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Abstract: Depth maps produced by LiDAR-based approaches are sparse. Even high-end LiDAR
sensors produce highly sparse depth maps, which are also noisy around the object boundaries.
Depth completion is the task of generating a dense depth map from a sparse depth map. While
the earlier approaches focused on directly completing this sparsity from the sparse depth maps,
modern techniques use RGB images as a guidance tool to resolve this problem. Whilst many others
rely on affinity matrices for depth completion. Based on these approaches, we have divided the
literature into two major categories; unguided methods and image-guided methods. The latter is
further subdivided into multi-branch and spatial propagation networks. The multi-branch networks
further have a sub-category named image-guided filtering. In this paper, for the first time ever
we present a comprehensive survey of depth completion methods. We present a novel taxonomy
of depth completion approaches, review in detail different state-of-the-art techniques within each
category for depth completion of LiDAR data, and provide quantitative results for the approaches on
KITTI and NYUv2 depth completion benchmark datasets.

Keywords: depth completion; depth maps; image-guidance

1. Introduction

Depth maps are critical to a variety of computer vision applications such as au-
tonomous driving [1–3], robot navigation [4,5], augmented reality [6–8],virtual reality [9].
Tasks like object detection, obstacle avoidance [10], 3D scene reconstruction [11–13] require
dense depth maps for accurate prediction. Various depth sensors like depth cameras, 3D
LiDAR, and stereo cameras capture the depth information. Among these, LiDAR sensors
provide the most accurate depth information. However, the depth maps generated by
these devices are sparsely distributed (Figure 1) compared to a medium resolution RGB
image (about 5% density [14]). Also, current LiDAR sensors obtain measurements at only
64 scan lines in the vertical direction. This sparsity significantly impacts the performance of
LiDAR-based applications. Predicting dense depth maps from these sparse ones is critical
for both the industry and academia.

To resolve the problem of depth completion, many different approaches have been
developed. Approaches like [15–17] concentrate on retrieving dense depth maps from
the sparse ones without the guidance of an image. Uhrig et al. [18] propose a sparsity
invariant CNN to handle the sparsity in LiDAR data and its corresponding features.
Eldesokey et al. [19] introduce normalized convolutional layer for unguided scene depth
completion by using confidence propagations. But, these approaches are limited and lose
depth of details and semantic information without the availability of multi-modal data.

Image-guided methods show significant improvement in results compared to the
conventional depth-only techniques. Qiu et al. [20] use deep learning for image-guided
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depth completion using surface normals. CSPN [21] extends the SPN to predict affinity
matrices using CNN for depth completion. CSPN++ [22] further improves the CSPN
approach by learning additional hyperparameters of convolution kernel sizes and the
number of iterations for propagation, both are adaptive and content dependent. However,
most of these techniques consider the task as one-stage learning and use naıve fusion
approaches resulting in blurred depth maps with unclear boundaries.

Some works construct a multi-branch architecture for handling image and depth
modalities and then perform fusion like FusionNet [23] and DeepLiDAR [20]. FusionNet
extracts local and global features using its two-branch architecture. While, DeepLiDAR
takes multi-modal inputs and performs fusion at a multi-scale level, achieving better
depth completion results. But both these methods require extra datasets to pre-train
their networks.

The content of this paper is organized as follows: Section 2 provides an overview of the
fusion strategies and approaches used in the field of depth completion. Section 3 describes
the fusion approaches in the literature. Section 4 discusses the common indoor and outdoor
dataset used for depth completion. Section 5 introduces the metrics used in the field of
depth completion. Section 6 describes the objective functions used in the literature and
Section 7 presents the state-of-the-art methods in each category. Finally, Section 8 provides
the conclusion of this paper.

(a) (b) (c)
Figure 1. First Column shows the RGB images from two different scenes, the middle column contains
the sparse depth maps produced from LiDAR. The last column shows the predicted dense depth
maps for the corresponding scenes. (a) RGB Image. (b) LiDAR sparse Depth Map. (c) Prediction.

2. Methodologies

In this section, we will present the approaches to dense depth completion. Figure 2
shows the approaches to depth completion. Roughly, the approaches can be divided into
two different categories; (1) Unguided methods, which utilize only LiDAR sparse depth
maps for dense depth completion, and (2) Image-guided methods, which employ guidance
images (RGB, semantic maps, surface normals) to guide the process of depth comple-
tion. Image-guided methods are more successful than unguided approaches. However,
image-guided methods require the employment of fusion strategies to adaptively fuse the
information between different modalities. Therefore, we also discuss multi-modal fusion
strategies in Section 3.

2.1. Unguided Methods

Most of the earlier approaches [16,18,20] to depth completion employed only a single
modality i.e., LiDAR sparse depth maps to generate dense depth maps. However, raw
LiDAR sparse depth maps contain missing values at most of the pixels. To fill out the
missing values at invalid regions of sparse depth maps, many hand-crafted features, kernels,
interpolation methods [24–28] were introduced. However, the structural information of
the scene is lost because of the discontinuity in the depth values. To enable learning from
the convolutions, Depth-Net [29] first applied nearest-neighbor interpolation in the sparse
maps to fill invalid depth values and then passed it to the deep neural network for learning.

As the field progressed, the idea of embedding auxiliary information such as confi-
dence maps, etc., to enhance the quality of depth completion [30,31] gained more atten-
tion. Specifically, in the initial stage, confidence maps are generated. Later on, the LiDAR
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sparse depth maps along with confidence maps are taken as an input and passed to a deep
neural network to complete the sparse depth maps. In [31], the confidence maps are gener-
ated from the convolution operation, whereas in uncertainty-aware CNN’s [30], they are
generated on the base of self-supervision methodologies. These approaches achieved much
better results than before. However, the predicted depth maps still lack clear structure, e.g.,
object boundaries. Thus, unsuitable for real-time applications.

Figure 2. Approaches to depth completion problem. Unguided approaches utilize either only LiDAR
information or confidence maps and LiDAR information for dense depth completion. The image-
guided methods (multi-branch and spatial propagation networks) employ guidance images (RGB,
semantic maps, surface normals) to guide the process of depth completion. The multi-branch
networks can be further divided into guided image filtering methods, which aim to learn useful
kernels from one modality and apply it to other modalities.

2.2. Image-Guided Methods

Image-guided techniques refer to the ones that employ guidance images such as
RGB images [32,33], semantic maps [34,35], surface normals [20] and sparse depth map
modalities [18] to guide the process of depth completion. These techniques have shown
much more efficient results compared to the unguided approaches.

2.2.1. Multi-Branch Networks

Multi-branch networks refer to the ones that employ two or more branches for han-
dling multi-modal information, including RGB images, surface normals, semantic maps,
and LiDAR sparse depth maps. Each branch treats a single modality separately and then
the information from the different branches is fused through multi-modal fusion techniques
explained in Section 3.

Van Gansbeke, Wouter, et al. [23] propose a two-branch network to extract both
the global and local information to produce accurate and comprehensive depth maps.
They employ a fusion method based on color image guidance to better incorporate the
object information, which significantly improves accuracy. Additionally, the depth maps
from the two branches are weighted by their respective confidence masks, learned from
unsupervised learning, to correct the uncertainty in depth.

DeepLiDAR [20] presents a deep learning architecture for accurate image-guided
depth completion for outdoor scenes using estimated surface normals [36] as intermediate
representations to enforce geometric constraints. The sparse depth and image modalities
are effectively fused together by the proposed modified two-branch encoder-decoder
network [37]. To resolve the issues specific to outdoor scenes, attention maps and confidence
masks are used to improve the depth of distant objects and handle occlusions around object
boundaries respectively.
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Similar to DeepLiDAR [20], to resolve the issues in handling sensor noise and 3D
geometric constraints, Xu et al. [38] propose a CNN framework with a prediction and a
refinement module. The prediction module predicts a depth map along with its correspond-
ing confidence map and surface normal [36] using an encoder-decoder network [37]. The
confidence maps reduce the propagation of noise from LiDAR data. These predictions are
then fused in a refinement module by mapping constraints from depth to surface normals.

Unlike the conventional approaches, which make a point estimate, Yang et al. [39]
propose a system, which takes an image and a sparse aligned point cloud to predict a
posterior probability over the depth values corresponding to each pixel in the scene. With
the help of a Conditional Prior Network, the method finds relations between seen images
and corresponding depth maps to get a probability at each depth value. Further using
sparse measurements, it combines this probability with a likelihood term.

Ma et al. [15] design a deep learning regression model to directly predict the dense
depth map from a sparse depth map and a color image (if available). To remove the
requirement of dense depth labeling during the training cycle, the paper further pro-
poses a self-supervised learning method that only takes sequences of sparse depth maps
and color images. This approach performs better than even some of the semi-dense
annotation methods.

The standard convolutions fail to model the observed spatial contexts due to sparsity
in depth maps. To fully capture the observed spatial contexts, Zhao et al. [40] propose
graph propagations. Multi-scale features are extracted by applying these propagations on
multiple graphs obtained from observed pixels. Then an attention mechanism is applied
to the propagation, which allows the modeling of the contextual information adaptively.
These graph propagations are applied to the depth and image modalities to extract the
respective representations. To comprehensively fuse the multi-modal features a fusion
strategy is proposed which uses an adaptive gating mechanism and preserves the unique
information of each modality while fusing them.

Li et al. extends hourglass [41] to a multi-scale guided cascade network for handling
diverse patterns in depth maps efficiently [42]. Unlike the traditional fully convolutional
techniques, the cascade network takes inputs at different resolutions to predict depth struc-
tures at particular scales. The network performs multi-level image guidance at different
hourglasses. The division into sub-modules allows replacing the redundant network with
a combination of simple architectures.

DenseLiDAR [43] propose a real-time pseudo-depth guided depth completion back-
bone based neural network. The authors argue that an intermediate dense depth map is
much better to produce accurate dense predictions than a sparse map. The pseudo-depth
map helps in predicting the residual depth providing better predictions. It further allows
us to reduce the points in sparse depth causing an error. Additionally, two new metrics;
RMSEGT+ and RMSEEdge are proposed for depicting the true nature of predictions and
better evaluation of depth completion tasks.

Most of the earlier mentioned image-guided depth completion methods use simple
concatenation and element-wise addition to handle multi-modal fusion. The deep con-
volutional encoder-decoder architecture [37] designed by Lee et al. [44] incorporates a
cross-guidance module for fusing the features from different modalities. The encoders from
both stages share the information by exchanging the outputs with the guidance module
of the other encoder, which applies an attention mechanism to fuse the features. To ex-
tract important features, a residual atrous spatial pyramid block (RASP) applies dilated
convolutions [45] with non-similar dilation rates in parallel.

Inspired by the Sparsity Invariant Convolution (SI-Conv), proposed by Uhrig et al. [18]
for depth-only completion tasks, Yan et al. [46] propose an image-guided deep learning
approach for depth completion. It further presents a novel multi-modal fusion technique
to effectively fuse the image and depth data. The main core of this approach are the three
Mask Aware operations; Bottleneck, Pooling, and Fusion, which work together to process,
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downscale, and fuse the sparse data. The proposed novel fusion scheme makes use of a
spatial pyramid block to fuse the features at multiple scales.

Different from previously discussed approaches which use a typical Convolution Neu-
ral Network (CNN) layer, the approach in [19] introduces a novel normalized convolutional
layer with a much smaller number of parameters for unguided scenes depth completion on
the highly sparse input depth map. It further presents novel methodologies to compute and
propagate convolutional confidences to consequent CNN layers. A new loss function is also
proposed, minimizing the data error while maximizing the output confidence. The authors
also explore several fusion techniques to combine the multi-modal data and integrate
structural information in the proposed framework. Additionally, unlike [15] the output
confidence is used as auxiliary information to improve the results.

Sparse Spatial Guided Propagation (SSGP) [47] uses content-dependent and sparsity-
aware convolutional propagations to interpolate sparse scenes, providing image guidance
at all stages of the network. The encoder-decoder network performs sparse-to-dense
interpolation for different problems like optical flow, scene flow, depth completion, etc.,
achieving better robustness, accuracy, and speed.

Contrary to the common depth completion approaches, FCFR-Net [48] treats the depth
completion problem as a two-stage problem. In the first sparse-to-dense stage, a simple
CNN [15] is used to interpolate the original sparse map to a coarse depth map. This coarse
depth map is then refined in the second coarse-to-fine stage to get the final dense depth
map. The coarse-to-fine stage employs a channel shuffle extraction operation and an energy
fusion operation to extract discriminative and comprehensive features from both modalities
and then fuse them together in a sufficient manner. The complete approach works as a
residual learning framework.

Inspired by FusionNet [23] and DeepLiDAR [20], Hu et al. [32] propose a two-branch
network PENet, consisting of a color dominant branch and a depth dominant branch. How-
ever, the branches are for different purposes and unlike [20,23], the network can be trained
from scratch without requiring any additional datasets. Both branches focus on extracting
the dominant and discriminative features from the corresponding modalities to generate
dense depth maps. The two maps are then fused together with their confidence. Geometric
constraints are also enforced through a geometric convolutional layer [49]. Finally, the
fused maps are refined using a scheme based on CSPN++ [22], which implements dilated
and accelerated propagations.

Motivated by the popular mechanism of looking and thinking twice in [50], RigNet [33]
employs a repetitive design in the image-guided network and depth generation branch to
gradually and sufficiently recover depth values, resolving the issues related to blurry image
guidance and unclear structure in depth. The image guidance branch uses a repetitive hour-
glass network to produce multi-scale features with improved image semantics. The depth
branch employs a repetitive guidance module consisting of dynamic convolutions [51].
This module has an adaptive fusion mechanism to aggregate the features and an efficient
guidance algorithm to reduce the runtime caused by dynamic convolutions.

Guided Image Filtering

Guided Image Filtering is considered another variant of multi-branch methods. In
the field of depth completion, the idea of guided image filtering refers to the learning
and prediction of the kernels from one modality and applying learned kernels to other
modalities for feature extraction and fusion.

This approach was first introduced by GuideNet [51]. It proposed a novel method for
learning guided kernels from RGB images, applied to depth images to extract features. The
intuition is to exploit the properties of guided filtering [52] i.e., spatially variant and content
dependent for multi-modal fusion between RGB images and depth maps. However, this is
computationally expensive; therefore, it proposes a convolution factorization operation to
reduce computation and memory consumption.
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Inspired by GuideNet [51], another method has been proposed, which aims to learn
steering kernels [53] from RGB images and apply them to sparse depth maps to generate
interpolated depth maps [54]. The interpolated depth maps are then refined by utilizing a
ResNet [55] to generate the final dense depth maps. The whole pipeline can be trained in
an end-to-end manner.

2.2.2. Spatial Propagation Networks (SPN)

The aim of SPN is to learn an affinity matrix to represent the affinities between the
pixels. An affinity matrix can be defined as a matrix containing the estimate of the likelihood
that pixels (i and j) belong together conditioned on image measurements. The interpretation
of the affinity matrix depends on the computer vision task. For instance, in the case of image
segmentation task, the affinity matrix should contain semantic-level pairwise similarities.

Convolutional spatial propagation network (CSPN) [56] is one of the earliest meth-
ods, which proposed a generic framework for learning affinity matrix. Instead of man-
ually designing an affinity matrix through similarity kernels for image segmentation, it
learned semantic aware affinity values by utilizing deep convolutional neural network
(CNN) [57]. Furthermore, the learned affinity matrix is not limited to single computer
vision task, i.e., image segmentation [58], but it can also be extended to other vision tasks
as well. However, it serially propagates the affinity matrix, making it inefficient for real-
time applications.

CSPN [21] extended SPN and presented a convolutional network to learn the affinity
matrix for the depth completion task. It argues that for a depth refinement task, affinity
values of the local neighborhood are much more important [21]. To learn the affinity values
in the local neighborhood, it utilized a deep convolutional neural network and to model
long-range context, it uses a recurrent convolutional operation. However, both SPN and
CSPN suffers from the problem of fixed local neighborhoods. To counter the problem of the
fixed local neighborhood in CSPN and SPN, methods including CSPN++ [22], DSPN [59],
NLSPN [11] and DySPN [60] were introduced.

CSPN++ [22] added a simple block to CSPN architecture to learn two additional
hyper-parameters (1) adaptive convolutional kernel sizes, and (2) number of iterations for
affinity matrix propagation based on image content. Initially, various configurations for
both adaptive convolutional kernel sizes and the number of iterations for affinity matrix
propagation are defined and then during propagation, it learns to predict the correct
configuration on each pixel. This leads to significant improvement in both the runtime
complexity and the accuracy of depth completion.

Unlike CSPN, DSPN [59] utilized deformable convolutional layers [61] to adaptively
produce receptive field (kernels) and affinity matrix for each pixel. Later, NLSPN [11]
was introduced, which utilized two-stage strategy for depth completion. In the first stage,
the proposed method takes RGB and LiDAR sparse depth as an input and outputs (1)
non-local neighbors and corresponding affinities of each pixel (2) initial depth estimate (3)
confidence map of depth estimate. Then, in the second stage, non-local spatial propagation
is iteratively performed with confidence-incorporated learnable affinity normalization to
generate the final dense depth map. It counters the local affinity problem of CSPN through
non-local spatial propagation.

Recently, DySPN [60] propose that instead of using linear propagation for generating
affinity matrices, a non-linear propagation model should be used for propagation. It dy-
namically updates the pixel-wise affinity weights by utilizing neighborhood decoupling
and spatial-sequential fusion. The neighborhood decoupling is performed by distributing
the neighborhood based on the distances between a pixel and its neighborhood and then,
recursively generating attention maps based on its propagation stage. Furthermore, it inves-
tigates three variants i.e., distance-based, dilated [45] and deformable convolutions for de-
termining the optimal number of neighbors required for neighborhood decoupling. Finally,
it proposes a diffusion suppression operation to reduce over smoothing of the predicted
dense depth maps.
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Another interesting use case of SPN is their utilization as a depth refinement net-
works. The original LiDAR sensor values are considered to be very accurate. However,
the depth maps produced by the deep neural networks do not necessarily preserve the
input depth values at valid pixels. Therefore, to recover the valid depth values, methods
including PENet [32] and SemAttNet [35] utilize CSPN++ [22]. Furthermore, both SemAt-
tNet and PENet incorporate dilated convolutions to enlarge and smoothen the transitions
between the neighborhood. This further improves the propagation process and produces
better results.

3. Multi-Modal Fusion

Multi-modal fusion refers to the approaches and methodologies of fusing sensor
information from two or more different sensors to enhance the understanding of the envi-
ronment. In the context of depth completion, it refers to the process of utilizing information
from different modalities including RGB cameras [32,33], surface normal’s [20], semantic
maps [34,35] etc., to guide the process of dense depth completion. The goal of multi-modal
fusion is to leverage different modalities or their feature representations to produce reliable
information on the sparse regions of LiDAR depth maps. Table 1 summarizes the fusion
strategies along with their advantages and disadvantages.

3.1. Early Fusion

The idea of early fusion is to integrate the separate raw modalities without any re-
quirement of preprocessing e.g., RGB camera and LiDAR sensor, into a single unified
representation [62] and encourage the learning of unimodal feature representations. Many
methods exist to compute the joint representation of the multi-modal information. Most
common methods include point pixel projection between RGB image and LiDAR sparse
depth map [63], concatenation or addition of RGB and LiDAR sparse depth
map [32,48], etc. The joint representation is then sent to a deep neural network for dense
depth completion. The pipeline of early fusion is depicted in Figure 3.

Figure 3. Early fusion between RGB image and LiDAR sparse depth. At first, both modalities are
fused and then sent to the Deep Neural Network for dense depth completion.

3.2. Sequential Fusion

Sequential fusion is an extension of early fusion. The key idea is to solely predict
the depth from RGB information and then use it to guide the depth-guided branch. Its a
two-stage process, where, in the first step, it predicts a dense color depth through an RGB
branch. Since the RGB branch doesn’t take any depth information as an input, the color
depth is a very noisy estimate of dense depth. However, it contains the depth information
around the object boundaries, e.g., cars and trees, which is missing in LiDAR sparse depth
map [32,35,48]. In the second step, the color depth, and LiDAR sparse depth map are sent
to the depth branch, which produces the final estimate of the dense depth map. Figure 4
shows the process of sequential fusion between RGB image and LiDAR sparse depth map.
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Table 1. Comparison of fusion strategies.

Strategy Key Idea Advantages Disadvantages

Early [20,22,23,32,33,35,48]

Creation of a unified
representation of related
input modalities e.g., RGB
images and LiDAR sparse
depth maps. The joint
representation is passed as an
input to a neural network for
joint processing.

• Outputs joint learned
multi-modal feature
representation.

• Single learning phase
only for multi-modal
information.

• Loss of the informa-
tion in creating joint
representations.

• Synchronization be-
tween data modali-
ties is required.

• Requirement of a
method to create joint
representations.

Sequential [30,32,35]

It is a multi-stage approach.
The aim of the first stage is to
focus on a single modality
e.g., RGB image, and produce
an intermediate output e.g.,
color depth, whereas, in the
second stage, unimodal
information including LiDAR
sparse depth and color depth
are combined to generate the
final dense map.

• No requirement of a
method for creating
joint representations
of the multi-modal
information.

• Separate learning
stage for each modal-
ity, which creates a
learnable parameter
overhead.

• Can be computation-
ally expensive.

Late [17,32,35,48,51,64]

The idea is to process
unimodal information (RGB,
LiDAR) separately and then
create a unified representation
at the output level.

• Targeted approaches
to unimodal
information can be
applied as it focuses
on the individual
strength of
modalities.

• Does not focus
on learning cross-
correlations between
the unimodal infor-
mation.

Deep [33,35,48,51]

Performs fusion at
intermediate (feature) level
between the unimodal
branches((RGB, LiDAR).

• Primary focus is on
learning
cross-correlations
between the
unimodal branches.

• Active fusion at
multiple locations
and not just
dependent on
input/output.

• Limited performance
with naive feature fu-
sion (addition, con-
catenation) methods.

3.3. Late Fusion

Unlike early and sequential fusion, the late fusion processes both modalities, i.e., RGB
color images and LiDAR sparse depth map, independently and fuses them at the final
stage. The idea is to create a common representation, e.g., depth map from each branch, and
then fuse them to create a unified output. The RGB and depth branches consist of RGB and
depth-only deep neural networks. The RGB branch outputs a dense depth map focused on
color information, whereas the depth branch produces a dense depth map relying more on
the LiDAR sparse depth map features [32,35]. Since dense depth maps produced by RGB
and depth branches are complementary, the final dense depth map combines the strength
of both the RGB camera and LiDAR sensor into a single dense depth map. Figure 5 depicts
the pipeline of the late fusion for the RGB camera and LiDAR sparse depth map.
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Figure 4. Sequential fusion between RGB image and LiDAR sparse depth map. The RGB branch
produces color depth, which along with LiDAR sparse depth map, is sent to the depth branch to
estimate the final dense depth map.

Figure 5. Late fusion between RGB image and LiDAR sparse depth map. It consists of two separate
branches to process RGB images and LiDAR sparse depth maps. Both of the branches produce dense
depth maps, which are fused to produce a final dense depth map.

3.4. Deep Fusion

In contrast to earlier discussed fusion approaches, which apply fusion of modalities on
the input or output, deep fusion is performed on the feature level of the sub-branches, thus
enabling the exchange of information between the multi-modal information thought the
network. Figure 6 shows the pipeline of the deep fusion between LiDAR sparse depth map
and RGB image modalities. The pipeline of deep fusion consists of two separate branches
for RGB and LiDAR sparse depth modalities. The fusion follows the decoder-encoder
strategy since the features from the RGB decoder are fused at the encoder of the depth
branch at multiple stages. It only fuses the decoder features of one modality to another
because the decoder contains high-level information, which is used to guide the other
modality during dense depth prediction [32,35,48,51].
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Figure 6. Deep Fusion between RGB image and LiDAR sparse depth map. Each modality is passed
from a dedicated branch. The features from the decoder of the RGB branch are fused into the encoder
of the depth branch. The symbol “F” represents the fusion operation. Common choices for fusion
operation include addition or concatenation. However, complex fusion schemes can also be employed.
By the guidance of the RGB branch, the depth branch produces a final dense depth map.

4. Datasets

Typically, depth completion is applied to two kinds of datasets i.e., outdoor and indoor
datasets. The outdoor datasets consist of driving sequences, whereas indoor datasets
comprise video sequences from a variety of indoor scenes. There exist many such datasets;
however, in this paper, we will discuss two famous datasets and benchmarks i.e., KITTI
Dataset and its Depth Completion Benchmark (outdoor) [65] and NYU Depth Dataset v2
(indoor) [66], which are used extensively in the field of depth completion for evaluation. The
following sections will discuss both KITTI and NYU-v2 datasets in detail.

4.1. KITTI Dataset

KITTI dataset [65] is a large outdoor dataset for autonomous vehicles comprising
driving sequences recorded in Karlsruhe, Germany. The driving vehicle VW Passet station
is equipped with two stereo camera systems, a LiDAR Velodyne HDL-64E laser scanner,
and an OXTS RT3003 inertial and GPS navigation system. Most of the scenes are collected
in rural areas and on the city’s highways, which sum up-to hours of various driving scenar-
ios. Furthermore, the KITTI dataset provide various benchmarks on different challenging
tasks such as 2D/3D object detection, depth map completion, semantic segmentation, and
tracking. However, in this paper, we will only focus on reviewing the techniques associated
with the LiDAR sparse depth completion benchmark.

KITTI Depth Completion Benchmark

KITTI depth completion [18] benchmark is one of several benchmarks, which are
provided by KITTI [65]. It is a very famous benchmark and consists of over 100 entries on
its official online leaderboard. It contains 850,000 LiDAR sparse depth maps with aligned
RGB images for training, 7000 for validation, and 1000 for testing of methods. Velodyne’s
HDL-64E LiDAR sensor is used to generate the depth maps of the scene, whereas RGB
images are captured through pair of stereo cameras. Due to limited resolution and scan lines,
the LiDAR sensor provide valid depth values on only 5.9% of all pixels [18,65]. Furthermore,
the corresponding ground-truth provided by KITTI depth completion benchmark contains
valid depth values on 16% of all the pixels. The ground-truth is dense, since it is computed
by accumulating LiDAR and stereo estimation of the scenes through semi-global matching
(SGM) [67] approach. Furthermore, the KITTI depth completion dataset also provides an
official validation set consisting of 1000 frames. Figure 7 presents some images from the
depth completion benchmark.
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(a) RGB Image (b) LiDAR sparse Depth Map (c) Ground-truth
Figure 7. KITTI depth completion benchmark. Part (a) shows the aligned RGB images. Part (b) depicts
the sparse LiDAR depth maps, whereas Part (c) represents the dense ground-truth depth maps. Col-
orization is applied on LiDAR sparse depth maps and corresponding ground-truth to generate visual-
izations. The highlighted areas are used to show the sparsity in KITTI depth completion benchmark.

4.2. Nyu-v2 Depth Dataset

It consists of RGB and depth images collected from 464 different indoor scenes. It
utilizes a camera to capture RGB data and Microsoft Kinect [68] to record the depth values
of the scene. As a preprocessing step, the missing values in depth maps are colorized using
a colorized scheme [69]. It provides over 400K images for training; however, most of the
methods [32,33,40,51] utilize only a subset for training their approaches. As Kinect provide
dense measurements [68], the sparse depth data is generated by randomly removing depth
data from the depth ground truth. It also provides 654 images for benchmarking of the
results. Figure 8 shows some images from the Nyu-v2 depth dataset.

(a) (b) (c)
Figure 8. Nyu-v2 depth dataset. Part (a) shows the aligned RGB images. Part (b) depicts the sparse
Kinect depth maps, which are generated by randomly sampling only 500 points from the ground
truth. Part (c) represents the fully dense ground-truth depth maps. Colorization is applied on Kinect
sparse depth maps and corresponding ground-truth to generate visualizations. (a) RGB Image.
(b) Kinect sparse Depth Map. (c) Ground-truth
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5. Evaluation Metrics

The most common depth completion evaluation metrics are defined as follows.

Root Mean Squared Error(mm) =

√
1
|V| ∑

v∈V

∣∣∣dgt
v − dpred

v

∣∣∣2 (1)

Mean Absolute Error(mm) =
1
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v
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1
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Threshold Accuracy(δ) = max

(
dpred

i

dgt
i

,
dgt

i

dpred
i

)
= δ < τ (6)

where dgt
v represents ground-truth, dpred

v depicts predicted depth map and τ represents
the threshold.

Among all of the evaluation metrics, RMSE is chosen to rank the submissions on the
KITTI and Nyu-v2 Depth online leaderboards.

6. Objective Functions

In the field of depth completion, the design of an objective function is critical to
the success of the approach. Since there exists both supervised [20,32,33,35] and unsu-
pervised [15,70–72] methods to depth completion problem, objective functions can be
categorized based on the choice of learning strategy. The common loss functions for each
strategy is defined below.

6.1. Supervised Learning

Given a LiDAR sparse depth map dsd, the predicted dense depth map dpred and the
ground truth dgt, various existing methods [39,48,60] utilize `1 norm as a loss function
between dsd and dpred. It is defined as follows

`1 =
1
|n| ∑i∈n

∥∥∥dgt
i − dpred

i

∥∥∥
1

(7)

where ||dgt
i − dpred

i ||1 defines the `1 norm between the predicted depth values and ground
truth. However, `1 norm gives the same weight to each pixel irrespective of its location. This
is only sub-optimal since depth completion is considered more difficult and challenging at
the farthest points.

To counter this limitation, many methods [20,32,33,35,43] utilize `2 norm. The `2 norm
is more sensitive to outliers and penalizes the points on further distance. The `2 norm
between dsd and dpred is given as follows.

`2 =
1
|n| ∑i∈n

∥∥∥dgt
i − dpred

i

∥∥∥
2

(8)

where `2 norm between the predicted depth values and ground truth is depicted by
||dgt

i − dpred
i ||2. Both `1 and `2 norms are calculated with direct supervision.
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Along with the norm-based loss functions, many works [34,43,71] utilize structural
similarity index measure (SSIM) [73] to constrain the luminance, contrast, and structure of
the predicted dense depth maps.

6.2. Unsupervised Learning

For unsupervised learning, proposed approaches focus on learning smoothness [15,70]
and photometric loss [15,72] functions. Photometric loss can be used to generate a supervi-
sory signal for the depth completion problem. The idea of photometric loss is to exploit
the temporal information and warp the predicted dense depth map to a nearby color
image. Furthermore, the pixel differences between the warped image (RGB) and nearby
color image compute the respective error. Mathematically, the photometric loss is defined
as follows.

Lphotometric (warped, RGB) = ∑
i∈n

1
n

∥∥∥1(i){d=0} ·
(

warped(i) − RGB(i)
)∥∥∥

1
(9)

Unlike supervised learning-based objective functions, the photometric loss is only
determined where the ground truth is not available.

Since photometric loss only focuses on the sum of individual pixel error values [15],
it encourages discontinuity in the local neighborhood of the pixels. The discontinuity
can result in high error values in the predicted dense depth maps [15,70]. To overcome
this problem, a smoothness term is added to the objective function, which ensures the
smoothness of depth predictions. It is applied by computing second-order gradients of
predicted dense depth maps as shown in the equation given below.

Lsmooth(dpred) =
1
n

n

∑
i=1

(∣∣∣∣ ∂2
x

∂x2 · d
i
pred

∣∣∣∣+
∣∣∣∣∣ ∂2

y

∂y2 · d
i
pred

∣∣∣∣∣
)

(10)

7. Results

This section compares the results from all the state-of-the-art approaches reviewed
above. The performance comparison is made both quantitatively and qualitatively. The
quantitative results are reported on the two benchmark datasets for depth completion
i.e., KITTI autonomous driving scenes dataset and the NYUv2 indoor scenes dataset. The
results on the KITTI dataset are evaluated using the four standard metrics; root mean
squared error (RMSE), mean absolute error (MAE), root mean squared error of the inverse
depth (iRMSE), and mean absolute error of the inverse depth (iMAE) as shown in Table 2.
For the indoor NYUv2 dataset, three metrics are used for evaluation, including the RMSE,
mean absolute relative error (REL), and δi. Table 3 shows the performance results on the
NYUv2 indoor scenes dataset. Qualitative results for the top performing technique from
each category are presented in Figure 9. Since there is no public leaderboard for the NYUv2
Benchmark dataset, therefore, we have not added their qualitative results.

Unguided approaches try to directly achieve dense depth maps from sparse depth
maps, which causes discontinuities in depth values and loss of structural information.
Modern image-guided approaches outperform the unguided ones by a fair margin by
using an image as guidance. Spatial propagation methods learn affinity matrices and
propagate these to make depth denser. DySPN [60] is the most successful technique in
this category and uses non-linear propagation resulting in smoother depth maps. Among
the multi-branch image-guided approaches, RigNet [33] achieves the best results on both
the KITTI [65] and NYUv2 [66] datasets. Lastly, GuideNet [51] is the most noticeable
work under the guided image filtering category. Overall, we conclude that image-guided
multi-branch networks show the best results and are currently the state-of-the-art in depth
completion. The proper use of multi-modality data allows for the resolution of blurry
guidance in images and unclear structure in depth. Also, multi-scale fusion techniques
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employed by some of the multi-branch methods [32,48] prove most successful in extracting
discriminate features and fusing them with sparse depth data.

Table 2. Comparison of State-of-the-art approaches on the KITTI Benchmark test dataset. The
methods are ordered by their RMSE results from worst to best within each category. The best results
within each category are mentioned in bold letters.

Category Method RMSE MAE iRMSE iMAE

Multi-branch Networks

SSGP [47] 838.00 245.00 - -
DDP [39] 836.00 205.40 2.12 0.86
MS-Net[LF]-L2 [19] 829.98 233.26 2.60 1.03
S2D [15] 814.73 249.95 2.81 1.21
CrossGuidance [44] 807.42 253.98 2.73 1.33
RSIC [46] 792.80 225.81 2.42 0.99
Depth-normal [38] 777.05 235.17 2.42 1.13
FusionNet [23] 772.87 215.02 2.19 0.93
MSG-CHN [41] 762.19 220.41 2.30 0.98
DeepLiDAR [20] 758.38 226.50 2.56 1.15
DenseLiDAR [43] 755.41 214.13 2.25 0.96
ACMNet [40] 744.91 206.09 2.08 0.90
FCFR-Net [48] 735.81 217.15 2.20 0.98
PENet [32] 730.08 210.55 2.17 0.94
RigNet [33] 712.66 203.25 2.08 0.90

Guided Image Filtering GuideNet [51] 739.24 218.83 2.25 0.99

Spatial Propagation Networks

CSPN [21] 1019.64 279.46 2.93 1.15
DSPN [59] 766.74 220.36 2.47 1.03
CSPN++ [22] 743.69 209.28 2.07 0.90
NLSPN [11] 741.68 199.59 1.99 0.84
DySPN [60] 709.12 192.71 1.88 0.82

Table 3. Comparison of state-of-the-art approaches on the NYUv2 Benchmark dataset. Performances
are reported for 500 samples. The methods are ordered by their RMSE results from worst to best
within each category. The best results within each category are mentioned in bold letters. δi denotes
the percentage of predicted pixels whose relative error is less than a threshold i (1.25, 1.252, and 1.253).

Category Method RMSE REL δ1.25 δ1.252 δ1.253

Multi-Branch Networks

S2D [15] 0.133 0.027 - - -
EncDec-Net[EF] [19] 0.123 0.017 99.1 99.8 100
DeepLiDAR [20] 0.115 0.022 99.3 99.9 100.0
Xu et. al. [38] 0.112 0.018 99.5 99.9 100.0
FCFR-Net [48] 0.106 0.015 99.5 99.9 100.0
ACMNet [40] 0.105 0.015 99.4 99.9 100
DenseLiDAR [43] 0.105 0.015 99.4 99.9 100
RigNet [33] 0.090 0.013 99.6 99.9 100.0

Guided Image Filtering GuideNet [51] 0.101 0.015 99.5 99.9 100.0

Spatial Propagation Networks

CSPN [21] 0.117 0.016 99.2 99.9 100.0
CSPN++ [22] 0.116 - - - -
NLSPN [11] 0.092 0.012 99.6 99.9 100.0
DySPN [60] 0.091 0.012 99.6 99.9 100.0
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(a) RGB Image (b) RigNet (c) GuideNet (d) DySPN
Figure 9. Qualitative comparison of the top three reported methods on KITTI depth completion test
set, including (b) RigNet [33], (c) GuideNet [51], and (d) DySPN [60]. Given sparse depth maps and
the input guidance color images (a), the methods output dense depth predictions (1st row). The
corresponding error maps (2nd row) are taken from the KITTI leaderboard for comparison. Warmer
color represents higher error.

8. Conclusions

In this paper, we present a comprehensive survey of depth completion methods. We
first present a basic hierarchy of depth completion methodologies consisting of Unguided
and Image-guided methods. The Image-guided approaches are subdivided into Multi-
branch and Spatial propagation networks. The Multi-branch networks further contain
a special branch of methods classified as Guided Image Filtering methods. Then, we
review the different state-of-the-art approaches within each category of the hierarchy by
summarizing their contributions and their approach to resolving the prevalent problems
of the domain. We further shed light on the most popular benchmark datasets among the
research fraternity and the corresponding evaluation metrics reported on each. Finally,
to give an overall picture, we present a comparison of all the methods on the discussed
benchmarks and reported metrics and concisely mention their pros and cons.
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