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Abstract—In machining process, 3D reverse engineering of
mechanical system is an integral, highly important, and yet
time consuming step to obtain parametric CAD models from
3D scans. Therefore, deep learning-based Scan-to-CAD modeling
can offer designers enormous editability to quickly modify CAD
model, being able to parse all its structural compositions and
design steps. In this paper, we propose a supervised boundary
representation (BRep) detection network BRepDetNet from 3D
scans of CC3D and ABC dataset. We have carefully annotated
the ∼50K and ∼45K scans of both the datasets with appropriate
topological relations (e.g., next, mate, previous) between the
geometrical primitives (i.e., boundaries, junctions, loops, faces) of
their BRep data structures. The proposed solution decomposes
the Scan-to-CAD problem in Scan-to-BRep ensuring the right
step towards feature-based modeling, and therefore, leveraging
other existing BRep-to-CAD modeling methods. Our proposed
Scan-to-BRep neural network learns to detect BRep boundaries
and junctions by minimizing focal-loss and non-maximal sup-
pression (NMS) during training time. Experimental results show
that our BRepDetNet with NMS-Loss achieves impressive results.

Index Terms—BRep, Boundary Detection, Junction Detection,
Scan-to-CAD, Reverse Engineering, NMS.

I. INTRODUCTION

General purpose computer-aided design (CAD) modeling,
using many modern APIs [2], [3], [18], [19], greatly assists in
the agile process of Computer-Aided Manufacturing (CAM)
and commercial applications [1] at industrial scale. Such
a process requires skilled engineers and designers to aid
in the creation, modification, analysis, or optimization of a
design [17]. The same expertise is needed when the physical
object of the design is available. In this context, there has been
a huge recent interest in CAD reverse engineering [7], which
was made possible thanks to the availability of highly accurate
3D scanners1.

How important is fast track ‘3D Reverse Engineering
(RE)’ of mechanical system? While the machining process
starts with ready-made CAD models and ends with component
manufacturing, RE starts with 3D scanning of either damaged
parts, archived components, or any spare parts and ends with
deducing its parametric CAD model. However, the purpose of
RE is not limited to scanning a physical object to obtain a
reliable 3D scan, and then concluding the CAD model. Being
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able to deduce – (i) the intermediate designing steps, (ii)
the history of modifications that are involved in parametric
modeling of geometric primitives, (iii) designer’s intent to
order the CAD primitives (e.g.,, plane, cylinders, cones) along
with different CAD operation steps (e.g.,, chamfer, extrusion,
revolution, fillet) are the main stages of RE. Therefore, RE can
fix the damaged parts of any mechanical system through fast-
track prototyping, mass manufacturing, quality analysis, and
other downstream application tasks for analyzing structural
compositions of real objects.

Why Boundary Representation (BRep) of CAD is ideal for
deep learning-based RE? 3D scans are unstructured repre-
sentations and are different from CAD models, which are
generally stored in their STandard for the Exchange of Prod-
uct (STEP) [4] file format and represented as Boundary-
Representations (BReps) [26]. Consequently, the first step
towards successful CAD reverse engineering is to learn/infer
BRep [26] representation from its corresponding 3D scan,
namely Scan-to-BRep. This step is considered as the gateway
for numerous downstream CAD modeling applications like
– grouping and segmentation of BRep faces [8], [11], [14],
deducing machining features [6], retrieving CAD sketches [8],
predicting mating components for assembling multiple CAD
models [12].

Our proposed method brings the problem of 3D scan to
BRep parsing closer to real-world settings. In particular, we
annotate ∼50K real 3D scans of CC3D [5] and ∼45K high-
resolution meshes of ABC [13] datasets with BRep edge,
face, and their topological information. In particular, a per-
vertex annotation is considered in terms of BRep boundaries
and junctions. To understand the BRep chain complex, in
other words, the adjacency systems between BRep body, face,
boundary, junction, co-edge/boundary loop, shell, fin, and
region entities, one must parse it into different ‘closed and
connected loops of co-edges (CCLC)’. Therefore, once the
boundary loops and junction points are detected in a given
scan, the next steps like segmenting and grouping them into
their respective BRep entities, fitting parametric curves and
surfaces on the segmented boundaries and faces [10], [22],
inferring the CAD construction steps and operation types
involved at each step [8], and retrieval of base sketches [21]
follow on. Parsing BRep from 3D scans can also be seen
as geometric computation with its chain complexes [9]. Once



the BRep representation is learned, we gain complete control
BRep chain complex (refer to [10] for the definition).

Contributions. (1) We contribute in preparing annotations
(ensuring through quality measurements) for deriving BRep
chain complex on industrial-level 3D scans from CC3D [5] and
ABC [13] datasets. (2) Besides, we propose a new network for
boudary and junction points detection from a 3D scan. (3) For
this task, the existing state-of-the-art methods [20], [22] rely
upon non-maximal suppression (NMS) as a post-prediction
step to heuristically prune large number of incorrect predic-
tions. In contrast, our detection network includes a novel way
to marginalize false positives/negatives directly during training
time. This results in impressive boundary and junction detec-
tion recall gains compared to other methods. (4) Source code
is available here https://github.com/saali14/Scan-to-BRep.

II. BREP DATA ANNOTATION FEATURES

Fig. 1. The left figures relate a 3D scan with its corresponding BRep topology
(color-coded by unique edge and different closed-loop ids). A list of BRep
annotations per scan point (on the right) covers all attributes under CCLC.

Formally, a BRep topology T = (B,J ,F ,A) is defined
by sets of faces F , edges E , boundaries B, junctions J ,
and an adjacency system A = (N ,P ,M) ∈ {0, 1}|B|×|B|

that ensures directed topological walk along the boundaries
to traverse from current edge/face/junction to its next N ,
previous P , and mating M counterparts is possible. We
redirect readers to [14] and the Figure 1 to understand how
different edges form a boundary, how boundaries form closed
loops, and how loops form a closed CAD manifold. Each
of the BRep topological entities are parametric – e.g., edges
are either spline, arc, lines, ellipse or other types of curves,
whereas faces are planar, B-Spline, parabolic or other types
of surfaces – with unique ids based on forward/reverse order
of the topological walk along the B. The figure 1 illustrates
how a 3D scan S and the aforementioned BRep topology is
related. For instance, the overlaid scan points SB and SJ , that
are annotated as B and J , are decomposed into closed-loops
sharing sharing boundaries. We do not clutter the figure by
showing rest of the scan points SF that are annotated different
face Ids from F . The list of attributes in figure 1 are stored for
each scan point belonging to B / J / F . Among the existing

datsets [5], [13], [24] that are dedicated to feature-based CAD
modeling/reconstruction purposes, typical shortfalls are – (i)
unavailability of 3D scans (often substituted by CAD models),
(ii) sharp-edge labels. Note that those boundaries which has
with small acute angle between its adjacent BRep faces. The
main difficulty of detecting boundary/junction points is that
they can be smooth and seamless (see the vertical rule along
the cylindrical barrel in Figure 1). (iii) CAD construction
step labels per BRep entity (mainly the faces), and (iv) the
CAD operations (e.g.,extrusion, fillet, cut, chamfer) involved
in those construction steps, and (v) proper segmentation labels
of scan points w.r.t their respective BRep entities (as well as
their parameters). The previous variants of CC3D dataset [5],
[8] provide annotations mentioned in (i) – (iv). We have com-
plemented annotations in (v). We encourage the community to
use our annotations in the future.

A. Annotation Quality Assessment

Fig. 2.

We perform a crucial annotation quality assessment over
all samples of CC3D dataset. For this, we compute inverse
of uni-directional and density-aware Chamfer-distance [25]
from parametric BRep Boundary SB to 3D real scan S in
logarithmic scale as:

log2
(
CD−1

)
= log2

(
1

|SB|
∑

si∈SB

min
p∈S

(
1− e∥si−p∥2

))−1

,

(1)
and compare the same measurement when computed from
the parametric BRep Boundary SB to the parametric CAD
model of the scan. The figure 2-(a) illustrates a larger per-
centage of models has significantly higher quality scores when
annotations are compared against real scans. This re-affirms
that our scan-to-BRep annotations are closer to the real-
world setting. It is common that real scans are partial and
noisy than their CAD versions which are regular/smooth and
complete (see the color-coded Hausdorff distances from scan-
to-CAD in figure 2-(a)). Therefore, it is necessary to not have
annotations that are overly-smoothed like parametric BRep
entities. Besides, the figure 2-(b) also shows a comprehensive
statistics on both CC3D and ABC models in terms of overall
model complexities. For instance, it is clear that area covered



under density plots for different sets parametric curves per
model is several times more in CC3D than ABC.

III. B-REP BOUNDARY AND JUNCTION DETECTION

Fig. 3. Our network architecture.

A. Network Architecture of BRepDetNet

Figure 3 illustrates that our neural network is comprised of
separate boundary detection and junction detection heads. Both
network heads use DGCNN [23] as point feature encoder that
maps D : S 7→ Φ ∈ RN×128 resulting into 128 dimensional
point-level deep feature vectors. The two separate DGCNN
encoders output boundary and junction embedding vectors ΦB

and ΦJ respectively. Next, we apply fully-connected layer to
resize fc(ΦB) and fc(ΦJ ) with final dimensions in RN×1.

B. BRep Boundary Detection

To formalize the problem of classifying each point as either
a boundary point or an interior point of a 3D scan S ∈ RN×3,
we learn a function fθ : R3 → {0, 1} that maps each point pi

to a label yi. Here yi = 0 indicates an interior point, and yi =
1 indicates a boundary point. The function fθ is parameterized
by a neural network weights θ. We use focal loss (FL) [15] as
an extension of the binary cross-entropy loss and is designed to
address class imbalance. It adds a modulating factor (1−pt)

γ

to the cross-entropy loss, where pt is the true class probability
and γ is the focusing parameter as:

Lb
FL(θ) =− 1

N

N∑
i=1

(1− fθ(pi))
γ · yi log(fθ(pi))

+ (1− (1− fθ(pi))
γ) · (1− yi) log(1− fθ(pi)).

(2)

Non-Maximal Suppression (NMS) [16] technique is pri-
marily used in object detection tasks to eliminate multiple
bounding boxes that are close to each other and keep only
the most probable one. We have introduced NMS loss for
boundary detection Lb

NMS(θ) during the training time as a
differentiable approximation to the actual NMS operation:

Lb
NMS = − 1

N

N∑
i=1

(αti log(pi) + (1− α)(1− ti) log(1− pi))

(3)
Lb

NMS(θ) represents the Non-Maximal Suppression Classifi-
cation loss for a particular prediction pi = fθ(pi) and target
label ti. N is the total number of predictions, where pi is the
predicted probability of a point being at the boundary of S
and α is a hyperparameter that controls the balance between
the two terms in the loss. It’s typically set between 0.25 and
0.75. Lb

NMS(θ) penalizes both false positives and negatives.

This encourages the model to produce more accurate boundary
scores. Therefore our total loss for boundary detection is

Lb
total = Lb

FL + Lb
NMS (4)

C. B-Rep Junction Detection

Detecting the B-Rep junction points is considered as a
subordinate task after boundary detection. Let B be the set of
points detected as boundary points (note, this includes false
positives but not the false negative points). A second neural
network gϕ(x) is trained to classify these as either corner
points or not. The loss function for this second task is also
the binary cross-entropy but restricted to the boundary points:

LJ
FL(θ) =− 1

|B|
∑
xi∈B

(1− gϕ(xi))
γ · zi log(gϕ(xi))

+ (1− (1− gϕ(xi))
γ) · (1− zi) log(1− gϕ(xi)).

(5)

where zi denotes label values for xi being a junction or not.
Similarly, the NMS loss LJ

NMS and total loss LJ
total for junction

detection are equivalent to the Eq. (3) and (4) respectively.

IV. EXPERIMENTAL RESULTS

We have used 10K randomly sampled scan points as input
to out boundary detection head and 4K randomly sampled
points from the detected boundaries to the junction detection
head. Suppose, during inference time, if the resulting number
of boundary points is below the required number of 4K
input points, they are randomly up-sampled with duplicated
matches. We train our network with batch size 10 and learning
rate 0.001 on a 48GB NVIDIA GPU.

A. Baseline Models

We evaluate our proposed approach on ComplexGen [10]
and PieNet [22]. Both the baseline models and our proposed
BRepDetNet are trained on ABC [13] dataset and tested on
ABC [13] and CC3D [5] dataset for a consistent comparison.
For PieNet, we only show the results for boundary prediction
due to its unstable training and crashing during inference for
junction detection.

B. Comparison with The Baseline Models

Table I provides the quantitative results on boundary and
junction prediction tasks for ABC [13] and CC3D [5] dataset.
We measure recall and precision metrics as

Recall =
True Positives

True Positives + False Negatives

Precision =
True Positives

True Positives + False Positives
to evaluate the performance of the baseline methods. As
shown in Table I, our method outperforms the baselines in
recall and precision for both boundary and junction detection.
Our method shows significantly higher accuracy in terms
of precision-recall combined measure. For instance, Com-
plexGen method detects fewer boundary points and miss to
detect a large amount. Although, it does not detect false



Model ABC CC3D
Boundary Junction Boundary Junction

Recall Precision Recall Precision Recall Precision Recall Precision
ComplexGen [10] 0.104 0.334 0.045 0.232 0.056 0.461 0.013 0.097
PieNet [22] 0.338 0.391 - - 0.430 0.529 - -
BRepDetNet 0.615 0.523 0.361 0.273 0.747 0.631 0.427 0.364

TABLE I
RECALL AND PRECISION FOR THE BOUNDARY AND JUNCTION DETECTION ON ABC [13] (LEFT) AND CC3D [5] (RIGHT) DATASET. ALL THE MODELS

ARE TRAINED ON ABC [13] DATASET.

Model Model Trained on ABC dataset Model Trained on CC3D dataset
ABC CC3D ABC CC3D

Recall Precision Recall Precision Recall Precision Recall Precision
Ours w/o NMS Loss 0.454 0.237 0.622 0.383 0.502 0.380 0.692 0.646
Ours 0.615 0.523 0.747 0.631 0.370 0.510 0.697 0.652

TABLE II
QUANTITATIVE RESULTS FOR BREPDETNET WITH OR WITHOUT NMS LOSS. RECALL AND PRECISION FOR BOUNDARY DETECTION ON ABC [13] AND

CC3D [5] DATASET ARE REPORTED. WE ALSO SHOWCASE CROSS-DATASET GENERALIZATION ABILITY OF OUR MODEL.

CC3D

Boundary Prediction Junction Prediction

A
BC

GT Boundaries ComplexGen PieNet
BrepDetNet

(ours) ComplexGenGT Junctions
BrepDetNet

(ours)

Fig. 4. Visual results for boundary (left) and junction (right) prediction on ABC [13] (top) and CC3D [5] (bottom) dataset. The red points are the boundary
points and the green points are the junction points. All the models have been trained on ABC [13] dataset.
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Fig. 5. Visual results for boundary detection for BRepDetNet with and without NMS Loss. The red points are the boundary points. We observe that using
NMS loss significantly reduces the number of false positives leading to higher precision in boundary detection.

positives/negatives as compared to PieNet. In contrast to
boundary prediction, detecting junction points is more difficult
as they are often less than ∼ 1% of the total boundary points.
As in Table I, BRepDetNet shows significant improvement in
recall compared to the state-of-the-art methods for junction
detection tasks. We also observe that despite being trained on
a clean and noise free meshes of ABC [13] dataset, our model
generalizes well on real 3D scans. The result surpasses that of
baseline models in cross-dataset experiments on CC3D [5].

Figure 4 shows some qualitative results between the baseline
models and BrepDetNet. As shown, our model predicts more
accurate boundary points (red points) compared to other
methods. Furthermore, it can be seen that most of the false
positive predictions for BRepDetNet are close to the ground-
truth boundary points. Thanks to the NMS loss, furthest non-
boundary points are not misclassified like PieNet [22].

C. Ablation Study

In this section, we showcase the effectiveness of NMS loss
and . Table II reports the precision and recall for the boundary
prediction using BRepDetNet with and without NMS loss. In
Figure 5, some visual results are provided. To evaluate the
performance, we trained both models on ABC [13] and tested
on both ABC [13] and CC3D [5] datasets. We use the same
strategy with CC3D [5] dataset. This results in four different
experimental scenarios as shown in Table II. We observe that

using NMS Loss significantly improves the precision in all
four scenarios. This can be explained by the reduction of
misclassified boundary points. As demonstrated in Figure 5,
NMS loss leads to a lower number of false positives.

V. LIMITATION AND CONCLUSION

In this paper, we propose BRepDetNet, a supervised bound-
ary and junction detection network as the Scan-to-BRep step
for 3D reverse engineering. We offer both topological and
geometrical annotations that relates 3D real scans with its
BRep chain complex. Our proposed approach outperforms the
baseline models on both ABC [13] and CC3D [5] datasets. As
part of future extension, we plan to make our network end-to-
end trainable and resilient even when the annotation quality
is poor. We also notice some degree of mis-classification
of boundary points directly affect the subsequent junction
prediction. Therefore, improving a joint learning of boundary
and junction detection tasks, followed by segmentation, and
grouping of BRep entities will also be part of our future work.
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