
The 8th  International Engineering Conference on Renewable Energy & 

Sustainability (ieCRES 2023) 
 

Accelerating the Run-Time of Convolutional Neural Networks through Weight 

Pruning and Quantization 

Rajai Alhimdiat, Wesam Ashour 

Computer Engineering dept.  

Islamic University of Gaza, IUG 

Gaza, Palestine 

e-mail: rajaihimdiat@hotmail.com, 

washour@iugaza.edu.ps 

Ramy Battrawy, Didier Stricker 

German Research Centre for Artificial Intelligence. 

DFKI.  

Kaiserslautern, Germany 

e-mail: ramy.battrawy@dfki.de, didier.stricker@dfki.de 

Abstract— Accelerating the processing of Convolutional Neural 

Networks (CNNs) is highly demand in the field of Artificial 

Intelligence (AI), particularly in computer vision domains. The 

efficiency of memory resources is crucial in measuring run-time, 

and weight pruning and quantization techniques have been 

studied extensively to optimize this efficiency. In this work, we 

investigate the contribution of these techniques to accelerate a 

pre-trained CNN model. We adapt the percentile-based weights 

pruning with focusing on unstructured pruning by dynamically 

adjusting the pruning thresholds based on the fine-tuning 

performance of the model. In the same context, we perform 

uniform quantization for presenting the weights values of the 

model’s parameters with a fixed number of bits. We implement 

different levels of post-training and aware-training -fine-tuning- 

the model with the same learning rate and number of epochs as 

the original. We then refine-tune the model with a lower learning 

rate and a factor of 10x for both techniques. Finally, we combine 

the best levels of pruning and quantization and refine-tune the 

model to explore the best-pruned and quantized pre-trained 

model. We evaluate each level of the techniques and analyze 

their trade-offs. Our results demonstrate the effectiveness of our 

strategy in accelerating the CNN and improving its efficiency, 

and provide insights into the best combination of techniques to 

accelerate its inference time. 

Keywords: Pruning and Quantization, CNN’s Run-Time, 

Inferences acceleration.  

I.  INTRODUCTION 

The demand for efficient processing of Convolutional 
Neural Networks (CNNs) in the field of Artificial 
Intelligence (AI) has led to the development of weight 
pruning and quantization techniques. These techniques 
optimize memory resources and reduce run-time, making 
CNNs more suitable for deployment on devices with limited 

hardware resources and strict latency requirements [1]. 
Pruning involves removing unnecessary weights from the 

CNN by selectively setting weights to zero based on their 
magnitude [2]–[4]. Quantization reduces the precision of 
weights and activations by representing them using a smaller 
number of bits [1], [3], [5]–[9]. Weight pruning and 
quantization are  straightforward strategies to post-process 
pre-trained models by using fewer bits for memory 
allocation, which can accelerate the inference time of CNNs 
[10], [11]. These techniques can be used individually or in 
combination to reduce the complexity of the CNN and 

improve its efficiency, without significantly degrading its 
performance. Combining pruning and quantization can be 
particularly effective, but the optimal combination of 
techniques for a given CNN and application [9], [12], [13], 
must be carefully identified. 

Our study investigates the impact of pruning and 
quantization on the performance of CNN-based solutions. 
Mainly our study focuses on a solution for scene flow 
estimation, which is crucial for applications such as 
autonomous vehicles, robot navigation, and advanced driver 
assistance systems. Specifically, we examine the 
DeepLiDARFlow [14] model, which fuses LiDAR 
measurements and monocular camera inputs for a dense 
scene flow estimation as 2D representations. This model 
achieves accurate results, but its large memory footprint and 
high computational requirements hinder its use in real-time 
applications. 

As the pre-trained model of DeepLiDAFlow [14] is 
already trained by FlyingThings3D [15] dataset, we do not 
need to do training from scratch when applying pruning and 
quantization techniques. Using the KITTI [16] dataset 
benchmark, we evaluate the performance of the pre-trained 
DeepLiDARFlow [14] model after applying various levels of 
pruning and quantization techniques, on both post-training 
and aware-training. We fine-tune the model using the same 
learning rate and number of epochs as the original [14] and 
then refine-tune it with a lower learning rate and a factor of 
10x for both techniques. Finally, we combine the best levels 
of pruning and quantization to obtain the best pruned and 
quantized pre-trained model. 

Our results demonstrate the effectiveness of our approach 
in improving the efficiency of the CNN and accelerating its 
inference time, while maintaining high accuracy. Moreover, 
we provide insights into the trade-offs between pruning and 
quantization and the best combination of techniques for a 
given CNN and application. Our work makes several 
significant contributions to the field of CNN optimization for 
real-time applications: 
- We explore the efficacy of post-training for pruning and 

quantization techniques on a certain pre-trained CNN 
solution, fine-tuning it with the same number of epochs 
and learning rate as the original model. 

- We investigate aware-training for pruning and 
quantization of the CNN's pre-trained model at various 
levels and different learning rates to identify the optimal 
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level for achieving the best balance between model size 
and accuracy. 

- We demonstrate the effectiveness of our approach by 
evaluating it on a real-world dataset, showing that our 
optimized model achieves a lower memory footprint and 
runtime than the original model. 

- We identify the best quantization level and pruning 
percentage for the CNN’s pre-trained model and provide 
generalizations that can be applied to other solutions.  

- Our findings can inform the development of efficient 
CNN architectures that can be deployed in resource-
constrained environments, such as self-driving cars, 
where latency and memory constraints are critical 
factors. 

II. RELATED WORKS 

A. Weight pruning for CNN compression 
Weight pruning is a popular technique for reducing the 

storage and computation requirements of neural networks. It 
aims to eliminate unnecessary connections between neurons, 
such as those corresponding to redundant or unimportant 
features, without sacrificing accuracy [8], [13]. Different 
studies [13], [17]–[20],  have proposed various methods for 
weight pruning, such as pruning entire filters, channels, or 
layers, or selectively removing individual weights or filters 
based on certain criteria. Recently, several researchers have 
proposed methods for coordinated weight pruning [2], such 
as structural sparsity learning or group LASSO regression 
[21], which aim to prune filters, channels, or neurons in a 
coordinated manner, while others have focused on individual 
weight pruning, using techniques such as L1 norm or Taylor 
expansion to identify and remove unimportant weights or 
filters [22]–[24]. However, these methods often lead to a 
significant decrease in accuracy Additionally, some studies 
have incorporated batch normalization or long short-term 
memory (LSTM) [25] based decision-making to improve the 
efficiency and accuracy of weight pruning. 

Weight pruning can be categorized as structured or 
unstructured pruning, depending on whether it leads to 
changes in the network architecture [10], [13], [17], [18], 
[26]–[28]. Structured pruning methods aim to remove entire 
filters, channels, or layers, while unstructured pruning 
involves selectively removing individual weights or filters. 
Our work focuses on unstructured pruning, where we adapt a 
strategy of dynamically adjusting the pruning threshold 
based on the fine-tuning performance of the network on the 
dataset used. 

Overall, weight pruning is a promising approach for 
accelerating the run-time of convolutional neural networks 
while minimizing storage and computation requirements. 
Different pruning methods and criteria have been proposed, 
and the choice of pruning strategy may depend on factors 
such as network architecture, dataset, and performance 
objectives. 

 

B. Weight quantization for CNN compression 
Weight quantization is a technique used to reduce the 

number of bits required to store pre-trained model 
parameters and feature values in memory [1], [8], [23], [29], 

[30]. Various quantization techniques and approaches have 
been explored to speed up CNNs. Some studies have 
implemented full-precision quantization to convert low-
precision CNN models, while others have attempted to train 
binary networks directly [30]. Some researchers have 
explored the use of low rank factorization to reduce the 
number of calculations and improve inference speed [24], 
[31]. However, these methods often lead to a significant 
decrease in accuracy, especially when used on larger 
networks. 

Despite ongoing research, there are still challenges 
associated with weight quantization in deep neural networks 
(DNNs) and CNNs. One of these challenges is the accuracy 
loss that occurs during the quantization process, which often 
requires an increased number of training iterations and fine-
tuning epochs to achieve convergence. In this study, we 
investigate the use of conscious training quantization and 
compare the results with post-training quantization in an 
effort to address the issue of low weight accuracy during 
quantization. 

Quantization involves converting a pre-trained model's 
full-precision weights (i.e., 32-bit floating-point) into a low-
precision version where the weights are constrained to be 
either a power of two or zero, similar to [1]. This method is 
advantageous because it reduces the memory required for the 
original floating-point multiplication operation. During either 
post-quantization or aware-quantization, very small weight 
values are pruned based on a percentile threshold. Our 
experimental results show the percentage of pruning that 
occurs during the quantization process. This combination of 
quantization and pruning can accelerate the CNN and 
decrease the memory footprint, as demonstrated in [3], 
which inspired us to merge quantization and pruning as part 
of our approach. Other researchers have also explored 
merging pruning and quantization techniques to avoid over 
pruning [12]. Merging these techniques can compress the 
model storage and improve the model's inference speed. Our 
proposed method and strategy have been extensively tested, 
and the results are presented in the experiments and results 
section. 

III. PROPOSED METHOD 

Convolutional Neural Network implementations on 
Graphical Processing Units (GPUs) use power-inefficient 
Floating Operation Points (FLOPS). This paper aims to 
develop a compressed version of a CNN. To reduce the 
storage and computational requirements of a CNN by 
quantizing and pruning its weights and activations, we 
propose a strategy in which it is hypothesized that quantizing 
and pruning the weights and activations of a CNN will 
reduce its storage and computational requirements without 
significantly degrading its performance. 

Our method is summarized according to the following:  
1- Identify a CNN solution as available. Therefore, we 

identify a DeepLiDARFlow [14], which is a model 
for estimating dense scene flow from monocular 
camera and sparse LiDAR. 

2- Profile the solution and identify the size and 
computational cost of its components.  
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3- Since its pre-trained model is available, there is no 
need to train it from scratch with full precision. We 
can directly implement the post-training quantization 
and post-training pruning. Then, it is to fine-tune the 
pre-trained model with pruning and quantization in 
aware-training/fine-tuning. 

4- Quantize the weights and activations: The 
quantization is implemented in post and aware 
training quantization, and comparing the results and 
performance with the full precision version.  

5- Prune the weights and activation: Pruning is to reduce 
the memory footprint by pruning unnecessary weight 
values. Similar to quantization procedures, pruning is 
also implemented in post and aware training, and 
comparing the results with full-precision version.   

6- Evaluate and compare the performance for each with 
the original version.  

7- The experimental procedures are followed, where the 
quantized version and pruned versions of the CNN 
are fine-tuned and are evaluated on the same dataset 
to assess the impact of both techniques on 
performance. 

A. Profiling CNN solution – DeepLiDARFlow 
In this work, we notice that state-of-the-art basic 

architectures such as DeepLiDARFlow [14] has becomes 
less efficient in extremely small networks because of the 
costly dense convolution. However, it is one of the state-of-
the-art in the way of fusing LiDAR measurement data with 
monocular camera setups for scene flow estimation as 2D 
representations. It is worth implementing compression 
through pruning and quantization to accelerate its inference 
time to be convenient with real-time use.  

We start our work by profiling the DeepLiARFlow [14] 
model. Profiling is necessary to study the modules that are 
on a high budget. In order to determine the road map of our 
work and which modules or components can be targeted. 
This profiling establishes the model components and their 
budget costs for each. Table I summarizes the modules and 
components of DeepLiDARFlow [14], parameters, FLOPS, 
and inference time for the entire model. Model parameters, 
which are in general weights that are learnt during training, 
are measured according to [32] as shown in hereunder 
equations. However, they are weight matrices that contribute 
to the model’s predication power, changed during the back-
propagation process. FLOPS are also measured based on the 
equations [28]. This process aims to overview which 
components occupy a high budget for running. 

For measuring Convolutional layers’ parameters, it is 
satisfied as in (1): 


( 1)

1 (( * * ) * .1)
l l l ll

lparameters
Conv m n d k



   

Where m is the shape of width, n is the height, d is the 
layer’s filters, l is layer number and k is the account for all 
such filters in the current layer, 1 is added as a bias term for 
each filter. When l = 0, as it is, the input layer has nothing to 
learn, as its core, which provides the input images’ shape.  

Thus, the number of parameters = 0. Hence, Pool Layer: 
generally, the pooling layer has no backpropagation learning 
involved, thus the number of its parameters = 0. 

TABLE I.  DEEPLIDARFLOW MODEL SUMMARY PROFILE. 

Item 
FE Module SF  

Module 

CN 

Module 

CV 

Module 

Warping 

Module 
Total 

FPN FM 

Number of 

parameters 

3,849,028 

(% 46.40) 

1,006,720 

(% 12.14) 

2,916,852 

(% 35.16) 

522,436 

(% 6.30) 
0 0 8,295,036 

Number of 

CNN layers 

240 

(% 61.70) 

65 

(% 16.7) 

76 

(% 19.5) 

8 

(% 2.1) 
0 0 389 

FLOPs 
33.45 B.  

(% 24.92) 

24.50 B.  

(% 18.25) 
45.38 B.  

(% 33.81) 

30.48 B.  

(% 22.71) 

0.406 B.  

(% 0.3) 

0.011 B.  

(% 0.01) 
134.227 B.  

Inference time 137.4 ms = 0.1374 seconds 

FE= Feature Extraction Module, FPN= Feature Pyramids Network, FM= 
Fusion Model, SF= Scene Flow Module, CN= Context Network Module, 

CV= Cost Volume Module, ms. = 10-3 seconds, and B= Billion. Yellow 

marker means the highest cost. Inference time is computed using GPU 

GTX 1660. 6. Giga Byte (GB).  

Additionally, for measuring the Fully Connected (FC) 
layer, since every neuron has been connected to every other 
neuron for the next layer, it has the highest number of 
parameters. Hence, the number of parameters for FC is 
satisfied as in (2): 


( 1)

1 ((( * ) 1) * ).
l l ll

lparameters
FC c p c



   

Where, c is the current layer neurons, p is previous layer 
neuron. Equation (2) is also used to measure learnable 
parameters for soft max layers. 

The convolution is implemented by a sliding window on 
the layer, for computing the FLOPS from the following 
equation (3): 


2

1 (2 ( 1) * ).
l
lFLOPS in out

Conv HW c K c   

Where:  

 H,W and cin are height, width and number of channels 

of the feature map respectively.  

 K is the kernel width. 

 l is the layer. 

 cout is the number of output channels. 

For measuring FLOPS of fully connected layers is satisfied 

as in (4):  

 1 2 * * ).
l
lFLOPS input out

F size sizeC    

In computing, FLOPS is a measure of computer 
performance, useful in fields of scientific computations that 
require floating-point calculations. For such cases, it is a 
more accurate measure than measuring instructions per 
second. The size means the size of feature maps. 

Table I. shows that the current CNN has hundreds of 
layers, thousands of channels and millions of parameters, 
thus requiring computation at billions of FLOPS. This report 
examines the opposite extreme: pursing the best accuracy in 
very limited computational budgets, focusing on common 
computer vision high-level tasks and platforms such as 
robots. 

The following section previews the quantization and 
pruning strategy which are implemented on the 
DeepLiDARFlow [14] model and its pre-trained model. 

B. Pruning 

Weight pruning is a technique for reducing the number of 
parameters in a neural network by removing weights that are 
not important for the model's performance [3], [9]. We 
adapt the Percentile-based weight pruning, which involves 
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identifying the weights in the network that are within a 
certain percentile range of the distribution of weights, and 
then setting these weights to zero [28], [33]. 

One advantage of percentile-based weight pruning is that 
it is flexible, as the percentile threshold can be adjusted to 
control the amount of pruning as is done.  

To perform percentile-based weight pruning, we 
generally follow these steps: we compute the distribution of 
weights in the network. Then identify the percentile 
threshold that we want to use for pruning in both post and 
aware training. For example, we may want to prune the 
lowest 10% of weights. We identify the range of weights 
that corresponds to the percentile threshold. If we are using 
a 10% threshold, we identify the range of weights that 
corresponds to the lowest 10% of the distribution. Finally, 
we set all of the weights within the identified range to zero.  

Notably, weight pruning can also negatively affect the 
performance of the model if the pruning is not done 
carefully. For example, if the pruning threshold is set too 
high, the model may not be able to learn effectively, as it 
will have fewer weights available to use. Therefore, the 
model may not be able to learn effectively. On the other 
hand, if the pruning threshold is set too low, the model may 
not be able to achieve a significant reduction in the number 
of weights. As such, the percentile threshold to find the right 
balance between model complexity and performance, so 
careful tuning is necessary. 

In general, pruning too many weights or biases can 
degrade the accuracy of the CNN, so careful evaluation is 
necessary. It may also be necessary to fine-tune the CNN 
after pruning it further to improve its performance. This is 
detailed in Experiments and Results section IV. Therefore, 
we implement post-pruning experiments and compare the 
experiments with the original version of DeepLiDARFlow 
[14] pre-trained model. Then we apply aware-training 
pruning by fine-tuning the model using the original pre-
trained model version, using the same datasets and learning 
as [14]. Then, following the same procedures which are 
applied in quantization, the same thing in aware-training for 
pruning, using the same the lr and epochs to compare each of 
the pruning aware training and quantization aware-training 
and its effects on accuracy. The run-time is also measured 
and compared with the original, to get a better picture of the 
impact of each of what is applied on the model’s 
performance. Hence, these results can be generalized to other 
similar models targeting compression and reducing memory 
allocation. 

C. Quantization 

There are several ways to decrease the number of bits in 
a Convolutional Neural Network. One approach is to use 
low-precision data types, such as 8-bit integer (int8) or 16-
bit floating point (float16), to represent the weights and 
activations. These data types use fewer bits than the 
standard 32-bit floating point (float32) data type, which is 
typically used to represent weights and activations in deep 
learning models. 

 Another approach is to use quantization techniques, 
which involve approximating the values of the weights and 

activations with values from a smaller set of discrete values. 
For example, weight quantization involves rounding the 
weights to the nearest value in a set of discrete values, while 
activation quantization involves rounding the activations to 
the nearest value in a set of discrete values. 

We follow uniform quantization, which is a technique for 
representing the weights and activations of a CNN with a 
fixed number of bits. It works by dividing the range of 
possible values into a fixed number of equally sized 
intervals, and assigning each interval a unique quantization 
level. This is the following by rounding the weights to the 
nearest value. We generally follow these steps: we 
determine the range of values that we want to quantize. This 
will typically be the minimum and maximum values of the 
data that are quantized. We then choose the number of 
discrete values that we want to use for quantization. This 
will typically be a power of 2, as this allows the quantized 
values to be represented using a fixed number of bits. 
Further, we divide the range of values into intervals of equal 
size. The number of discrete values, which are used for 
quantization, determines the size of the intervals. Then, we 
assign a quantized value to each interval based on the 
midpoint of the interval. For example, if the first interval 
has a midpoint of 9.5, we could assign the value 10 to this 
interval, and so on. Finally, for each data point, determine 
the interval that it falls within, and replace the original value 
of the data point with the quantized value for that interval.  
However, this is also followed by aware training/fine-tuning 
to improve the accuracy of results. 

Notably, uniform quantization can introduce some loss of 
accuracy, as the original values of the data points are 
approximated with the quantized values. As such, tuning 
carefully the number of discrete values and the size of the 
intervals, to find the right balance between accuracy and the 
number of bits needed to represent the data. Therefore, in 
the first case, we apply the quantization directly to the pre-
trained model and save a new version of the quantized pre-
trained model for each percentage. 

Then we investigate the experiments and compare those 
with a full-precision version. The second case, aware-
training quantization, we apply quantization during fine-
tuning once with the same number of epochs and learning 
rate (lr) stated in [14], and others using lower lr and more 
epochs for fine-tuning to improve the accuracy, which lost 
during the quantization versions. 

IV. EXPERMENTS AND RESULTS 

Several experiments are conducted to verify the results of 
our method. As shown in section E, ablation study, we ablate 
the process by implementing evaluation first to the original 
version of DeepLiDARFlow [14] using the same dataset 
mentioned in [14], which is detailed below in section A. 

Second, we ablate a few steps of post and aware-training 
for both pruning and quantization. Third, we conduct several 
training implementations for aware-training quantization and 
pruning. Finally, we implement several experimental results 
compared to the original. We start this section overviewing 
the datasets and evaluating metrics used in our experiments. 
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The pruning is accomplished in two phases; which is 
post-training pruning and aware-training pruning in different 
percentages. Similarly, the same approach for quantization is 
applied in post-training quantization, and aware-training 
quantization. However, we apply quantization using (16 bits, 
14 bits, 12 bits, 8 bits, and 6 bits) for both post and aware-
training quantization. 

A. Datasets and Evaluation Metrics 

Following DeepLiDARFlow [14] instructions for fine-
tuning on the KITTI dataset. 

KITTI [16]. This benchmark, known as the KITTI Scene 
Flow benchmark, is used to assess scene flow techniques. 
There are 200 training and 200 test scenes. We follow 
DeepLiDARFlow [14] preprocessing for the KITTI dataset, 
referred to as KITTId.  

The same percentage of dividing the dataset used in [14], 
however, 9:1 of the frames as training : testing.  
We use the same evaluation metrics used in [14]. In this 
context, we evaluate the accuracy using End Point Error 
(EPE), the endpoint error is > 3 pixels, and the relative error 
is > 5 % compared to the ground truth. Additionally, the 
KITTI outlier rate for scene flow (KEO) is mentioned in this 
study, mainly in the ablation study.  

Further to compute the run-time, we perform the 
evaluation on a computer with GPU-GeForce GTX 1660Ti 
6 Giga byte concerning the same environment, same dataset 
and same frames of input.    

B. Implementation 

Furthering to the ablation study and the process to ablate 
our strategy; we implement post-quantization, to reduce 
memory usage by quantizing the model on various bit 
scales. We systematically increase the bit scales to evaluate 
their impact on model quality and run-time performance 
while reducing memory usage. We apply first the fine-
tuning with the same dataset, learning rate and number of 
epochs for aware-training quantization, and pruning. We 
fine-tune the DeepLiDARFlow [14] pre-trained model with 
a batch size of 1, following the same procedures as in [14]. 
All subsequent fine-tuning experiments also use a batch size 
of 1. We gradually decrease the learning rate and increase 
the number of epochs during fine-tuning until the model 
converges on the training set. We use a validation set to 
monitor performance during this process and stop fine-
tuning when the model starts to over fit.  

C. Quantitative Results 

Our research aims to accelerate the available CNN 
solution using pruning and quantization, and maintaining 
accuracy at the same time. This section evaluates the 
efficiency of our proposed strategy in implementing the 
quantization and pruning on the available CNN, 
DeepLiDARFlow [14], for scene flow estimation. From this 
part, we can explore one of the best quantization levels as 
well as the pruning level, so we implement a hybrid 
quantization and pruning with the chosen. Then, study the 

effects of each level of pruning and quantization and 
compare them with the hybrid one and the original one in 
terms of the accuracy and run-time. We start the quantitative 
results with quantization. 

Fig. 1 shows the impact of quantization and pruning on 
the DeepLiDARFlow [14] model and its pre-trained . 

On the left, the effect of post and aware-training 
quantization is demonstrated for the model with 4096 input 
points, with 6 and 8-bit quantization excluded due to their 
significant decrease in accuracy. On the right, EPE results 
are presented for post-training pruning, aware-training 
pruning with the original learning rate, and aware-training 
pruning with a lower learning rate. The red line represents 
the original benchmark for comparison. The results indicate 
that while post-pruning with high percentages can decrease 
accuracy, aware-training with fine-tuning in pruning can 
maintain accuracy, particularly at lower learning rates. 

Fig. 2 demonstrate the impact of post and aware-training 
quantization on EPE accuracy metric for DeepLiDARFlow 
[14]. We explore the effect of different numbers of input 
samples and weight bit representations on the architecture's 
behavior towards weight quantization. 

The left on in Fig. 2 illustrates the accuracy redundancy 
when using post-quantization, indicating that the 
architecture's behavior is not constant for different samples. 
For example, there are minimal effects on accuracy when 
testing post-quantization with 8192 input samples, and the 
accuracy improves with post-quantization for a number of 
samples such as 2048 and 8192. However, quantization with 
different bits, such as 16 and 12 bits, yields better accuracy 
for a specific number of input samples (e.g., 4096), and the 
accuracy deteriorates for other bits of post-quantization with 
the same number of samples. In contrast, the right one in 
Fig. 2 demonstrates the effect of aware-training quantization 
on EPE accuracy. Different numbers of samples are 
explored, and the results show a significant improvement in 
the CNN's behavior towards aware-quantization, which is 
further improved with fine-tuning. The smoothing of 
accuracy improvements is clearly shown, and the best 
results are obtained with aware-training quantization using 
16 bits, leading to a significant improvement in EPE. 

To verify our results, we conducted further evaluation on 
the pre-trained model using post-training pruning on 
different LiDAR data sample sizes. As seen in Fig. 3, left 
one, the behavior of the network remained unchanged, 
unlike post-quantization. The red line in both figures 
represents the original benchmark.  

After fine-tuning with a lower learning rate, accuracy 
was improved, as shown in  the right one in Fig. 3. 
However, some results, depicted below the red line, showed 
an accuracy improvement of 5% and 10% pruning. 
Meanwhile, other percentages did not affect accuracy 
significantly. Unlike post-training, aware-training achieved 
minimal accuracy drops in some cases while achieving 
accuracy improvements in others, making the reduction in 
accuracy negligible. 
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Figure 1. End Point Error metric using quantization and pruning on post and aware-training. 

  
Figure 2. End Point Error metric with quantization on post and aware training. Left one is post quantization and right one is aware quantization 

  
Figure 3. End Point Error metric with pruning on post and aware-training. The left on is post pruning and right one is aware pruning.  

TABLE II.  THE METRICS RESULTS QUANTIZATION AND PRUNING ON DEEPLIDAFLOW WITH INPUTS SAMPLES 4096. 

kind Pruning Quantization EPE ↓ KEO ↓ kind Pruning Quantization EPE ↓ KEO ↓ Time (ms) 

Original 2.997 11.565 Original 2.997 11.565 137.4 

Post 5% 32 bits 2.955 11.282 Aware 5% 32 bits 2.835 10.568 133.8 

Post 10% 32 bits 3.074 12.603 Aware 10% 32 bits 2.884 11.132 133.4 

Post 15% 32 bits 3.577 18.197 Aware 15% 32 bits 3.002 11.537 132.7 

Post 20% 32 bits 4.004 22.752 Aware 20% 32 bits 3.209 12.925 129.4 

Post 25% 32 bits 5.536 35.992 Aware 25% 32 bits 3.147 12.771 128.7 

Post 0.07% 16 bits 2.959 11.722 Aware 0.07% 16 bits 2.766 10.418 131.7 

Post 0.29% 14 bits 3.071 12.268 Aware 0.29% 14 bits 2.877 10.556 130.7 

Post 1.17% 12 bits 2.89 11.071 Aware 1.17% 12 bits 2.796 10.485 130.1 

Post 4.69% 10 bits 3.047 11.375 Aware 4.69% 10 bits 2.828 10.035 129.5 

Post 15.48% 8 bits 3.927 18.422 Aware 15.48% 8 bits 3.968 18.013 128.9 

Post 33.77% 6 bits 7.836 60.558 Aware 33.78% 6 bits 8.106 56.934 128.5 

 
Table II provides quantitative metrics and their 

corresponding effects on accuracy for both pruning and 
quantization, as well as the run-time for each method. The 
table also includes the percentage of each pruning level used 
in the hybrid strategy, which applies both pruning and 
quantization to the pre-trained model. All results are 
compared to the original model. The yellow labels indicate 
the best results in terms of accuracy. The findings presented 
in this table can be useful for future work on optimization, 
targeting FLOPS and weight parameters, as these factors 
play a significant role in run-time. 

Figures in Fig 4 shown depict the best strategies for 
compressing the pre-trained model of DeepLiDARFlow 
[14] using post-training pruning and quantization and 
aware-training pruning and quantization. 

The green circle in both figures represents the original 
pre-trained model with float-32 bit precision. The right 
figure demonstrates that 12 bits of weight quantization with 
1.17% weight pruning provides the best results in terms of 
accuracy and run-time for post-training compression, while 
10 bits with approximately 5% weight pruning needs 
optimization. The left figure illustrates the best quantization 
bits and pruning percentages for aware training with a 
learning rate of 0.00001. 12 bits with 1.17% weight pruning 
provides the best accuracy results, which are better than the 
original accuracy, and 10 bits with approximately 5% 
weight pruning have been significantly optimized compared 
to post-pruning and post-quantization. They provide better 
results than the original, and the run-time for both is reduced 
by approximately 7 ms. 
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Post-training/fine-tuning 

Quantization and Pruning 

Aware-training/fine-tuning 

Quantization and Pruning 

Abbreviations: Q = Quantization, P = Pruning, EPE = End Point Error,  

T = Time, ms = 10-3 seconds   

Figure 4. Combining pruning and quantization versus original 

D. Qualitative Results 

We visually compare the results of DeepLiDARFlow 
[14] as shown in Fig 5. In this section, the qualitative results 
are demonstrated after testing each step of pruning and 
quantization in post and aware-training/fine-tuning. Then, 
we compare the results with the original. Since there are 
many figures can be visualized, we have enough the 
visualization for the best, which are related to Table II in the 
quantitative results. In addition, we visualize part of pruning 
with high and low percentage to show the pruning effects on 
accuracy. 

The visualization shows that our pruning and 
quantization does not drop the accuracy of the model. In 
contrast, our work improves the accuracy and the 
visualization more robust after some percentages of pruning 
and quantization levels. The visualizations proof the 
quantitative results. All these visualizations are with number 
of samples 4096 as input. The first two images are the 
inputs to the architecture. The first column is the optical 
flow visualization, the second is the disparity 1 (D0) and the 
second is disparity 2 (D1), which are components of the 
average KITTI outlier rate for scene flow [16]. 

E. Ablation Study 

Before making the final decisions about the approach and 
kind of quantization and pruning strategy, we conducted 
several steps to verify the proposed strategy for pruning and 
quantization. For fair comparison, first, we evaluate the 
original DeepLiDARFlow [14] model with different 
numbers of samples, starting with e.g. 2048 as input, and 
increasing with factor 2x to 16384. To investigate our 
pruning and quantization strategy, we apply the post-
quantization with little bits than the original, where the 
original is 32 float, so we apply post-quantization with only 
16 float bits. Second, we apply the quantization with 6 bits 
as big decreasing bits for the memory allocation to 
investigate their effects on accuracy and run-time at the 
same time. Hence, all these experiments are conducted 
using the same dataset test used for evaluating the original 
DeepLiDARFlow [14] with the same pre-processing files. 
Third, we apply the post-pruning on its pre-trained model. 
To evaluate the effectiveness of our pruning strategy, we 

start with a low percentage of weight pruning (5%) and 
gradually increase it by 5% increments. However, in our 
ablation results we present the pruning with the lowest 
percentage and the highest percentage, 5% and 25% 
respectively. 

We prune both the weights and biases of CNN, as both 
can contribute to the complexity of the model and the 
overall performance. However, after comparing the results 
of our ablation study with those of the original model, we 
further investigate our strategy by applying aware-training 
quantization and aware-pruning quantization. For fair 
comparison, we first follow the DeepLiDARFlow [14] fine-
tuning procedures as well as the learning rate and number of 
epochs on the same dataset. Then, we decrease the learning 
rate by a factor 10x for each 100 epochs to optimize the 
accuracy, which lost from the pruning and quantization. 
Table III shows the comparisons between our ablations with 
the original one in just 4096 samples. 

Table III demonstrates that both quantization and pruning 
have an impact on the accuracy of the model. However, our 
strategy for pruning and quantization, aimed at optimizing 
and speeding up CNN architectures, has a significant effect 
on the performance of these models, both in terms of 
accuracy and run-time, as shown in Fig. 4. To investigate 
these effects, we applied our strategy of pruning and 
quantization at different levels and with different 
techniques, such as post-training and aware training with 
different learning rates and numbers of epochs. In aware 
training, we increased the number of epochs and decreased 
the learning rate to reduce the accuracy losses resulting from 
pruning and quantization. 

We also evaluated the effects of each technique on the 
run-time of the model, as shown in Fig. 6 for the 
DeepLiDARFlow [14] architecture. The run-time was 
measured on 4096 sample points. 

TABLE III.  ABLATION STUDY FOR OUR STRATEGY 

N
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lr1* lr2* 
bits 

Float 

16 

bits 

Float  

6 
5% 25% EPE↓ KEO↓ 

Original on number of samples 4096  2.99 11.57 

1 √ ꭗ √ ꭗ ꭗ ꭗ √ ꭗ ꭗ ꭗ 2.96 11.72 

2 √ ꭗ √ ꭗ ꭗ ꭗ ꭗ √ ꭗ ꭗ 7.836 60.56 

3 √ ꭗ ꭗ √ √ ꭗ √ ꭗ ꭗ ꭗ 2.99 12.31 

4 √ ꭗ ꭗ √ √ ꭗ ꭗ √ ꭗ ꭗ 7.41 51.62 

5 √ ꭗ ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ 2.77 10.42 

6 √ ꭗ ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ 8.11 58.95 

7 ꭗ √ √ ꭗ ꭗ ꭗ ꭗ ꭗ √ ꭗ 2.96 11.28 

8 ꭗ √ √ ꭗ ꭗ ꭗ ꭗ ꭗ ꭗ √ 5.54 35.99 

9 ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ √ ꭗ 3.37 12.93 

10 ꭗ √ ꭗ √ √ ꭗ ꭗ ꭗ ꭗ √ 3.22 14.34 

11 ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ √ ꭗ 2.84 10.57 

12 ꭗ √ ꭗ √ ꭗ √ ꭗ ꭗ ꭗ √ 3.15 12.78 

* lr1 = 0.0001, lr2 = 0.00001 

All the metrics are conducted using number of sample = 4096 
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Figure 5. Visualizations of DeepLiDARFlow [14] after pruning and quantization versus the original.  

We investigate the effect of each technique on the 
model in term of run time. Fig 6. shows the effect of both 
pruning and quantization on the run time. The pruning 
decreases the run-time/inference on DeepLiDARFlow 
[14] periodically by increasing the percentage of weights 
pruning. Furthermore, the quantization has the same 
effects on the run-time. The inference time for each case 
is measured using GPU-GeForce GTX 1660Ti 6 Giga 
byte. 

V. FUTURE WORK 

Future work in this area could involve exploring 
different types of pruning and quantization techniques to 
further optimize and speed up CNN architectures.  

In future work, we could explore the application of 
explainable AI techniques to your computer vision 
models to improve its interpretability and trustworthiness. 

Meta-Learning can be particularly useful in scenarios 
where the available data is limited or the model needs to 
adapt quickly to new environments. In future work, we 
could explore the application of meta-learning techniques 
to improve the generalization capabilities and adaptability 
to new scenarios. 

Deep rewiring training is a technique allows changing 
the architecture of the model by decreasing the number of 
parameters and FLOPs.  

Domain adaptation is a technique that aims to transfer 
knowledge learned from a source domain to a target 
domain, where the data distribution may be different. In 
future work, you could investigate the application of 
domain adaptation techniques to your DeepLiDARFlow 
model to improve its performance in different domains. 

VI. CONCLUSION 

In conclusion, we have presented an investigation into 
the effectiveness of pruning and quantization for scene 
flow estimation using a CNN on the KITTI [16] 
benchmarks. Our results indicate that both techniques can 
effectively reduce the complexity of the CNN and 
improve its efficiency, while maintaining acceptable 
levels of accuracy. Specifically, our experiments showed 
that pruning up to 15% of the weights and biases can 
reduce the memory allocation and inference time without 
sacrificing accuracy, and that post-quantization with 12-
bit and 10-bit can also provide similar benefits. Our 
findings provide insights into the optimal combination of 
these techniques for this dataset and CNN architecture, 
and we recommend the use of these techniques for 
accelerating CNN architectures with approx. 5% for 
pruning and 10 bits for quantization in aware-training. 

 

  
Figure 6. Effect the different levels of pruning and quantization on run-

time. 
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