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Abstract— Facial landmark detection, often termed as face
alignment, is a well-studied research problem in computer
vision. Nonetheless, face alignment on asymmetrical expressions
has been overlooked in the literature, particularly for unusual
gestures observed in individuals with unilateral facial paralysis.
In this paper, we explore in-domain inversion in a semi-
supervised approach for face alignment and target the detection
of 3D landmarks on symmetrical and extremely asymmetrical
facial expressions due to paralysis. Our approach first leverages
unlabeled face data to synthesize face images, while learning
a compressed representation in the latent space. Then, it
integrates in-domain inversion in the self-supervised stage, to
make the latent space semantically meaningful. This is exploited
in the supervised stage by a 2D face landmark detector,
trained on labeled data. Finally, we extend the pipeline to
3D face alignment and regress the depth coordinate from the
intermediate latent space and the predicted 2D landmarks.
We evaluate and compare our method to related work on
publicly available datasets, and demonstrate that our approach
outperforms the state of the art in the detection of 3D facial
landmarks in our newly introduced dataset of facial paralysis,
ParFace. Our implementation and dataset are available at
https://github.com/jilliam/ParFace.

I. INTRODUCTION

Face alignment aims to register a predefined set of land-
marks on a face image and is a key step to other face analysis
tasks, such as head pose estimation [21], face synthesis [102],
reconstruction [77], animation [22] and palsy assessment
[42]. Many of these landmarks are semantically meaningful,
referring, e.g., to the corners of the eyes and lips, the tip of
the nose and the contours of the eyebrows.

In the past years, many researchers strove to unify and
standardize the set of keypoints used for face alignment
[20], [74], [75], [76], [97]. The most common set defines
68 fiducial points on the eyes, nose, lips, eyebrows and
around the boundary of the face, following the convention
proposed in Multi-PIE [31]. This number differs for profile
faces, where 39 fiducial points are annotated instead. These
landmarks, referred to as 2D facial landmarks, are defined
around the face contour and do not always correspond to the
projection of 3D landmarks onto a 2D image, specifically
when the face is not frontal [45]. Although this convention
is useful for tasks such as face segmentation, it is error prone
for optimization problems, e.g., when minimizing the repro-
jection error [12], [49]. 3D Morphable Models (3DMMs) [8]
and deep architectures have enabled the collection of datasets
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Fig. 1. Our approach learns to synthesize faces from unlabeled datasets
and exploits the latent code to predict the landmarks.

with additional annotations, such as 3D landmarks [9], [96],
[107]. Other annotations, such as the projected 3D landmarks
in the image space, namely 3DA-2D, have also become
available [9], [11], [96].

With the introduction of large-scale datasets [89], [97],
[107] for training deep neural networks (DNN), 2D face
alignment gained a performance boost w.r.t. traditional com-
puter vision approaches, especially for challenging images
with varying illumination, large head poses and occlusion.
These datasets, however, have relatively few samples of
large asymmetrical expressions and even less of peripheral
facial paralysis, or palsy, affecting current face alignment
approaches (see Fig. 2). This limitation has a negative impact
on palsy assessments that rely on face alignment [2], [34].
Such assessments usually require the patient to follow pre-
defined facial expressions, e.g. raising the eyebrows, closing
the eyes and smiling. Then, an asymmetry index is computed
based on measurements between specific areas in the affected
side w.r.t. the unaffected side or the face at rest. An automatic
method for extracting features or parts of the face used in the
evaluations would reduce the associated costs and observer
dependence inherent to manual assessment [37], [55]. In
addition, 2D-landmark-based palsy assessment requires fully
frontal face images [34] or pose correction techniques [37],
[71], while the assessment with 3D landmarks is less prone
to measurement errors since distances are not affected by the
face orientation.

In this work, we aim to detect 3D facial landmarks and
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Fig. 2. Face alignment on patient with palsy. Top row: landmarks extracted
from SOTA architectures. Bottom row: Close-up of the landmarks in the
mouth. Note that the landmarks are defined around the contours of the lips.

address the limitation of current approaches, to target cases
with large asymmetrical facial expressions from patients
with facial palsy, alongside healthy subjects. Our approach
exploits unlabeled face data with and without facial paralysis,
to train an autoencoder and create an intermediate repre-
sentation in a latent vector. In this stage, an in-domain-
inversion module is incorporated to ensure a smooth latent
space and enhance the representation of the expressions. In
the supervised stage, we integrate interleaved transfer layers
to the decoder to regress 3DA-2D landmarks, inspired by the
state of the art (SOTA) 2D face alignment method, 3FabRec
[10]. Our approach additionally enables the detection of 3D
landmarks by means of a newly proposed 3D landmark
detector. By relying on unlabeled data, our approach seeks
to alleviate the cumbersome landmark annotation task, par-
ticularly for clinical data.

The proposed approach is supported by multiple experi-
ments and evaluation on public face alignment datasets, in
addition to a newly introduced facial palsy dataset.

The main contributions of this work are:
• A novel approach for 3D face alignment which encom-

passes cases with large facial asymmetry (see Fig. 1).
• The novel integration of in-domain GAN inversion in

the self-supervised stage, to enhance the detection of
the facial landmarks.

• ParFace, a 3D face alignment dataset on patients with
palsy. ParFace and our source code is publicly available
for research purposes.

• Evaluation on public face alignments datasets, in addi-
tion to the proposed facial palsy dataset, with improve-
ments w.r.t. the state of the art in 3D face alignment.

II. RELATED WORK

Face alignment has been widely studied in the computer
vision community. We classify face alignment approaches
based on the type of landmarks: 2D and 3D.

A. 2D Face Alignment

These methods consider the face as a 2D object and detect
only visible landmarks. Classical approaches use Active
Appearance Models (AAMs) [14], [50], [78], Active Shape
Models (ASMs) [15], [16], [67], Constrained Local Mod-
els (CLMs) [79], [94] and Cascaded Regression Methods
(CRMs) [1], [54], [85], [106]. Since 2D landmarks do not

maintain a one-to-one correspondence across large head
poses, they are not robust against extreme head rotations.

More recently, several DNN architectures have been pro-
posed for this task. They can be categorized as coordinate-
regression or heatmap-based methods. The former includes
architectures that regress the mapping between the image
and the 2D coordinates and the latter regresses heatmaps for
every landmark. Coordinate-based methods are more compu-
tationally efficient, while heatmap-based approaches usually
have higher accuracy [47]. Coordinate-based methods span
DAN [57], DeCaFa [17] and DTLD [60], and heatmap-based
methods include SAN [23], HRNetV2 [82], LUVLi [58],
3FabRec [10], PIPNet [47], H3R [93], LDEQ [66] and [104].

B. 3D Face Alignment

These methods integrate 3D face models, either implicitly
or explicitly, to recover a sparse or dense set of 3D facial
landmarks. Some approaches jointly perform face alignment
and reconstruction, with the aid of 3DMMs and large datasets
of 3D faces [25], [32], [36], [49], [61], [62], [72], [84], [73],
[88], [103], [107]. In general, they are more robust to large
head poses and occlusion [45], but show poor generalization
capabilities when data is low in quantity or variability [7].
Classical approaches such as [32], register a 3DMM to a face
image. The alignment is formulated as a Bayesian inference
problem and is solved using the Expectation-Maximization
algorithm. CRMs have been extended to 3D face alignment
as well [61], [62], [91].

Recent DNN use cascades of CNN regressors either in
model-free [11], [24], [44], [95] or model-based approaches
[49], [84], [103], [107], or 3D model warping functions [7],
[80]. 3DDFA V2 [36] leverages MobileNet [41] for 3DMM
fitting, while SynergyNet [88] uses [36]. [36] adds layers for
landmark regression and regularization, while [88] extracts
the landmarks from the model and refines them 2DASL [84]
uses self-supervised-learning to integrate datasets with only
2D or 3D annotations. FAN [11] uses stacked hourglass (HG)
for 2D face alignment and an additional ResNet [39] to
estimate the depth. [44] and JVCR [99] regress a volumetric
representation of the face from a CNN based on stacked
HG. JVCR additionally uses a 3D CNN to regress 3D
coordinates. [24] exploits StyleGAN2 [52] to detect 3DA-
2D landmarks. The generator is modified based on [10].
3DSTN [7], a spatial transformer network, uses a generic
3D model along with Thin Plate Spline warping to handle
unseen faces. [95] extends CLMs, where a CNN-based
local detector exploits the advantages of mixture of experts.
[30] incorporates an attention mechanism from a spatial
transformer to the regression pipeline network in [53], to
refine the landmark detection in eyes, irises and lips. [13]
introduces a queried landmark predictor, allowing detection
of 3D landmark configurations using a 3D face model
reference. [98] proposes a multi-view consistent pipeline for
landmark detection that leverages a multi-view dataset built
using Neural Radiance Field (NeRF) [68].



C. Face Alignment for Palsy

Facial palsy assessment is performed either by segmenting
susceptible regions of the face, such as eyebrows, eyes,
nostrils and mouth [42], [46], [63], [70], by locating the
muscle activation and exploiting action units (AUs) [4], [27],
or by directly detecting facial landmarks. These landmarks
have been used as well to locate AUs [27] or face regions
heuristically [63], [83] or with more elaborated methods as
in [42], [43], [46].

Face alignment for palsy assessment can be divided in two
categories, 2D and 3D landmarks-based. 3D-based methods
usually compute the landmarks from multi-camera systems
[40], [101] and 3D sensors such as Kinect [26], deterring
their implementation in a clinical setting. 2D landmarks, on
the other hand, are extracted from grayscale or RGB images,
captured from easily accessible cameras in smartphones [55],
web [37] or digital cameras [29].

Relevant to this work are pipelines based on 2D images,
which have been achieved with AAMs [18], [92], ASMs
[86], CLMs [2], CRMs such as supervised descent method
(SDM) [37], a parallel cascade of linear regressors [55] from
[1], an ensemble of regression trees [2], [3], [34], [46],
[64] from [54], supervised face alignment networks such as
FAN [2], [33], [42], DAN [38], SAN [83] and other DNN
[43], [90], [92]. In most cases, the alignment is performed
with models that have been trained on images with healthy
subjects, with very few or no samples of large asymmetrical
facial expressions, limiting their scope. The bias in face
alignment on palsy can be tackled with incremental learning
on discriminative models such as [1], and retraining or
fine-tuning existing regression-based pipelines [34] or face
alignment networks, as in [2], [38], [42], with dedicated
datasets from the target population, via transfer learning.
Note that previous works on palsy face alignment use su-
pervised approaches, while our method is semi-supervised
and does not require large labeled datasets with asymmetrical
expressions.

III. METHOD
In this work, we explore the semantically meaningful la-

tent space in a reconstruction-based architecture, to improve
the detection of facial landmarks in faces with a varying
range of expressions. The proposed semi-supervised architec-
ture ParFace-Net is shown in Fig. 3. In the self-supervised
stage, an autoencoder (AE) is trained with unlabeled face
datasets, where the encoder E learns the mapping from the
input data to a low-dimensional intermediate vector z. This
latent code is further enforced to be semantically meaningful,
through the feature disentanglement process introduced by
in-domain inversion. This is achieved by means of the
discriminator D and adversarial training on the E and D,
while the decoder G is frozen. In the supervised stage, a
2D landmark detector learns to regress 3DA-2D landmark
heatmaps from the semantically rich latent code, which in
turn are used to predict the depth coordinate. We further
fine-tune the encoder with the gradients from the landmark
heads to improve the results.

A. Self-Supervised Stage

This stage consists of an adversarial AE, trained on large-
scale face datasets. The encoder E learns to capture the most
important facial attributes in an intermediate latent vector z,
while the decoder G is posed as a generator of a GAN that
reconstructs the original image from the latent code. The AE
is trained on a combination of three losses, as follows:

LAE = λrecLrec + λpercLperc + λadvLadv, (1)

where Lrec is the reconstruction loss, given by the L1
or L2 pixel-wise distance between the input x and the
reconstruction x̂ at G(E(x)); Lperc is the perceptual loss
[48], in eq. (2); Ladv is an adversarial image loss [28], which
enforces the AE to produce realistic faces based on the output
from D; and λ(·) is the respective weight of each loss.

Lperc(x, x̂) =

ϕ∑
i

1

CiHiWi
||Vi(x̂)− Vi(x)||22. (2)

Ci, Hi, and Wi are the depth, height and width of the
feature map Vi(·) at layer i of a VGG network [81]; x and
x̂ are the input and reconstructed images; and ϕ is the set of
layers from the VGG.

We introduce a discriminator D during the face reconstruc-
tion phase, trained with the Wasserstein Loss with Gradient
Penalty (WGAN-GP) [35], formulated as

LD = E[D(x̂)]− E[D(x)] +
1

2
γE[∇D], (3)

where the last term is the gradient regularization and the
hyper-parameter γ = 10. The AE and D are trained using a
similar procedure to GANs, alternating gradient updates.

B. In-Domain Inversion

We leverage the generative capabilities of the AE by
incorporating in-domain GAN inversion. Inspired by Zhu
et al. [105], we follow a domain-regularized approach that
pushes the encoder to create latent code in the semantic
domain. In [105], this module enables semantic editing
of facial attributes such as expression and pose, while an
additional optimization stage improves the reconstructed face
in the pixel level. Unlike [105], our approach does not
seek to edit facial attributes nor aims to create a faithful
reconstruction of the face. Instead, we propose to encode
facial attributes in the latent vector that boost the alignment
in the landmark detectors for a wide range of expressions.

The inversion is achieved in [105] by introducing a
domain-guided encoder to the GANs-based formulation. We
instead exploit the pre-trained encoder E from the previous
step, as shown in red in Fig. 3. The discriminator D is then
used to compete with E, which acts as the domain-guided
encoder and refines the latent space z to be aligned with the
semantic latent space of the reconstruction process. During
this stage, the decoder G is fixed, and E and D take turns to
train with the loss functions in (1) and (3), respectively. To
that end, the same unlabeled data as in the self-supervised
stage is used, where the input of E corresponds to the image



Fig. 3. Architecture of ParFace-Net (PF-Net). Our pipeline consists of a self-supervised stage to train an autoencoder, where the latent code z is disentangled
with in-domain inversion. In the supervised stage, z is leveraged by the landmark detector to retrieve 3DA-2D and 3D landmarks from dedicated networks.

x, and the input of D is given by x and the reconstruction
x̂.

The asymmetrical features in the latent code from palsy
patients are refined in this stage, without affecting the re-
construction of symmetrical faces. Hence, the same trained
model could be used to align the landmarks during different
levels of palsy, to continuously track the recovery.

In contrast to [105], we do not apply the final optimization
step to enhance the output of the reconstruction, since we do
not aim to create an accurate reconstruction in the pixel level.

C. Supervised Stage

The supervised stage is composed of a 3DA-2D and a 3D
landmark detector, where all the face information learned in
the self-supervised stage and refined through the in-domain
inversion module is available for generalized usage across
various landmark datasets.

1) 3DA-2D Landmark Detector: In this stage, the land-
mark detector maps the disentangled latent code z to 2D
heatmaps that represent the probability map of each landmark
location. During training, the parameters of the autoencoder
are fixed and the layers of the decoder G are interleaved
with 3 × 3 convolutional layers, inspired by 3FabRec [10].
The last convolutional layer that produces the face image is
then superseded by a convolutional layer that provides the
heatmaps, as shown in Fig. 3.

We propose to adopt the adaptive wing loss (AWing)
[87] as the heatmap prediction loss, instead of the mean
squared error (MSE) from [10]. Since background pixels on a
heatmap dominate over foreground pixels, this loss function
penalizes small errors on foreground pixels while tolerating
small errors on background pixels. It is formulated as

L2D(h, ĥ) =

ω ln

(
1 +

∣∣∣h−ĥ
ϵ

∣∣∣α−h
)

if |(h− ĥ)|< θ

A|h− ĥ|−C otherwise,
(4)

where h and ĥ denote the ground truth and predicted heatmap
pixel values, and ω, θ, α, and ϵ are positive values. A and
C are added to smooth the loss function at |h− ĥ|= θ.

2) 3D Landmark Detector.: We introduce a 3D landmark
detector to regress the depth coordinate of the 3DA-2D land-
marks. It takes as input the concatenation of the intermediate
latent vector and the predicted 3DA-2D landmark heatmaps.

TABLE I
PUBLICLY AVAILABLE DATASETS USED FOR TRAINING THE

AUTOENCODER (AE), THE 2D AND 3D LANDMARK DETECTORS, AND

FOR TESTING THE CURRENT MODEL.

Dataset Images / Train Test
Frames AE 2D 3D AE 2D 3D

CelebA [65] 202599 ✓ - - - - -
AffectNet [69] 291650 ✓ - - - - -
Menpo 2D [97] 8954 ✓ - - - - -
LS3D-W [11] 7200 ✓ - - - - -
FFHQ [51] 70000 - - - ✓ - -
NeuroFace [2] 3306 ✓ - - - - -
MEEI [29] 12050 ✓ - - - - -
ParFace (Ours) 4200 ✓ - - - - ✓
300W-LP [107] 61225 ✓ - ✓ - - -
AFW [108] 337 - ✓ - - - -
HELEN [59] 2330 - ✓ - - ✓ -
LFPW [6] 1035 - ✓ - - ✓ -
300W [76], [75], [74] 600 - - - - ✓ -
iBUG [76], [75], [74] 135 - - - - ✓ -
WFLW [89] 10000 - ✓ - - ✓ -
AFLW2K-3D [107] 2000 - - - - - ✓

This detector uses the MSE loss, defined as

L3D(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2, (5)

where N is the number of landmarks, and y and ŷ are the
ground truth and predicted depth values, respectively.

3) Encoder Fine-tuning.: This strategy proposes to further
optimize the encoder E along with the Interleaved Transfer
Layers (ITL) in tandem [10]. The fine-tuning encourages
the encoder to embed more features in the latent code that
enhance the landmark predictions. By integrating this step,
the identity of the reconstructed face no longer resembles
the original image and the reconstruction tends towards an
average face, as shown in Fig. 1. Nonetheless, other attributes
such as the expression and pose are enhanced.

IV. EXPERIMENTS AND RESULTS

ParFace-Net was implemented in Python using PyTorch.
The AE was trained on a Nvidia A100, while the face
alignment networks were trained on a Nvidia RTX2080-Ti.

A. Datasets

ParFace-Net is trained on well-known public datasets on
face analysis. Table I lists the datasets and in which stage
they were used. In the self-supervised stage and during the



in-domain inversion, the AE is trained with multiple datasets,
without any type of landmark annotation. We introduced
palsy datasets in these stages, such as the Toronto NeuroFace,
MEEI and the unlabeled set of ParFace. The 3DA-2D and 3D
landmark detectors are trained with 300W-LP. We separately
train the 3DA-2D detector with 2D landmarks, to investigate
the performance on 2D face alignment. These results are
reported in the Supplementary Material.
Palsy Dataset. We introduce ParFace, the first dataset on
palsy face alignment with 3D landmarks annotations in video
sequences. We collected 28 videos from YouTube of 150
frames each, where the subjects are usually talking to the
camera or making a wide range of facial expressions. The
videos have varying resolution and cover a wide range of
ages, ethnicity, poses, illumination settings and backgrounds.
We provide 68 landmarks annotations for 1350 frames in 9
videos, for a total of ∼92K annotations.

We developed an annotation tool, which provides an initial
3D landmark estimation by 3D-FAN [11]. Since 3D-FAN
was trained on datasets without palsy, each landmark was
manually refined to match the asymmetrical facial expres-
sions and provide high quality annotations. This refinement
affected most of the 3DA-2D landmarks, and less the depth
coordinate. Some sample images are shown in Figure 5 and
in the Supplementary Material.

The annotated set of ParFace can be used as a benchmark
to evaluate palsy alignment, as in Section IV-E, or to fine-
tune semi- or fully supervised approaches as in Section IV-G.
The unlabeled set of ParFace can be used for training semi-
or self-supervised architectures, similarly to ParFace-Net.

B. Implementation Details

The AE takes as input a cropped version of the face. For
labeled datasets, we use the ground truth landmarks to com-
pute the bounding box, following related works. Otherwise,
we use the MTCNN face detector [100]. Faces with a height
less than 100px are discarded. The data is augmented with
random horizontal flipping (50%), translation (±4%), scale
jittering (94% to 103%) and rotation (between ±45◦).

1) Model Architecture.: The autoencoder consists of a
ResNet-18 [39], which encodes a 99-dimensional latent
vector, and an inverted ResNet-18 [5] for decoding. The
perceptual loss uses layers ϕ [3, 8, 15, 22] of a VGG-19
[81] pre-trained on ImageNet [19]. In the supervised stage,
the 3DA-2D landmark detector is an inverted ResNet-18
that outputs landmark heatmaps of size 128 × 128 with
N channels, where N is the number of landmarks. The
3D landmark detector is a ResNet-18, which regresses the
depth. This coordinate is normalized to lie between [-1, 1]
to achieve faster convergence and numerical stability.

2) Training Details.: We use the Adam optimizer [56]
with a learning rate of 2e-5, β1 = 0.0 and β2 = 0.999. The
autoencoder is trained with input and output images of size
256 × 256. We train for 50 epochs with (1), where Lrec is
the L2 loss, followed by 50 epochs with the L1 loss as Lrec.
After that, we fix the decoder G and optimize the encoder E

for feature disentanglement against the discriminator D with
the L2 loss as the Lrec, for 50 epochs.

The 3DA-2D landmark detector is trained for 100 epochs
to predict the heatmaps. We fine-tune the encoder with
gradients from the landmark head for 100 epochs. A similar
procedure is followed in the experiments to train with 2D
landmarks. For 3D face alignment, the 3D landmark detector
is trained with the ground truth 3DA-2D landmark heatmaps
for 50 epochs.

C. Evaluation Metrics
Following the standard protocol, we adopt the normalized

mean error (NME) to evaluate 3DA-2D face alignment on
ALFW2000-3D and ParFace. We additionally report the fail-
ure rate (FR) and area under the curve (AUC) at 10% of the
Cumulative Error Distribution (CED) on ParFace. 3D face
alignment is evaluated using the ground truth error (GTE)
on AFLW2000-3D and ParFace. The GTE is equivalent to
the NME, but evaluates the full 3D coordinates. The GTE is
normalized by the inter-ocular (IO) distance, while the NME
is normalized by the square-root of the bounding box size
enclosing the landmarks, following related works. We report
the standard deviations σ of the NME and GTE in ParFace.

D. Evaluation on AFLW2000-3D
3DA-2D and 3D face alignment are evaluated on the

widely used benchmark AFLW2000-3D, where the landmark
detectors are trained using 300W-LP. We employ the AE
with in-domain inversion to train the landmark detectors.
Furthermore, we refine the 3DA-2D landmarks with encoder
fine-tuning. The results are shown in Table II.

We observed that our models outperform the SOTA in
3DA-2D face alignment (NME) for frontal and near frontal
faces (0 to 30◦) and our ParFace-Net with the AWing loss
has the 2nd best GTE on 3D face alignment for the reported
methods. For larger poses, we noticed a decreased perfor-
mance of ParFace-Net. This could be attributed to the small
portion of non-frontal faces in the self-supervised stage,
where face semantics are learned mostly for near-frontal
poses. We also observed that model-based approaches tend
to be more robust to large head poses, since they are trained
with additional 3DMM parameters such as head orientation
and face shape. However, as shown in the next section,
model-based methods do not cope well with a wide range of
facial expressions, including asymmetrical expressions.

E. Evaluation on ParFace
The annotated set of ParFace is employed to evaluate our

models from Section IV-D, with no annotations for palsy.
The results are shown in Table III. We additionally report the
performance of different SOTA model-based and model-free
methods for 3D face alignment, which have been trained on
300W-LP or 3DMMs datasets. To discard alignment errors
due to face detection inaccuracies, we replaced the face
detectors in every method and provided the bounding box
from the ground truth landmarks, to crop the input images.

The CED curves for the normalized 3DA-2D and 3D
RMSE are shown in Figure 4. Our models achieve the lowest



TABLE II
NME (3DA-2D) AND GTE (3D) ON AFLW2000-3D, FOR DIFFERENT

YAW ANGLES. † REPORTED IN [99]. METHODS WITH ∗ ARE

SEMI-SUPERVISED.

Method NME↓
GTE ↓

0 to 30 30 to 60 60 to 90 All

M
od

el
-b

as
ed

3DDFA [107] 2.84 3.57 4.96 3.79 -
SPDT [72]∗ 3.56 4.06 4.11 3.88 -
3DDFA V2 [36] 2.63 3.42 4.48 3.51 -
2DAL [84]∗ 2.75 3.46 4.45 3.55 -
SADRNet [73] 2.66 3.30 4.42 3.46 -
SynergyNet [88] 2.66 3.30 4.27 3.41 -

M
od

el
-f

re
e

SDM [91]† 3.67 4.94 9.76 6.12 -
3D-FAN [11]† 2.77 3.48 4.60 3.62 7.45
JVCR [99] 2.94 3.46 4.53 3.64 7.28
StyleGAN-FA[24]∗ 2.65 3.62 4.89 3.72 -
PF-NetMSE

∗ 2.62 3.65 4.80 3.69 7.42
PF-NetAwing

∗ 2.61 3.67 4.74 3.67 7.38

Fig. 4. CED curves for 3DA-2D and 3D face alignment of models tested on
ParFace. Our models are ’PF-Net: MSE’ and ’PF-Net: Awing’, represented
with dotted lines.

NME and FR, the highest AUC and the 2nd and 3rd lowest
GTE on ParFace. As mentioned in Section IV-A, for labelling
ParFace, an initial landmark prediction was computed using
3D-FAN. However, the 3DA-2D landmarks were heavily
refined, while the z coordinates were refined to a lesser
extent. As expected, 3D-FAN has the lowest GTE in this
dataset. Qualitative results are shown in Figures 5 and 6.
Table III and Figure 5 show that model-free methods have
in general a better performance and are more flexible on
asymmetrical expressions than model-based pipelines.

TABLE III
PERFORMANCE ON PARFACE. THE NME, AUC AND FR EVALUATE

3DA-2D LANDMARKS, WHILE GTE EVALUATES 3D ALIGNMENT.

Method NME ± σ ↓ AUC↑
10 FR↓

10 GTE ± σ↓

M
od

el
-

ba
se

d 3DDFA V2 [36] 4.65 ± 2.51 55.14 1.11 11.18 ± 5.98
SynergyNet [88] 5.49 ± 4.96 49.48 1.70 13.89 ± 8.48
DECA [25] 4.24 ± 1.19 57.81 0.88 23.27 ± 6.27

M
od

el
-

fr
ee

3D-FAN [11] 4.26 ± 3.64 59.83 0.96 7.06 ± 6.20
JVCR [99] 4.00 ± 2.79 61.87 1.26 8.79 ± 4.91
PF-NetMSE 3.83 ± 3.19 62.74 0.96 8.14 ± 4.60
PF-NetAWing 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

F. Runtime and Model Parameters

We measured for ParFace-Net a runtime of ∼230FPS
on average for 1K repetitions, for 2D and 3DA-2D face
alignment, on a Nvidia RTX2080-Ti. To estimate the full
3D coordinates, ParFace-Net runs at ∼156FPS.

ParFace-Net is composed of two ResNet-18 and an in-
verted ResNet-18, with a total of ∼24.14M parameters. 3D-
FAN is composed of 4 HG networks with ∼24M parameters
and a ResNet-152 with ∼58.5M parameters to compute the
depth coordinate (in total ∼82.5M). Likewise, JVCR uses
4 stacked HG and an additional network to map the voxels
to coordinates, with 32.47M parameters in total. SynergyNet
has 4.6M parameters, 3DDFA V2 3.27M and DECA uses
two ResNet-50 with more than 25M parameters each and
multiple decoders to retrieve the parameters of the 3DMM.

G. Ablation Study

We evaluate the contribution of each module in the face
alignment process.

1) Training the Self-Supervised Stage: The impact of
the self-supervised stage in the landmark detection task is
analyzed. For that purpose, we trained the landmark detectors
omitting the self-supervised stage and only the encoder is
pre-trained on ImageNet. Since the latent code does not
encode face information, the in-domain inversion is not
applied either. The encoder is later fine-tuned after training
the 3DA-2D landmark detector, as detailed in Section III-C.
The results are shown in Table IV, without check marks in
the categories ’Self-Supervision’ and ’In-Domain Inversion’.
For every metric, there is a large decline in the performance
when the self-supervised stage is omitted.

2) Training with In-Domain Inversion: We investigated
the effect of the in-domain inversion module as well. To that
end, we trained the landmark detectors before and after the
in-domain inversion is applied. The results for 3DA-2D and
3D face alignment are shown in Table IV. We observed that
in-domain inversion boosted the performance in every metric
w.r.t. the model without inversion. The improvement is more
noticeable for ParFace, both in the NME and GTE.

3) Effect of AWing Loss: We additionally examined the
performance of the 3DA-2D landmark detector using the
MSE loss and the proposed AWing loss. The results are
reported in Table IV. During the experiments, we observed
that the MSE loss converged faster, but in overall the AWing
loss leads to improved accuracy in most of the metrics. We
hypothesize that this is due to AWing loss being more sensi-
tive to foreground pixels than background pixels, considering
that background pixels predominate in the heatmaps.

4) Training the AE with Portions of the Data: As an
additional ablation study, we explore how the performance of
the landmark detectors are affected when the self-supervised
stage is trained with different portions of the data. The quan-
titative results for AFLW2000-3D and ParFace are reported
in Table V. To that end, we trained the AE with multiple
combinations of the datasets from Table I, where the total
amounts to ∼590K images. Note that only the models with
3% and 100% included palsy data, and that all the models



Ground truth 3D-FAN [11] JVCR [99] 3DDFA V2 [36] DECA [25] SynergyNet [88] PF-NetMSE PF-NetAWing

Fig. 5. Face alignment on ParFace. 3D-FAN, JVCR, 3DDFA V2 and SynergyNet were trained with 300W-LP, while DECA uses pseudo ground truth
from 3D-FAN. 3DDFA V2, DECA and SynergyNet are trained on datasets for face reconstruction to fit 3DMMs as well.

TABLE IV
ABLATION STUDY ON AFLW2000-3D AND PARFACE. WE EVALUATE THE IMPACT OF THE SELF-SUPERVISED STAGE, IN-DOMAIN INVERSION AND

THE LOSS FUNCTION FOR LANDMARK DETECTION. THE NME AND GTE ARE AVERAGED IN EACH DATASET ON THE TOTAL NUMBER OF IMAGES.

Self- In-Domain Alignment AFLW2000-3D ParFace
Supervision Inversion Loss NME ± σ ↓ AUC↑

10 FR↓
10 GTE ± σ ↓ NME ± σ ↓ AUC↑

10 FR↓
10 GTE ± σ ↓

- - MSE 3.91 ± 3.94 65.31 3.56 8.81 ± 6.87 4.24 ± 3.27 58.39 1.11 9.16 ± 4.89
✓ - MSE 3.23 ± 2.90 69.40 1.50 7.77 ± 6.22 3.96 ± 3.34 61.75 0.96 8.40 ± 4.87
✓ ✓ MSE 3.15 ± 2.96 70.17 1.50 7.42 ± 5.33 3.83 ± 3.19 62.74 0.96 8.14 ± 4.60
- - AWing 3.96 ± 3.97 64.81 3.65 9.03 ± 6.93 4.46 ± 3.56 56.17 1.04 9.47 ± 5.27
✓ - AWing 3.19 ± 2.95 69.78 1.45 7.45 ± 5.07 3.94 ± 3.21 61.76 0.96 8.41 ± 4.75
✓ ✓ AWing 3.14 ± 2.92 70.22 1.35 7.38 ± 5.05 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

3D-FAN JVCR 3DDFA V2 DECA SynergyNet PF-Net PF-Net
[11] [99] [36] [25] [88] MSE AWing

Fig. 6. 3D face alignment on ParFace with different methods of the SOTA.
Ground truth in red and predictions in green.

were trained with in domain inversion, the AWing loss and
encoder fine-tuning.

As part of the experiments, we trained the AE only with
palsy datasets at our disposal: Toronto NeuroFace, MEEI and
the unlabeled set of ParFace. The results correspond to 3% of
the total data in Table V. From this experiment, we observed
a comparable performance on ParFace with the model trained
with 1%, with a minimal improvement on the model trained
with palsy data. However, on AFLW2000-3D, the model
trained with palsy data showed in general a slightly lower
performance than the model trained with only 1% of the data.
The main reason is that the Toronto NeuroFace and MEEI are
clinical datasets collected in controlled conditions, with little
diversity in terms of pose, lighting and background setting.

Therefore, a model trained with relatively few images in the
wild (in this case from ParFace), would not perform well on
challenging images with large poses, occlusion and varying
lighting, such as in AFLW2000-3D, due to insufficient data
to generate a compact face representation embedded in the
latent code.

Overall, the alignment performance shows a gradual im-
provement as more data is added to the self-supervised
stage. These results lead to the assumption that the landmark
detectors can be further enhanced as more unlabeled data
with large diversity is used for training the AE.

5) Training with Labeled Palsy Data: The results in
Section IV-E were computed from models that were not
trained using labeled data from ParFace. To evaluate the
influence of labeled palsy data in our approach, we split the
dataset into a training and test set and fine-tune the previously
trained models with a portion of the data. The results are
shown in Table VI. We use 6 sequences for training and
3 for testing. We split the training set into 6 parts, each
containing N number of sequences, where N is in the range
[1,6]. The number of sequences used are added as numerals
in the Table. MSE-0 and Awing-0 use the models trained



TABLE V
ABLATION STUDY ON 3DA-2D AND 3D FACE ALIGNMENT AFTER TRAINING THE SELF-SUPERVISED STAGE WITH PORTIONS OF THE DATA. THE AE IN

∗ WAS TRAINED ONLY WITH PALSY DATA.

% AFLW2000-3D ParFace
NME ± σ↓ AUC↑

10 FR↓
10 GTE ± σ↓ NME ± σ↓ AUC↑

10 FR↓
10 GTE ± σ↓

0 3.96 ± 3.97 64.81 3.65 9.03 ± 6.93 4.46 ± 3.56 56.17 1.04 9.47 ± 5.27
1 3.57 ± 3.36 67.31 2.45 8.20 ± 5.94 4.20 ± 3.42 58.87 1.19 9.06 ± 5.15
3∗ 3.58 ± 3.24 66.97 2.65 8.16 ± 5.59 4.19 ± 3.31 58.86 0.89 9.06 ± 4.94
13 3.35 ± 3.09 68.94 1.70 7.70 ± 5.42 3.84 ± 2.85 61.89 0.89 8.65 ± 4.34
34 3.26 ± 2.94 69.35 1.55 7.55 ± 5.07 3.96 ± 3.33 61.52 0.82 8.30 ± 4.94
97 3.17 ± 2.96 70.07 1.30 7.46 ± 5.14 3.82 ± 2.98 62.38 0.82 8.15 ± 4.41

100 3.14 ± 2.92 70.22 1.35 7.38 ± 5.05 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

TABLE VI
PERFORMANCE METRICS ON PARFACE AFTER FINE-TUNING WITH

TRAINING SETS FROM PARFACE. THE NUMBER OF SEQUENCES USED

FOR FINE-TUNING ARE ADDED AS NUMERALS ADJACENT TO THE LOSS.

Method NME↓ AUC↑
10 FR↓

10 GTE↓

MSE-0 3.99 61.10 1.11 8.79
MSE-1 4.41 56.81 1.11 9.70
MSE-2 4.13 58.63 0.44 8.98
MSE-3 3.60 63.70 0.44 8.34
MSE-4 3.45 65.22 0.44 8.03
MSE-5 3.43 65.39 0.44 7.93
MSE-6 3.22 67.43 0.44 7.99
AWing-0 3.92 61.45 0.89 8.72
AWing-1 4.17 58.70 0.89 8.94
AWing-2 4.08 59.06 0.44 8.50
AWing-3 3.77 62.11 0.44 8.44
AWing-4 3.55 64.12 0.22 7.87
AWing-5 3.53 64.47 0.44 8.10
AWing-6 3.18 67.77 0.22 7.44

Fig. 7. Failure cases.

without palsy data, to evaluate the test set of ParFace (450
images in total).

The results show an overall improvement when more data
is added to fine-tune the models. By adding 6 ∗ 150 = 900
training images with palsy data to a model trained with more
than 61K labeled images (representing less than 2%), we
obtained performance gains of around 20% in the NME and
more than 10% in the GTE.

These experiments validate the use of ParFace to fine-tune
semi- or fully supervised DNN for 3DA-2D and 3D face
alignment on asymmetrical facial expressions.

H. Discussion and Limitations

As most of the heatmap-based methods for face alignment,
our approach fails under extreme occlusions, as shown in
Figure 7. Other failure cases occur when the face synthesis
fails due to unusual facial expressions, large head poses,

lighting and low contrast. 3DMMs-based methods are more
robust in such cases, by keeping the spatial structure of the
landmarks, even if the face is not properly aligned. However,
they are not able to align the landmarks correctly for unseen
faces, such as in asymmetrical expressions (see DECA in
Fig. 5).

We noticed that our method heavily depends on the
training data in the self-supervised stage. By using datasets
with less diversity in terms of pose, expression, occlusion
and illumination, the performance of the landmark detectors
drops. The dependency on unlabeled data is not to be seen
as a drawback, since the generation of such datasets is
much less expensive than labeled data. We also observed
that using a small set of unlabeled palsy faces (∼3% of the
total amount, see Table I) to train the AE enabled the in-
domain inversion module to encode asymmetrical features
in the latent vector, improving the landmark detection.

Dedicated architectures for HQ face reconstruction such
as StyleGAN2 [52] could replace the inverted ResNet-18,
as in [24], to improve the reconstruction. This comes at
a cost of increased complexity and trainable parameters
in the pipeline. While StyleGAN2 has ∼28M parameters
and a computational complexity of 143.15 Giga Multiply-
Accumulate Operations (GMACs), ResNet-18 has ∼11M
parameters and a complexity of 1.82GMAC.

V. CONCLUSIONS

This work introduced a pipeline for 3D face alignment,
targeted to faces with symmetrical and asymmetrical expres-
sions. We propose a semi-supervised architecture which ex-
ploits large unlabeled datasets and integrates face alignment
with smaller labeled datasets. We explore the latent space
in the self-supervised stage, and optimize the encoder to
produce a disentangled latent space with in-domain inver-
sion. Our landmark detector uses the AWing loss to regress
3DA-2D landmark heatmaps and a newly introduced separate
branch computes the depth of the 3D landmarks. A future
direction would be to exploit additional 3DMMs parameters,
to enable the autoencoder to learn the pose, expression, and
shape from 2D images under large head poses and extreme
occlusion.
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