. All these visualizations are with number
of samples 4096 as input. The first two images are the
inputs to the architecture. The first column is the optical
flow visualization, the second is the disparity 1 (D0) and the
second is disparity 2 (D1), which are components of the
average KITTI outlier rate for scene flow [16].

E. Ablation Study

Before making the final decisions about the approach and
kind of quantization and pruning strategy, we conducted
several steps to verify the proposed strategy for pruning and
quantization. For fair comparison, first, we evaluate the
original DeepLiDARFlow [14] model with different
numbers of samples, starting with e.g. 2048 as input, and
increasing with factor 2x to 16384. To investigate our
pruning and quantization strategy, we apply the post-
quantization with little bits than the original, where the
original is 32 float, so we apply post-quantization with only
16 float bits. Second, we apply the quantization with 6 bits
as big decreasing bits for the memory allocation to
investigate their effects on accuracy and run-time at the
same time. Hence, all these experiments are conducted
using the same dataset test used for evaluating the original
DeepLiDARFlow [14] with the same pre-processing files.
Third, we apply the post-pruning on its pre-trained model.
To evaluate the effectiveness of our pruning strategy, we

start with a low percentage of weight pruning (5%) and
gradually increase it by 5% increments. However, in our
ablation results we present the pruning with the lowest
percentage and the highest percentage, 5% and 25%
respectively.

We prune both the weights and biases of CNN, as both
can contribute to the complexity of the model and the
overall performance. However, after comparing the results
of our ablation study with those of the original model, we
further investigate our strategy by applying aware-training
quantization and aware-pruning quantization. For fair
comparison, we first follow the DeepLiDARFlow [14] fine-
tuning procedures as well as the learning rate and number of
epochs on the same dataset. Then, we decrease the learning
rate by a factor 10x for each 100 epochs to optimize the
accuracy, which lost from the pruning and quantization.
Table III shows the comparisons between our ablations with
the original one in just 4096 samples.

Table III demonstrates that both quantization and pruning
have an impact on the accuracy of the model. However, our
strategy for pruning and quantization, aimed at optimizing
and speeding up CNN architectures, has a significant effect
on the performance of these models, both in terms of
accuracy and run-time, as shown in Fig. 4. To investigate
these effects, we applied our strategy of pruning and
quantization at different levels and with different
techniques, such as post-training and aware training with
different learning rates and numbers of epochs. In aware
training, we increased the number of epochs and decreased
the learning rate to reduce the accuracy losses resulting from
pruning and quantization.

We also evaluated the effects of each technique on the
run-time of the model, as shown in Fig. 6 for the
DeepLiDARFlow [14] architecture. The run-time was
measured on 4096 sample points.

TABLE III. ABLATION STUDY FOR OUR STRATEGY

N
o

Q
u

a
n

tiza
tio

n

P
r
u

n
in

g

P
o

st

A
w

a
r
e

lr1* lr2*
bits

Float

16

bits

Float

6
5% 25% EPE↓ KEO↓

Original on number of samples 4096 2.99 11.57

1 √ ꭗ √ ꭗ ꭗ ꭗ √ ꭗ ꭗ ꭗ 2.96 11.72

2 √ ꭗ √ ꭗ ꭗ ꭗ ꭗ √ ꭗ ꭗ 7.836 60.56

3 √ ꭗ ꭗ √ √ ꭗ √ ꭗ ꭗ ꭗ 2.99 12.31

4 √ ꭗ ꭗ √ √ ꭗ ꭗ √ ꭗ ꭗ 7.41 51.62

5 √ ꭗ ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ 2.77 10.42

6 √ ꭗ ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ 8.11 58.95

7 ꭗ √ √ ꭗ ꭗ ꭗ ꭗ ꭗ √ ꭗ 2.96 11.28

8 ꭗ √ √ ꭗ ꭗ ꭗ ꭗ ꭗ ꭗ √ 5.54 35.99

9 ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ √ ꭗ 3.37 12.93

10 ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ ꭗ √ 3.22 14.34

11 ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ √ ꭗ 2.84 10.57

12 ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ ꭗ √ 3.15 12.78

* lr1 = 0.0001, lr2 = 0.00001

All the metrics are conducted using number of sample = 4096

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

inputs

Original

Quantization

12 bits

Quantization

10 bits

Pruning 25%

Pruning

5%

Figure 5. Visualizations of DeepLiDARFlow [14] after pruning and quantization versus the original.

We investigate the effect of each technique on the
model in term of run time. Fig 6. shows the effect of both
pruning and quantization on the run time. The pruning
decreases the run-time/inference on DeepLiDARFlow
[14] periodically by increasing the percentage of weights
pruning. Furthermore, the quantization has the same
effects on the run-time. The inference time for each case
is measured using GPU-GeForce GTX 1660Ti 6 Giga
byte.

V. FUTURE WORK

Future work in this area could involve exploring
different types of pruning and quantization techniques to
further optimize and speed up CNN architectures.

In future work, we could explore the application of
explainable AI techniques to your computer vision
models to improve its interpretability and trustworthiness.

Meta-Learning can be particularly useful in scenarios
where the available data is limited or the model needs to
adapt quickly to new environments. In future work, we
could explore the application of meta-learning techniques
to improve the generalization capabilities and adaptability
to new scenarios.

Deep rewiring training is a technique allows changing
the architecture of the model by decreasing the number of
parameters and FLOPs.

Domain adaptation is a technique that aims to transfer
knowledge learned from a source domain to a target
domain, where the data distribution may be different. In
future work, you could investigate the application of
domain adaptation techniques to your DeepLiDARFlow
model to improve its performance in different domains.

VI. CONCLUSION

In conclusion, we have presented an investigation into
the effectiveness of pruning and quantization for scene
flow estimation using a CNN on the KITTI [16]
benchmarks. Our results indicate that both techniques can
effectively reduce the complexity of the CNN and
improve its efficiency, while maintaining acceptable
levels of accuracy. Specifically, our experiments showed
that pruning up to 15% of the weights and biases can
reduce the memory allocation and inference time without
sacrificing accuracy, and that post-quantization with 12-
bit and 10-bit can also provide similar benefits. Our
findings provide insights into the optimal combination of
these techniques for this dataset and CNN architecture,
and we recommend the use of these techniques for
accelerating CNN architectures with approx. 5% for
pruning and 10 bits for quantization in aware-training.

Figure 6. Effect the different levels of pruning and quantization on run-

time.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

[Type here]

ACKNOWLEDGMENT

This work was partially funded by the Federal Ministry
of Education and Research Germany in the funding
program Photonics Research Germany under the project
FUMOS (13N16302) and partially under the project
DECODE (01IW21001).

REFERENCES

[1] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental

network quantization: Towards lossless cnns with low-
precision weights,” in 5th International Conference on

Learning Representations, ICLR 2017 - Conference Track

Proceedings, 2017, pp. 1–14.
[2] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning

Structured Sparsity in Deep Neural Networks,” Adv. neural

Inf. Process. Syst., pp. 2047–2082, 2016.
[3] S. Han, H. Mao, and W. J. Dally, “Deep Compression:

Compressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding,” 4th Int. Conf. Learn.
Represent. ICLR 2016 - Conf. Track Proc., pp. 1–14, 2016.

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,

“XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks,” in In European conference

on computer vision, 2016, pp. 525–542.

[5] D. Soudry, I. Hubara, and R. Meir, “Expectation
backpropagation: Parameter-free training of multilayer neural

networks with continuous or discrete weights,” Adv. Neural

Inf. Process. Syst., vol. 2, no. January, pp. 963–971, 2014.
[6] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized

Convolutional Neural Networks for Mobile Devices,” in In

Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 4820–4828.

[7] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,

“DoReFa-Net: Training Low Bitwidth Convolutional Neural

Networks with Low Bitwidth Gradients,” vol. 1, no. 1, pp. 1–

13, 2016, [Online]. Available: http://arxiv.org/abs/1606.06160

[8] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning Both
Weights and Connections for Efficient Neural Networks,”

Adv. Neural Inf. Process. Syst., vol. 2015-Janua.

[9] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing
Deep Convolutional Networks using Vector Quantization,”

arXiv Prepr. arXiv1412.6115, pp. 1–10, 2014.

[10] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating Very Deep
Convolutional Networks for Classification and Detection,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp.

1943–1955, 2016.
[11] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile

GPU-based deep learning framework for continuous vision

applications,” in MobiSys 2017 - Proceedings of the 15th
Annual International Conference on Mobile Systems,

Applications, and Services, 2017, pp. 82–95.

[12] Y. Guo, A. Yao, and Y. Chen, “Dynamic Network Surgery for
Efficient DNNs,” Adv. Neural Inf. Process. Syst., no. NIPS,

pp. 1387–1395, 2016.

[13] H. Li, H. Samet, A. Kadav, I. Durdanovic, and H. P. Graf,
“Pruning filters for efficient convnets,” in 5th International

Conference on Learning Representations, ICLR 2017 -
Conference Track Proceedings, 2017, no. 2016, pp. 1–13.

[14] R. Rishav, R. Battrawy, R. Schuster, O. Wasenmuller, and D.

Stricker, “DeepLiDARFlow: A Deep Learning Architecture
for Scene Flow Estimation Using Monocular Camera and

Sparse Lidar,” in IEEE /RSJ International Conference on

Intelligent Robots and Systems(IROS)., 2020.
[15] N. Mayer et al., “A Large Dataset to Train Convolutional

Networks for Disparity, Optical Flow, and Scene Flow

Estimation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 4040–

4048.

[16] M. Menze and A. Geiger, “Object Scene Flow for

Autonomous Vehicles,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 3061–

3070, 2015.

[17] Y. He, X. Zhang, and J. Sun, “Channel Pruning for
Accelerating Very Deep Neural Networks,” Proc. IEEE Int.

Conf. Comput. Vis., vol. 2017-Octob, pp. 1398–1406, 2017.

[18] T. Zhang et al., “A systematic DNN weight pruning
framework using alternating direction method of multipliers,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 11212 LNCS, pp. 191–
207, 2018.

[19] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,

“Learning Efficient CNN through Network Slimming,” in In
Proceedings of the IEEE international conference on

computer vision, 2017, pp. 2736–2744.

[20] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A Filter Level Pruning
Method for Deep Neural Network Compression,” in In

Proceedings of the IEEE international conference on

computer vision, 2017, pp. 5058–5066.
[21] J. Ranstam and J. Cook, “LASSO regression,” J. Br. Surgery,

vol. 105, no. 10, pp. 1348–1348, 2018.

[22] J. M. M. Anderson, B. A. Mair, M. Rao, and C. H. Wu,
“Weighted least-squares reconstruction methods for positron

emission tomography,” IEEE Trans. Med. Imaging, vol. 16,
no. 2, pp. 159–165, 1997.

[23] G. Xie, J. Wang, T. Zhang, J. Lai, R. Hong, and G. J. Qi,

“Interleaved Structured Sparse Convolutional Neural
Networks,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,

2018, pp. 8847–8856. doi: 10.1109/CVPR.2018.00922.
[24] K. Sun, M. Li, D. Liu, and J. Wang, “IGCv3: Interleaved Low-

Rank Group Convolutions for Efficient Deep Neural

Networks,” Br. Mach. Vis. Conf. 2018, BMVC 2018, pp. 1–13,
2019.

[25] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy,

“Sparse Convolutional Neural Networks,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-

12-June, pp. 806–814, 2015.

[26] Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han, “AMC:
AutoML for Model Compression and Acceleration on Mobile

Devices. (arXiv:1802.03494v3 [cs.CV] UPDATED),” Eccv,

2018, [Online]. Available: http://arxiv.org/abs/1802.03494
[27] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural

architecture search on target task and hardware,” 7th Int. Conf.

Learn. Represent. ICLR 2019, pp. 1–13, 2019.
[28] J. Frankle and M. Carbin, “The lottery ticket hypothesis:

Finding sparse, trainable neural networks,” 7th Int. Conf.

Learn. Represent. ICLR 2019, pp. 1–42, 2019.
[29] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized

Low-Precision Architecture for Inference of Convolutional

Neural Networks,” arXiv Prepr.
[30] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect:

Training Deep Neural Networks with Binary Weights During

Propagations,” Adv. Neural Inf. Process. Syst., no. Section 5,

p. 10, 2015.

[31] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding Up

Convolutional Neural Networks with Low Rank Expansions,”
2014.

[32] V. Lebedev and V. Lempitsky, “Fast ConvNets Using Group-

Wise Brain Damage,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2554–

2564, 2016.

[33] K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort, “Learned
Threshold Pruning,” no. 2017, pp. 1–12, 2020.

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on December 13,2023 at 10:53:56 UTC from IEEE Xplore. Restrictions apply.

