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Abstract
Predicting earthquakes with precision remains an1

ongoing challenge in earthquake early warning sys-2

tems (EEWS), that struggle with accuracy and fail3

to provide timely warnings for impending earth-4

quakes. Recent efforts employing deep learn-5

ing techniques have shown promise in overcom-6

ing these limitations. However, current methods7

lack the ability to capture subtle frequency changes8

indicative of seismic activity in real-time, limit-9

ing their effectiveness in EEWS. To address this10

gap, we propose REAVER, a novel approach for11

real-time prediction of P- and S-waves of earth-12

quakes using attention-based sliding-window spec-13

trograms. REAVER leverages Mel-Spectrogram14

signal representations to capture temporal fre-15

quency changes in seismic signals effectively. By16

employing an encoder-decoder architecture with at-17

tention mechanisms, REAVER accurately predicts18

the onset of P- and S-waves moments when an19

earthquake occurs. We benchmark the effective-20

ness of REAVER, showing its performance in terms21

of both accuracy and real-time prediction capa-22

bilities compared to existing methods. Addition-23

ally, we provide a web-based implementation of24

REAVER, allowing users to monitor seismic activ-25

ity in real-time and analyze historical earthquake26

waveforms.27

1 Introduction28

Despite the pressing need to alert populations and safeguard29

essential infrastructure, up til now it is not possible to predict30

specific earthquakes with certainty, e.g., the Turkey–Syria31

earthquakes in 2023 [Kwiatek et al., 2023].32

Existing earthquake early warning systems (EEWS) like the33

ShakeAlert system used in US West Coast [Kohler et al.,34

2020] use on-site τc − Pd algorithm to estimate the arrival35

of a P-phase, which is the primary seismic wave produced by36

an earthquake. This algorithm is based on τc parameter that37

captures the wave’s dominant period and Pd for its initial am-38

plitude, in combination with classic short-term average and39

long-term average (STA/LTA) detection approaches [Gaol et40

al., 2021]. Those approaches are limited in their accuracy as41

Figure 1: REAVER’s interface, showing real-time monitoring of
seismic activity at station BCH1B in Canada. It illustrates Mel-
Spectrogram visualizations for three channels (Z, N, E) and the
probabilities of P and S waves, with a map indicating the station’s
location.

well as the time period between warning and occurrence of 42

the earthquake; furthermore, they cannot generalize to earth- 43

quake signals from other regions [Lara et al., 2023]. 44

Recently, deep learning methods were applied to over- 45

come those limitations in EEWS. Several methods use fully- 46

connected network, CNNs and RNNs applied on the raw 47

earthquake waveforms to classify between earthquakes and 48

impulsive noises [Ku et al., 2020; Fauvel et al., 2020; 49

Huang et al., 2020; Meier et al., 2019; Mallouhy et al., 50

2019] or to estimate the magnitude of earthquakes and its 51

source characterization [Munchmeyer et al., 2021; Ochoa et 52

al., 2018]. Furthermore, CNN-based architectures are ap- 53

plied to phase-picking for predicting arrival times of P waves 54

as well as S waves, i.e., more destructive secondary or shear 55

waves of earthquakes, e.g., PhaseNet [Zhu and Beroza, 2019]. 56

This approach is extended by the EQTransformer by employ- 57

ing a combination of CNNs, RNNs and Transformer atten- 58

tion applied on longer 60-seconds waveforms [Mousavi et al., 59

2020]. While such methods show high detection accuracy of 60

P and S waves, they are trained with raw long waveforms 61

containing centered P or S waves from the earthquake sig- 62

nal. Other methods combine CNN-RNN architectures with 63

Mel-Spectrograms for binary earthquake classification [Sha- 64

keel et al., 2021; Mukherjee et al., 2021]. These methods 65

do not capture the instant tiniest changes in frequency when 66

an earthquacke occurs and limits their performance in EEWS 67

to enable real-time detection of an earthquake. But, predict- 68

ing an earthquake even just a second before it happens can 69

have significant positive impacts on reducing damage and en- 70



Figure 2: REAVER’s Architecture with its four layers: Data Acquisition, Pre-Processing, Model Prediction, and Warning Generation.

hancing public safety [McBride et al., 2022], e.g., automated71

systems activation like shutting off gas lines, brief warnings72

for allowing people to take cover under a desk or move away73

from windows and switch of life-support systems in hospitals74

to emergency power to ensure continuity.75

In this paper, we propose REAVER - an approach for pre-76

dicting P- and S-waves of earthquakes in real-time based on77

attention-based sliding-window spectograms. Instead of rely-78

ing on raw 3-channel waveforms, we adopt the widely used79

Mel-Spectogram signal representation in sound to represent80

the frequency amplitudes in each channel in the signal across81

time [Gong et al., 2022; Meng et al., 2019]. Combined with a82

sliding window approach, we are able to instantly capture the83

temporal frequency changes in the signal using an encoder84

equipped with attention based separate decoders for the con-85

tinuous probabilities of P and S waves. REAVER not only86

significantly enhances detection speed, needing only 0.0887

seconds of the waveform to predict P-waves with up to 70%88

faster than existing approaches, but also achieves a higher89

classification accuracy of 98.81%. The proposed approach90

was implemented into a web-based EEWS that allows users91

to monitor seismic stations for real-time earthquake warnings92

or to analyze past earthquake waveforms (cf. Fig. 1). The93

source code of REAVER is available at the following GitHub94

repository1 along with a demonstration video showing how it95

works2.96

2 System Overview97

REAVER is composed of 4 layers: 1) Data acquisition98

layer that gets real-time and historical waveforms, 2) Pre-99

processing layer which divides the signal into overlapping100

windows and computes the Mel-Spectogram for each win-101

dow, 3) Model layer which predicts the continuous probabil-102

ities of P and S waves, and 4) Warning layer which publishes103

warnings to subscribers when the detection of P or S waves104

exceeds a threshold to take an instant response (cf. Fig. 2).105

2.1 Data Acquisition Layer106

The data acquisition layer is responsible for collecting the his-107

torical waveform data for model training and real-time data108

from seismic stations for inference. For real-time data ac-109

quisition, the user chooses a network and a station from an110

1https://github.com/InformationServiceSystems/pairs-
project/tree/main/Modules/CrisisImaginator/REAVER

2https://www.youtube.com/watch?v=PIRmRzfhN-k

inventory provided by Obspy3- a python package for seismol- 111

ogy. The chosen variables are encapsulated within a request 112

to acquire real-time data from IRIS real-time server4 for later 113

processing. For model training, the layer collects historical 114

waveforms data from STEAD [Mousavi et al., 2019], which 115

contains 1.2 million earthquake and noise waveforms with a 116

sampling rate of 100 Hz. Each waveform is represented as 117

3-channel time-series Xc(t) where c corresponds to the ver- 118

tical (Z), north-south (N), and east-west (E) components of 119

seismographs. 120

2.2 Pre-Processing Layer 121

The pre-processing layer receives the raw waveform and 122

slices it into overlapping windows across each channel. Un- 123

like [Mousavi et al., 2020; Zhu and Beroza, 2019] which use 124

the full raw waveform, the slicing approach allows a more de- 125

tailed and continuous analysis of the signal over time, which 126

is crucial for real-time EEWS. Formally, we segment each 127

channel into overlapping windows as follows: 128

S = W −
(

O

100
×W

)
, N = 1 +

⌊
L−W

S

⌋
(1)

where S is the step size, W is the window length, O
100 is 129

the overlap percentage, L is the length of each channel in the 130

signal, and N is the total number of windows per channel. 131

The output is a list of windows wc
i = Xc[si : ei] for each 132

channel c and window i, where si and ei are the start and 133

end indices of the ith window, respectively. Instead of using 134

the raw waveform of signal amplitudes, we convert the sig- 135

nal in each window into its Mel-Spectrogram representation 136

by computing the Short-Time Fourier Transform (STFT) as 137

follows: 138

STFT{x(t)}(m,ω) =

∞∑
n=−∞

x(n) · w(n−m) · e−jωn (2)

where w(n) is the window function, m is the time index, and 139

ω is the frequency index. Then, a set of k triangular filters 140

{Hk(m)} is applied to the STFT, where each filter corre- 141

sponds to a Mel frequency. The log Mel-Spectrogram for 142

each window is then obtained as: 143

w′c
i = log

(∑
m

|STFT{wc
i (t)}(m,ω)| ·Hk(m)

)
(3)

3https://github.com/obspy/obspy/wiki/
4https://www.iris.edu/hq/sage



where c is the channel index.144

2.3 Model Layer145

The model layer takes input the Mel-Spectogram windows146

for each channel w′ and passes it to the REAVER model.147

The model is composed of a multi-stage encoder, an atten-148

tion layer for each stage, and two separate decoders for P and149

S waves. The encoder consists of 4 stages, where each stage150

Si is defined as a sequence of two blocks. Each block applies151

a Conv2D layer followed by BatchNorm2d and ReLU acti-152

vation function. Given the set of Mel-Spectogram windows153

W ′, the operation of a single block can be represented as:154

Block(W ′) = ReLU (BatchNorm2d (Conv2d (W ′)))

Therefore, each stage in the encoder can be expressed as155

the composition of two such blocks:156

Si = Block(Block(W ′
i ))

where W ′
i is the output from the previous stage or the input157

to the encoder for i = 1. Subsequently, P Decoder and S158

Decoder each apply spatial self-attention to the outputs from159

each encoder stage, which can be written as:160

Attn(Si) = Conv2d (Si ⊙ σ (Conv2d(Si)))

where σ denotes the sigmoid function and ⊙ represents161

element-wise multiplication. The attention mask generated162

by the sigmoid function modulates the feature map for each163

branch to focus on relevant features for P and S waves sep-164

arately. Each decoder consists of sequences of such Attn()165

layers followed by upsampling and convolution operations.166

Formally, for each stage Si of the encoder, the corresponding167

decoder block output can be represented as:168

Di = Upsample (Conv (Attn(Si)))

where Di is the output of the i-th decoder block. Finally, the169

continuous probabilities for P and S wave, denoted as Pp for170

the P Decoder and Ps for the S Decoder, can be expressed as:171

Pp = FC (Upsample (GlobalAvgPool(DP )))
172

Ps = FC (Upsample (GlobalAvgPool(DS)))

where DP and DS are the aggregated outputs of the P De-173

coder and S Decoder blocks, respectively. We utilize Bina-174

ryCrossEntropy loss for supervising both Pp and Ps.175

2.4 Warning Layer176

The warning layer evaluates the probabilities Pp and Ps from177

the model layer and issues warnings to subscribers, includ-178

ing individuals or government entities, when Pp > Pthr or179

Ps > Sthr, aiming for timely Earthquake response. Pthr and180

Sthr are hyperparameters which are set to 0.7 upon extensive181

experiments to optimize the precision-recall trade-off.182

3 Evaluation183

To evaluate our method we use a dataset consisting of 51,510184

earthquakes and 11,773 noise waveforms from STEAD. We185

simulate real-time detection by applying a 4-second sliding186

window with 99% overlap before the P- and S-wave arrival187

times. We compare our method against classical STA/LTA 188

method [Choubik et al., 2020], and deep learning meth- 189

ods Phasenet [Zhu and Beroza, 2019] and EQTransformer 190

[Mousavi et al., 2020] which were originally trained using 191

30- and 60-second windows respectively. We apply the same 192

sliding window configuration across all methods for a fair 193

comparison. In our evaluation, we prioritize two critical di- 194

mensions of earthquake detection performance: the speed of 195

P-wave detection and the accuracy of distinguishing between 196

earthquake and noise waveforms. Speed of detection is as- 197

sessed through ∆t, representing the time difference between 198

the algorithm’s detection of the P-wave and its actual occur- 199

rence. Additionally, we evaluate classification accuracy, mea- 200

suring each method’s ability to correctly identify earthquake 201

waveforms against impulsive noise. 202

Table 1: Performance comparison of P-wave detection time statis-
tics, showing the mean time difference ∆tmean, standard deviation
σ∆t, median ∆tmedian, 25th percentile (Q1) ∆t25%, and 75th per-
centile (Q3) ∆t75%.

Method ∆tmean (s) σ∆t (s) Median (s) Q1 (s) Q3 (s)
Phasenet 1.67 2.01 0.83 0.59 1.93
Eqtransformer 3.73 4.48 1.62 1.20 4.00
STA/LTA 0.27 0.31 0.15 0.04 0.40
REAVER 0.08 0.16 0.04 0.03 0.12

Table 2: Classification performance on the testing dataset.

Method Precision Recall F1 Score Accuracy (%)
Phasenet 0.98 0.96 0.97 95.46
Eqtransformer 0.99 0.91 0.95 92.50
STA/LTA 0.96 0.85 0.89 85.56
REAVER 0.99 0.98 0.99 98.81

Table 1 shows the distribution statistics of ∆t over the test- 203

ing dataset for all the methods. We can observe that REAVER 204

significantly enhances detection timeliness, improving by 205

70% over STA/LTA and around 95% over Phasenet and Eq- 206

transformer in mean detection time difference (∆tmean). In 207

Table 2, we show the classification performance of differen- 208

tiating between earthquake and noise waveforms, recording a 209

correct detection when either a P or S wave was detected in 210

the waveform. We observe that REAVER outperforms other 211

methods in accurately detecting earthquakes with overall ac- 212

curacy 98.81%. 213

4 Conclusion 214

In this paper, we proposed REAVER, a novel method for real- 215

time earthquake prediction utilizing attention-based sliding- 216

window spectrograms. Our evaluation demonstrates that our 217

methos not only achieves high accuracy in differentiating 218

earthquakes from noise, but also offers faster detection times 219

compared to existing methods. Furthermore, REAVER’s 220

web-based implementation allows for real-time earthquake 221

monitoring and historical waveform analysis, making it a 222

valuable tool for both individuals and professionals in seis- 223

mology. 224
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Manish Parashar, Ivan Rodero, et al. A distributed234

multi-sensor machine learning approach to earthquake235

early warning. In Proceedings of the AAAI Conference on236

Artificial Intelligence, volume 34, pages 403–411, 2020.237

[Gaol et al., 2021] YH Lumban Gaol, RK Lobo,238

SS Angkasa, A Abdullah, I Madrinovella, S Widyanti,239

A Priyono, SK Suhardja, AD Nugraha, Z Zulfakriza,240

et al. Preliminary results of automatic p-wave regional241

earthquake arrival time picking using machine learning242

with sta/lta as the input parameters. In IOP conference243

series: earth and environmental science, volume 873,244

page 012060. IOP Publishing, 2021.245

[Gong et al., 2022] Yuan Gong, Cheng-I Lai, Yu-An Chung,246

and James Glass. Ssast: Self-supervised audio spectro-247

gram transformer. In Proceedings of the AAAI Conference248

on Artificial Intelligence, volume 36, pages 10699–10709,249

2022.250

[Huang et al., 2020] Xin Huang, Jangsoo Lee, Young-Woo251

Kwon, and Chul-Ho Lee. Crowdquake: A networked sys-252

tem of low-cost sensors for earthquake detection via deep253

learning. In Proceedings of the 26th ACM SIGKDD In-254

ternational Conference on Knowledge Discovery & Data255

Mining, pages 3261–3271, 2020.256

[Kohler et al., 2020] Monica D Kohler, Deborah E Smith,257

Jennifer Andrews, Angela I Chung, Renate Hartog, Ivan258

Henson, Douglas D Given, Robert de Groot, and Stephen259

Guiwits. Earthquake early warning shakealert 2.0: Public260

rollout. Seismological Research Letters, 91(3):1763–1775,261

2020.262

[Ku et al., 2020] Bonhwa Ku, Gwantae Kim, JaeKwang263

Ahn, Jimin Lee, and Hanseok Ko. Attention-based con-264

volutional neural network for earthquake event classifi-265

cation. IEEE Geoscience and Remote Sensing Letters,266

18(12):2057–2061, 2020.267

[Kwiatek et al., 2023] G Kwiatek, P Martı́nez-Garzón, Dirk268

Becker, Georg Dresen, Fabrice Cotton, Gregory C Beroza,269

D Acarel, S Ergintav, and Marco Bohnhoff. Months-270

long seismicity transients preceding the 2023 mw 7.8271
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