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Abstract— Around 5% of the world’s population live with
disabling hearing loss. Despite recent advancements to improve
accessibility to the Deaf community, research on sign language
is still limited. In this work, we introduce a large-scale synthetic
dataset on sign language, SynthSL, targeted to sign language
production, recognition and translation. Using state-of-the-start
methods for human body modelling, SynthSL aims to augment
current datasets by providing additional ground truth data
such as depth and normal maps, rendered models, segmentation
masks and 2D/3D body joints. We additionally explore a gener-
ative architecture for the synthesis of sign images and propose
a new generator based on Swin Transformers, conditioned on
given body poses and appearance. We believe that an increase
on the publicly available data on sign language would boost
research and close the performance gap with related topics
on human body synthesis. Our code, models and dataset are
available at https://github.com/jilliam/SynthSL.

I. INTRODUCTION

Sign language (SL) is one of the main communication
channels for people with severe or profound deafness. It
is considered a natural language, where signs result from
the combination of body postures, hand gestures and facial
expressions, giving a representation in the spatio-temporal
domain. It differs from the spoken language in both grammar
and word order, without a one-to-one mapping from sign
to word. Instead, the spoken sentences can be translated to
glosses, which represent the written form of the signs [9].

Since SL perception is visual, it is actively investigated
in computer graphics and vision, particularly for three main
tasks: production, recognition and translation. SL production
aims at generating sign videos or human pose sequences
from written or spoken sentences, while recognition and
translation refer to the interpretation of sign videos. Sign
recognition targets the identification of glosses, whereas in
translation, signs are mapped to written or spoken language
words, in some cases using glosses in an intermediate step.

Communication with the Deaf community is a bidirec-
tional process, and both recognition and production are
essential to increase accessibility. Production, in particular,
is a crucial step for them to understand live speeches,
news, cultural activities, among others, specially when no
interpreters are available. Signs are preferred over closed
captions or subtitles, as SL users are accustomed to their
own natural language, while written text is not always easily
comprehensible for them [17], [80].

Although SL is used worldwide, it is not universal, since
signs can vary widely in different regions, and several types
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Fig. 1. In sign language, the representation of sentences is encapsulated
by glosses, which map sentences to morphemes. Existing datasets usually
provide RGB or RGB+D sign sequences and the respective translation to
sentences and glosses, which can be exploited for sign language recognition,
translation and production. We introduce a rendering pipeline and our
dataset SynthSL, which extends the PHOENIX 2014T dataset [9] to include
additional ground truth such as rendered RGB images, depth and normal
maps, segmentation masks and SMPL-X [59] model parameters.

and dialects might co-exist in the same country [17], [45],
[46]. Each variation has a defined structure and its own
grammar. This poses a challenge in sign recognition and
translation, since datasets cannot be used cross-linguistically.

In the era of deep learning, large-scale datasets are of
vital importance for training and testing. However, collecting
such datasets is usually expensive and time consuming.
Additionally, SL datasets require expert signers and anno-
tators to label the data, in order to avoid interpretation
errors due to similarity in the signs [46]. To address this
limitation, some datasets have been collected from multiple
sources, such as learning channels for SL [46] or from news
or weather broadcasts [26], usually providing only RGB
videos. Acquisition of additional ground truth data such as
2D/3D skeletons, keypoints and body pose usually requires
specialized systems such as 3D motion capture (MoCap) data
or custom setups with hundreds of cameras and sensors [21].
Unfortunately, these systems are not easily accessible.

In this paper, we introduce a large-scale synthetic dataset
on SL with expressive humans, SynthSL, based on the
SMPL-X [59] model. Inspired by realistic synthetic datasets
in human analysis such as SURREAL [77], we propose
a pipeline for augmenting real RGB-based sign language

https://github.com/jilliam/SynthSL


datasets to include other modalities and add rich ground truth
data such as depth information, rendered models, pose, body-
part segmentation, normal maps and 2D/3D body joints. With
the proposed data generation framework, we aim to extend
existing datasets and advance research on SL production
and interpretation. Furthermore, our rendering pipeline can
contribute to close the gap between animated avatars used
for SL production and synthetic sign videos. SynthSL and
the synthetic sign generation code will be made publicly
available for research purposes.

The use of synthetic data offers multiple advantages on
SL research: (i) overcome the limitations of monocular
RGB-based videos with extended ground truth data, espe-
cially for learning models; (ii) enable inter-signer variation.
Body shapes and textures (with identity and clothing) are
randomized, to increase the diversity in our dataset; (iii)
ensure enough number of instances per word/sentence. Each
sentence can be generated with different signers, adding ran-
dom noise to the signs to increase variability. (iv) eliminate
motion blurry, intrinsic to fast motions in video sequences;
(v) control over the camera position and the acquisition of
multiple views; and (vi) control of external factors such as
illumination and background.

Finally, we propose a new pipeline for synthesizing sign
language images, targeted to sign language production (SLP).
This pipeline is based on Generative Adversarial Networks
(GANs), where a base signer (or style) image, the current
pose and a target pose are used as input. The model then gen-
erates an output image of the base signer in the target pose.
We leverage the improved performance of transformers on
vision tasks and introduce SwinGenerator, a new generator
based on Swin Transformer V2 [50].

The main contributions of this work are:

• A new rendering pipeline based on the SMPL-X model,
which integrates the shape and pose of the body, hands
and face, in addition to facial expressions.

• SynthSL, a large-scale synthetic dataset for research
on sign language. Our dataset expands the PHOENIX
2014T dataset [9] with ground truth on rendered models,
segmentation masks, depth and normal maps, 2D/3D
body joints, body pose and shape, which are provided
on a frame basis.

• A new deep-learning based model for sign image syn-
thesis, with a novel SwinGenerator. Our model takes as
input a source and target pose, plus a style image, and
generates an image of the signer in the given style and
target pose.

II. RELATED WORK

In this section, we review the state of the art in SLP
and analyze current SL large-scale datasets. We additionally
describe related work on human analysis with synthetic
datasets. For a comprehensive study on methods for SL
recognition, we refer the reader to [1].
Sign Language Production. Traditionally, SLP has been
mainly focused on the animation of 3D avatars, using

MoCap data [17], [29], [30] or pre-designed synthetic se-
quences [31], [40], [56]. Recent works have moved towards
the generation of skeleton poses or realistic video sequences,
using deep neural networks (DNN). Some approaches rely in
an intermediate step to translate spoken sentences to skeletal
poses, using glosses. [71] produces sign videos from spoken
language, by combining Neural Machine Translation (NMT)
and a generative model. The sentences are translated to
glosses using an encoder-decoder, which in turn are mapped
to skeletal pose sequences using a dictionary. [72] overrides
the look-up table and generates skeletal pose sequences via
Motion Graph, which is conditioned by a sequence of gloss
probabilities extracted from the written or spoken sentences.
[73] maps glosses to signs using a tailored DNN.

Other works explore the direct transformation from text to
skeletal poses, without an intermediate gloss representation
[25]. [83] used an architecture based on neural networks to
generate fixed-length sign pose sequences. [68] introduced
progressive transformers for SLP, from discrete spoken sen-
tences to continuous sign pose sequences. [67] extended the
framework to integrate a Mixture Density Network (MDN)
to the transformer. [66] proposed an adversarial approach
to exploit the multi-channel features of SL, to include facial
expressions and mouthing in the sign pose sequences.

More relevant to our work is the pose-conditioned human
synthesis for SLP. PSGN [71] proposed a hybrid architecture
composed of a Variational Autoencoder (VAE) [42] generator
and DCGAN [60], to synthesize sign sequences conditioned
on the skeletal information and appearance. [78] produces
realistic sign videos using the GAN architecture for human
motion transfer in Everybody Dance Now [13], while the
synthesis pipelines in [72], [73] are based on pix2pixHD
[79], with an encoder-decoder-based generator. Similarly,
SignGAN [67], [69] generates realistic sign videos using
a conditional GAN based on [13] and [79], given a style
image and a sign pose sequence. It additionally introduces
a keypoint-based loss to improve the synthesis of hands.
SignDIFF in [25] is based on dual-condition diffusion models
for SLP on American Sign Language (ASL).
Sign Language Datasets. Datasets can be classified accord-
ing to the language, if they were captured in a controlled or
unconstrained (in the wild) scenario and if they are targeted
to finger-spelling [20], word (isolated) or sentence level
(continuous) sign language. Table I lists a set of large-scale
datasets for isolated and continuous sign language, from
different regions around the world.

Some datasets were collected from weather forecasts [10],
[26], [27], TV broadcast [3], [10], videos on YouTube
[75], or different online channels of the Deaf community
[46]. Others datasets comprise videos recorded in controlled
environments, with multiview RGB [43], or multimodal
systems [22], [24], [57], and provide a large variety of
ground truth data, e.g. depth maps, 2D/3D keypoints, facial
landmarks, body and hand pose, usually extracted from
Kinect v1/v2 and OpenPose [11]. How2Sign [21] includes
data captured in a custom setup with hundreds of cameras
and sensors placed in a geodesic dome. Other datasets in-



TABLE I
LARGE-SCALE WORD AND SENTENCE-LEVEL SIGN LANGUAGE DATASETS.

*Not publicly available. **This information was inferred from [72], where all signers perform each sign 3 times.

Name Language Videos Sentences Signers Vocab. Data Level In the
size type wild

DEVISIGN [12] Chinese 24000 - 8 2000 RGB-D Word -
SMILE* [24] Swiss German 12600** - 42 100 RGB-D Word -
MS-ASL [75] American English 25513 - 222 1000 RGB Word ✓
WLASL [46] American English 21083 - 119 2000 RGB Word ✓
BosphorusSign22k [57] Turkish 22542 - 6 744 RGB-D Word -
PHOENIX 2012 [26] German 190 1980 7 911 RGB Sentence -
PHOENIX 2014 [27] German 645 6861 9 1558 RGB Sentence -
PHOENIX 2014T [9] German 8257 8257 9 1066 RGB Sentence -
CSL [37] Chinese 25000 100 50 178 RGB-D Sentence -
KETI* [43] Korean 14672 105 14 524 RGB Sentence -
How2Sign [22] American English 2500 38611 10 4000 RGB-D Sentence -
GSL [1] Greek 10290 10290 7 310 RGB-D Sentence -
C4A - SWISSTXT-WEATHER [10] Swiss German 183 811 - 1248 RGB Sentence -
C4A - SWISSTXT-NEWS [10] Swiss German 181 6031 - 10561 RGB Sentence -
C4A - VRT-NEWS [10] Flemish 120 7174 - 6875 RGB Sentence -
BOBSL [3] British English 1962 1.2M 39 2281 RGB Sentence -

troduce complementary annotations, e.g. [44] extends RWTH
PHOENIX Weather 2014 [27] with hand shapes annotation,
while [2] provides annotations to analyze facial expressions
and emotions on the same dataset. [9] reformatted the dataset
with new segmentation boundaries, to ease SL recognition
and translation.

Synthetic Datasets for Human Analysis. Synthetic datasets
have been widely used in recent years to compensate the
scarcity of large-scale data for training deep learning mod-
els [74], [14]. Many human-based datasets synthesize im-
ages either from virtual characters generated with computer
graphic software [6], [28], [49], or by using parametric body
models such as SCAPE [4] or SMPL [52]. The latter has
gained special attention for synthetic human datasets [77],
[76], [34], [62], [15], due to its realistic appearance and
its compatibility to existing rendering engines. SMPL is a
statistical body model learned from thousand of 3D body
scans and is based on blend skinning.

[77] introduced SURREAL (Synthetic hUmans foR REAL
tasks), the fist synthetic dataset with realistic rendered hu-
mans performing different actions. Pose and motion were
capture using MoCap data and additionally to the 2D/3D
body pose, the dataset provides depth map, segmentation
masks, surface normals and optical flow. They demonstrated
that CNNs trained on synthetic data can be used for hu-
man body segmentation and depth estimation on real RGB
images. [76] presented SURREACT (Synthetic hUmans foR
REal ACTions), a dataset intended to investigate the scope of
temporal CNNs trained on synthetic data for human action
recognition. They exploited the synthetic data to include
augmentation, such as multiple viewpoints and variations
in appearance and motion. [34] explored synthetic data
for hand-object manipulation. They introduced a synthetic
dataset, ObMan, which rendered the hands and body using
the SMPL+H model [64], to produce synthetic RGB images,
depth maps and segmentation masks. SMPL+H integrates a
parametric hand model, MANO [64] to the SMPL model.

The images were rendered using Blender and its python API.
[62] and [61] explore synthetic datasets with optical flow
fields for single and multi-human motion analysis (MHOF).
The output was rendered using a similar approach to [34].
For MHOF, additional ground truth such as depth maps,
segmentation masks, normal maps, and SMPL+H shape and
pose parameters are provided. This ground truth was created
using the SMPL+H model and MoCap data.

[36] investigated multi-person pose estimation networks
trained on a purely synthetic dataset and in an augmented
dataset based on real images. Based on [23], they additionally
presented a style-transfer method to map synthetic to real
humans. BEDLAM [7] introduced a dataset of synthetic
humans based on the SMPL-X model, with high level of re-
alism. The bodies are animated using datasets collected with
MoCap. Their experiments show that simple models trained
on this synthetic data can improve more elaborated SOTA
approaches in human pose and shape (HPS) estimation.

Previous work demonstrates that human-based synthetic
datasets help improve DNN performance in vision-related
tasks. With our dataset and rendering pipeline, we aim to
help advance the research on SL, by providing additional
types of ground-truth information to existing datasets.

III. SYNTHSL AND RENDERING PIPELINE

We introduce a pipeline to render synthetic sign im-
ages, used to generate our large-scale dataset, SynthSL.
Our rendering framework, depicted in Fig. 2, leverages
the parametric model SMPL-X [59], to extend RGB-based
sign videos with additional ground-truth annotations. To
that end, we exploit a state-of-the-art model fitting pipeline
that regresses the SMPL-X parameters from RGB images.
These parameters are then used to animate the human model
and generate synthetic data. Our pipeline can be applied to
videos from different sources, such as existing SL datasets,
broadcasts and YouTube videos. Nonetheless, its use is not
limited to SL-related tasks and can be employed in the
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Fig. 2. Rendering pipeline for generating synthetic data. Given an RGB sequence, a SMPL-X model fitting method estimates the body pose, shape and
facial expression parameters per frame. The body pose and facial expression are passed to the animation framework, where multiple types of ground-truth
data are rendered. Additional parameters such as body shape and texture are randomized per sequence. Input frames taken from PHOENIX 2014T [9].

generation of other human-related datasets. We note that our
pipeline is compatible with other rendering pipelines and
animation software.
SMPL-X Model. The SMPL-X model, taking its name
from SMPL eXpressive, improves the SMPL model [52] by
integrating detailed face and hand models to the given body
template. The model was trained on multiple datasets of 3D
human scans, incorporating the additional parametric models
to increase the resolution of hands and face. Given a pose
θ, shape β and facial expression ψ, the SMPL-X model
is formulated as M(θ, β, ψ) : R|θ|×|β|×|ψ| → R3N , with
N = 10475 being the number of vertices.

The pose parameters θ embody the pose for K joints in the
whole body, including jaw and finger joints. In total, SMPL-
X has K = 55 joints, with one joint corresponding to the
global orientation and the 54 left to body joints. 30 of these
joints belong to the fingers, which are modelled based on
MANO [64]. Such model uses a PCA pose space to reduce
the dimension of the axis-angle rotations from 90 (3 angles
per joint) to 24 parameters. Similarly, the facial expression
is represented using a lower dimension PCA space with 10
parameters based on FLAME [47].

SMPL-X has in total 119 parameters: 99 for the pose
(75 for { body, eyes and jaw } and 24 for the hands), 10
parameters for the shape and 10 for the facial expression. In
addition, it has the option to use a female, male or neutral
body model.
Augmented dataset. SynthSL was generated from the train-
ing set of the publicly available dataset PHOENIX 2014T [9].
This dataset is targeted to continuous recognition and trans-
lation on German SL, and comprises sign videos describing
the weather forecast. Even though this dataset has a large
vocabulary size (1000+), the number of signers is relatively
low (9) and is only RGB-based.
Shape, pose and expressions. Our dataset is based on the
SMPL-X model, which comprises body, face and hands. It
differs from related human body rendering pipelines such
as SURREAL [77] and Obman [34], which use the SMPL

(body) and SMPL+H (body and hands), respectively. The
model parameters are estimated using SMPLer-X [8], a
state-of-the-art fitting approach based on vision transformers
(ViT) [19]. This method has currently the best performance
for body modelling in the AGORA benchmark [58], which
evaluates SMPL-X model fitting on a synthetic dataset with
high realism. In SynthSL, we estimate the pose θ and
facial expression ψ from SMPLer-X with ViT-Small. These
parameters are then passed to the rendering step. The body
shape, on the other hand, is randomly generated for every
sequence to increase the diversity of the signers.
Texture and background. The body textures are randomly
sampled from the BEDLAM dataset [7]. It includes 50 skin
textures for male and 50 for female models, with large
diversity in terms of identity and skin tones. In addition, the
dataset provides 1738 clothing textures which are overlaid
on the given skins.

Our rendering pipeline offers the option to randomly select
backgrounds from ImageNet [18] or LSUN [82]. In our
dataset, we fixed the background to only one specific color,
to simulate the controlled recording scenario in sign language
videos.
Rendering. The RGB images are rendered using the Python
API from Blender [16], similarly to [34]. However, our
pipeline generates multiple types of ground truth data, such
as depth, segmentation and normal maps, following SUR-
REAL and MHOF. In contrast to these pipelines, the facial
expression and jaw pose are also integrated, to render expres-
sive models. The RGB images, segmentation masks, depth
and normal maps are rendered with a default resolution of
512×512×3. SMPL-X model parameters such as body pose,
shape, facial expression and 2D/3D body joints are provided
in SynthSL as well. SMPL-X is available in Autodesk’s
Filmbox (FBX) file format, which enables the animation in
software such as Blender and Maya [5].

Our rendering pipeline provides multiple benefits to SL
research: (1) to augment existing RGB-based datasets; (2)
to assist in the design of DNN architectures, where various



real / 
fake

G

D

Base signer

Target Pose Generated image

Ground truth

Base Pose 

Fig. 3. Proposed framework for the synthesis of sign language images.

types of data could be integrated into SL-based models; and
(3) to guide in the collection of new datasets, where different
technologies and algorithms could be evaluated beforehand.

IV. SIGN LANGUAGE IMAGE SYNTHESIS

In addition to the rendering pipeline and our synthetic
dataset SynthSL, we investigate the synthesis of sign images
for SLP. This task can be divided into three main stages:
(i) transcription of spoken to written words, (ii) translation
from written words to glosses and (iii) mapping from glosses
to signs for production. In this work, we focus on the
third stage, the generation of sign images and videos from
glosses. More specifically, we investigate the generation of
sign images from skeleton poses representing the glosses.

Inspired by [71], we designed a GAN architecture to
generate sign images from an input base signer and a target
pose. This problem is often termed as image to image
translation, where the generator G maps the input data to
a given visual domain, conditioned on a given input data.
The discriminator D decides whether the generated image is
fake or not, and trains in tandem along with the generator.
Our pipeline introduces the pose of the base signer as an
additional input to G, as shown in Fig. 3. We additionally
propose a new generator architecture for image synthesis,
based on Swin Transformers [50], [51].

A. Generator and Discriminator Training

The generator G and discriminator D are trained in inter-
vals with an adversarial training, where G tries to maximize
the number of images that deceives D, and D penalizes G
for generating unrealistic images [32].
D is trained using the adversarial loss [32], given by:

Ladv = Ey[log(D(y))] + Ex[log(1−D(G(x)))], (1)

where E[·] is the expected value and D(·) is the probability
estimated by the discriminator that the given input corre-
sponds to real or generated data. In the first term in (1),
D takes as input the ground-truth sign image, y. This term
enhances the ability of D to correctly identify real images.
In the second term, D assesses the image reconstructed by
the generator, G(x), and is used to improve the capability of
D to distinguish G(x) as fake or real.

In our architecture, the input of the generator G corre-
sponds to the concatenation of the base signer, base pose
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Fig. 4. Architecture of the proposed SwinGenerator.

and target pose, x, while the output G(x) is an RGB image
depicting the base signer in the given target pose. We propose
to train G with the loss function:

LG = λrecLrec + λadvLadv + λpercLperc, (2)

with Lrec being the reconstruction loss given by the L1 pixel-
wise distance between the ground truth and reconstructed
image at G(x); Ladv is the adversarial image loss in (1);
Lperc the perceptual loss [39]; and λ(·) is the weight of each
loss.

The final objective is then formulated as:

L = λrecLrec + λadv argmin
G

max
D

Ladv + λpercLperc. (3)

Generator Network. We introduce a new generator model,
SwinGenerator, as depicted in Fig. 4. The backbone of
our generator G is based on Swin Transformer V.2 [50],
which improves previous models such as ViT, by integrating
shifting windows [51]. Since Swin Transformer applies the
attention mechanism to patches of the window instead of the
full image, the model complexity is reduced, with improved
computational performance. This enhancement allows the
use of this model on higher-resolution sign images.

In our SwinGenerator, the Swin Transformer V.2 serves
as the encoder, with each block containing paired W-MSA
(Windows Multi-Head Attention) and SW-MSA (Shifted
Windows Multi-Head Attention) for feature extraction. Patch
merging is used for down-sampling, reducing the size of
the output feature map by half and doubling the number of
channels.

To enable the generation of images conditioned on a
given pose and appearance, we propose to add upsampling
and un-patching layers, which act as a decoder and map
the embedded code to the synthesized sign image. The
upsampling layers are based on transposed convolutions,



followed by two convolution layers, and the un-patching
layer recovers the original image structure from the patches.

We additionally integrate skip connections between the
corresponding down-sampling and up-sampling layers, to
improve the convergence of the model. Furthermore, the
target pose is resized and concatenated to the output of
every Swin block and to the corresponding skip connection
required for the decoder.

V. EXPERIMENTS AND RESULTS

A. Implementation

The proposed synthesis pipeline was developed in PyTorch
and trained on a Nvidia RTX A6000 GPU. Inference time
was computed on an Nvidia RTX2070.

B. Datasets

We trained and evaluated our synthesis pipeline using
SynthSL, PHOENIX 2014T and BosphorusSign22k. Images
in PHOENIX 2014T have resolution of 210×260×3, while
BosphorusSign22k has full HD images of 1920×1080×3
pixels. Since BosphorusSign22k is very large, we used 4%
of the training data, which we found was sufficient for
generating realistic sign language images. Nonetheless, we
used the complete test set for evaluation. In SynthSL, we
selected 1000 sequences, with 600 for training, 100 for
validation and 300 for testing. The training set alone has
79362 frames in total, with an average of ∼132 frames per
sequence. The test set has 35848 frames, with ∼119 frames
per sequence.

C. Data pre-processing and model architecture

During pre-processing, input images were resized to
256×256×3. For BosphorusSign22k, we trimmed 1/4 from
each side, to have square images. The face and body key-
points were resized accordingly.

SwinGenerator uses a Swin-T V2, with number of chan-
nels C = 96 and block = {2, 2, 6, 2}. Its input corresponds to
the base signer RGB image, plus the base and target poses.
The output is an RGB image of the signer in the new pose,
with the same size of the base signer image, 256× 256× 3.
The base and target poses have each k = 96 2D keypoints
extracted with MediaPipe [53], where 42 belong to the hands,
46 to the face, and 8 to the body. Although there are many
recent works on pose estimation from images [81], [54],
we employ MediaPipe due to its highly robust estimations
from RGB data and real-time performance. We map the
extracted keypoints to Gaussian heatmaps, with one channel
per keypoint.

The discriminator is composed of two convolutional layers
and three residual blocks. It takes as input the ground truth
image and the generated image, as depicted in Fig. 3. The
discriminator is updated one time for every generator update.
We used the Adam optimizer [41] with learning rate αG =
2e−3 for G and αD = 2e−4 for D. In (2), we set λrec = 5,
λadv = 2 and λperc = 0.5. All the models are trained for 30
epochs, with batch size of 32. For the perceptual loss, we
used layers {1, 3, 5, 9, 13} from VGG19 [70].

D. Baseline architectures

Since existing sign language synthesis models are not
publicly available, we implemented a baseline architecture
inspired by [71]. We introduced five main changes to the
architecture in [71]: (i) the generator is based on U-Net
[65] instead of VAE, similarly to pix2pix [38]; (ii) the key-
points are mapped to Gaussian heatmaps, instead of binary
heatmaps; (iii) we used the same keypoints k = 96 as in our
architecture, and not 10; (iv) we added convolutional blocks
in the input of the encoder and output of the decoder, to
generate higher quality images of size 256×256×3, instead
of 128×128×3; and (v) we introduced the perceptual loss to
train the generator. We refer to this model as ”U-Net”.

Additionally, we implemented a second baseline generator
model, named as ”ResNet”. This models is composed of deep
residual blocks [35] in the encoder, following related works
on image synthesis [39], [79], [84] and SLP [69], [72], while
the decoder is given by transposed convolutions.

In both models, the input is given by the concatenation of
the base signer and target pose, following [69], [71], [72].
We use the same loss function in (3) and discriminator as in
our model for training and evaluation, for a fair comparison.

E. Metrics

The performance of the proposed sign image synthesis
pipeline in Fig. 3 is evaluated using the structural similarity
index metric (SSIM), the peak-signal-to-noise ratio (PSNR),
the position errors (PE) and the Fréchet Inception Distance
(FID). In the SSIM, PSNR and FID the generated RGB
image is compared to the respective ground truth RGB
image in the given pose. For the PE, we extracted the
keypoints from the ground truth and generated images using
MediaPipe, and summed the Euclidean distance between the
respective keypoints.

F. Evaluation

The quantitative results of the proposed synthesis approach
on PHOENIX 2014T, SynthSL and BosphorusSign22k are
reported in Tables II, III and IV, respectively, under Swin-
Generator. Qualitative results for the three datasets are shown
in Fig. 5, and in the Supplementary material. In contrast to
PHOENIX 2014T and BosphorusSign22k, SynthSL has large
diversity in terms of signer and clothes. Furthermore, the
images do not suffer from blurriness, thereby enabling the
synthesis of sharp hands without additional datasets.
Generator architecture. We evaluated the influence of the
proposed SwinGenerator and compared it to the generator
architectures based on U-Net and ResNet, described in
Section V-D. The results for PHOENIX 2014T, SynthSL
and BosphorusSign22k are shown in Tables II, III and IV,
respectively, and in Fig. 5.

In all datasets, the ResNet-based architecture showed an
improved performance with respect to U-Net in terms of
SSIM and PE. For the PSNR and FID, the results differ
in each dataset for U-Net and ResNet. Our SwinGenerator
outperforms both architectures in every dataset and metric,
as shown in Tables II, III and IV. Furthermore, the image



Fig. 5. Sign images synthesized with the proposed pipeline and baseline architectures on SynthSL, PHOENIX 2014T and BosphorusSign22k.

TABLE II
QUANTITATIVE EVALUATION ON PHOENIX 2014T

Method SSIM↑ PSNR↑ PE↓ FID↓

U-Net 0.684 30.999 0.884 42.624
ResNet 0.745 28.692 0.832 47.624
SwinGenerator 0.835 33.971 0.675 31.678

TABLE III
QUANTITATIVE EVALUATION ON SYNTHSL

Generator Architecture SSIM↑ PSNR↑ PE↓ FID↓

U-Net 0.883 35.071 0.489 16.301
ResNet 0.897 33.050 0.469 14.160
SwinGenerator 0.911 36.382 0.391 7.544

quality is degraded for both U-Net and ResNet using the
same discriminator and loss function as in our model. In
many cases, SwinGenerator provides steadier hands recon-
structions (see 1st column of PHOENIX 2014T in Fig. 5),
specially if the hands suffer from blurriness. However, in
some cases ResNet generates slightly better hands as in the
last column of BosphorusSign22k in Fig. 5.

G. Ablation Study

Transformer model. In this ablation study, we investigated
the influence of different modules within SwinGenerator for
synthesizing images using SynthSL. We first evaluated the
SwinGenerator without concatenating the resized target pose
in the residual connections. This architecture is shown in
Table V as Swin-TnoTP . The results show that adding the

TABLE IV
QUANTITATIVE EVALUATION ON BOSPHORUSSIGN22K

Generator Architecture SSIM↑ PSNR↑ PE↓ FID↓

U-Net 0.769 29.673 0.420 34.161
ResNet 0.865 32.150 0.302 21.356
SwinGenerator 0.930 37.589 0.211 15.824

TABLE V
EVALUATION OF DIFFERENT SWINGENERATOR ARCHITECTURES ON

SYNTHSL

Generator Architecture SSIM↑ PSNR↑ PE↓ FID↓

Swin-TnoTP 0.892 36.170 0.511 16.569
Swin-TRes 0.895 36.362 0.468 12.633
SwinGenerator 0.911 36.382 0.391 7.544

TABLE VI
EVALUATION OF DIFFERENT SIZES OF SWIN V2 ON SYNTHSL

Swin Architecture SSIM↑ PSNR↑ PE↓ FID↓

Swin-T 0.911 36.382 0.391 7.544
Swin-S 0.912 36.810 0.387 7.346
Swin-B 0.918 37.114 0.374 6.304

target pose in the residual connections is advantageous for
SwinGenerator, with improvements in every metric, specially
the PE and FID.

We additionally implemented a pipeline with only the
source image as input, and the residual connection incorpo-
rating the difference between target pose and base pose. This
model is shown in Table V as Swin-TRes. This architecture
reduces the model size, but compromises some level of
quality as compared to the proposed SwinGenerator.
Transformer backbone. Our architecture was also evaluated
with different backbone sizes of Swin V2 on SynthSL. More
specifically, we compared the tiny Swin-T with the small
(Swin-S) and big (Swin-B) versions of Swin Transformers.

TABLE VII
EVALUATION OF DIFFERENT ADVERSARIAL LOSSES ON SYNTHSL

Loss function SSIM↑ PSNR↑ PE↓ FID↓

Vanilla 0.911 36.382 0.391 7.544
LS-GAN [55] 0.910 36.716 0.391 7.845
Hinge [48] 0.909 36.628 0.386 8.856
WGAN-GP [33] 0.913 36.803 0.394 7.927



TABLE VIII
QUANTITATIVE EVALUATION ON PHOENIX 2014T AND BOSPHORUSSIGN22K WITH PRE-TRAINED MODELS

(Pre-)Trained Fine-Tuned & Evaluated
SSIM↑ PSNR↑ PE↓ FID↓

SynthSL PHOENIX 2014T BosphorusSign22k PHOENIX 2014T BosphorusSign22k
- ✓ - ✓ - 0.835 33.971 0.675 31.678
✓ - - ✓ - 0.842 34.221 0.659 26.921
- - ✓ ✓ - 0.839 34.143 0.659 27.928
- - ✓ - ✓ 0.930 37.589 0.211 15.824
✓ - - - ✓ 0.931 37.676 0.205 11.792

The quantitative results are shown in Table VI.
As expected, enhanced results were observed when using

larger Swin Transformer models. However, this comes at a
computational cost as the model size and complexity increase
2 and 4 times respectively, when using Swin-S and Swin-B.
In Swin-S and Swin-B, the number of layers are {2, 2, 18, 2}
while the channel number of the hidden layers in the first
stage C is 96 for Swin-S and 128 for Swin-B.
Loss function. We additionally compared different adversar-
ial loss functions to train the generator and discriminator on
SynthSL. The results in Table VII show that the choice of
the adversarial loss does not have a significant impact on the
performance of our pipeline.
Pre-trained model. Finally, we evaluated the effect on image
synthesis when pre-training the networks in other datasets.
Results are shown in Table VIII. Overall, pre-training on
other datasets result on an improved performance in every
metric in PHOENIX 2014T and BosphorusSign22k.

H. Runtime Analysis

We estimated the average inference time for the differ-
ent generator architectures after 300 iterations. For U-Net,
ResNet and SwinGenerator a single frame was generated on
43.59ms, 112.60ms and 46.34ms, respectively. Our Swin-
Generator has a frame rate of ∼22 FPS.

I. Limitations and Failure Cases

In SynthSL, we observed some artifacts if the clothes of
the signer had similar texture to the skin, as shown in Fig. 6.
This problem did not occur in PHOENIX 2014T and Bospho-
rusSign22k, as the signers always wear dark clothes. These
artifacts were also present in images generated with U-Net
and ResNet. For PHOENIX 2014T and BosphorusSign22k,
some synthesized images had noisy regions in the face or
clothes of the signers, as shown in Fig. 6. We believe this
noise is due to low variability in these datasets regarding
skin color and clothes, as it did not occur in SynthSL.

J. Discussion

Our evaluation shows that the proposed SwinGenerator
introduces a significant improvement with respect to the U-
Net and ResNet-based generators, widely used for image
synthesis, including SLP. These improvements were observed
in all the evaluated datasets in Tables II, III and IV.

We additionally found that the ResNet-based generator
tends to suffer from mode collapse with the current pipeline.
In the literature, ResNet-based architectures for SLP [69],
[72] are usually trained with the multi-scale discriminator

Fig. 6. Failure cases.

from pix2pixHD [79]. In our experiments, we used a simple
discriminator model to focus mainly on the performance of
the evaluated generators. The multi-scale discriminator could
be used as an alternative for an improved performance on the
synthesis of high-resolution images.

Finally, we observed that on real datasets for SLP hand
synthesis suffers from blurriness, due to the inherent fast
motion on sign gestures. In that regard, [69] provides a
framework and keypoint-based loss with outstanding hand
reconstruction. However, a private dataset with high quality
hands and manually selected frames without blurriness were
used. Since this dataset is not publicly available, SynthSL
could be used as an alternative. With our dataset SynthSL and
the proposed rendering pipeline, we aim to provide additional
resources for research on SLP.

VI. CONCLUSIONS

In this paper, we introduced SynthSL, a large-scale syn-
thetic dataset for research on sign language. We also pro-
posed a rendering pipeline, to extend RGB-based sign videos
to include rich ground truth data such as body, hands and
head poses, segmentation masks, depth and normal maps.
In addition, we presented a SL synthesis architecture condi-
tioned on a given body pose and appearance. To that end,
we leverage a GAN to generate realistic sign sequences
with a newly introduced SwinGenerator for image synthesis.
For future work, we would like to investigate the effect of
additional input data such as depth map and segmentation
masks for image synthesis. Furthermore, we aim to integrate
additional ground truth data in our rendering pipeline such
as optical flow, which can be exploited in SL-related tasks
as in [63].
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[57] O. Özdemir, A. A. Kındıroğlu, N. C. Camgöz, and L. Akarun.
Bosphorussign22k sign language recognition dataset. arXiv preprint
arXiv:2004.01283, 1:1–8, 2020.

[58] P. Patel, C.-H. P. Huang, J. Tesch, D. T. Hoffmann, S. Tripathi, and
M. J. Black. AGORA: Avatars in geography optimized for regression
analysis. In Proceedings IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), June 2021.

[59] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. Osman,
D. Tzionas, and M. J. Black. Expressive body capture: 3d hands,
face, and body from a single image. In CVPR, pages 10975–10985,
Piscataway, NJ, 2019. IEEE, IEEE.

[60] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[61] A. Ranjan, D. T. Hoffmann, D. Tzionas, S. Tang, J. Romero, and M. J.
Black. Learning multi-human optical flow. IJCV, 128:873–890, Jan.
2020.

[62] A. Ranjan, J. Romero, and M. J. Black. Learning human optical flow.
In BMVC, pages 1–13, Durham, UK, Sept. 2018. British Machine
Vision Association, BMVA Press.

[63] J. Rodriguez, J. Chacon, E. Rangel, L. Guayacan, C. Hernandez,
L. Hernandez, and F. Martinez. Understanding motion in sign
language: A new structured translation dataset. In Proceedings
of the Asian Conference on Computer Vision, pages 1–16, Cham,
Switzerland, 2020. Springer.

[64] J. Romero, D. Tzionas, and M. J. Black. Embodied hands: Modeling
and capturing hands and bodies together. ACM TOG, 36(6):245, 2017.

[65] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In Med. Image Comput.
Comput. Assist. Interv., pages 234–241, 2015.
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