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Accurate segmentation of objects in microscopy images remains a
bottleneck for many researchers despite the number of tools developed for
this purpose. Here, we present Segment Anything for Microscopy (USAM),
atool for segmentation and tracking in multidimensional microscopy

data. Itis based on Segment Anything, a vision foundation model for image
segmentation. We extend it by fine-tuning generalist models for light and
electron microscopy that clearly improve segmentation quality for awide
range of imaging conditions. We also implement interactive and automatic
segmentation in a napari plugin that can speed up diverse segmentation
tasks and provides a unified solution for microscopy annotation across
different microscopy modalities. Our work constitutes the application

of vision foundation models in microscopy, laying the groundwork for
solving image analysis tasks in this domain with a small set of powerful deep

learning models.

Identifying objects in microscopy images, such as cells and nuclei in
light microscopy (LM) or cells and organelles in electron microscopy
(EM)isoneof the key tasks inimage analysis for biology. The large vari-
ety of modalities and different dimensionalities (two or three dimen-
sions, time) make these identification tasks challenging and so far
require different approaches. The state-of-the-art methods are deep
learningbased and have inthe past years dramaticallyimproved celland
nucleus segmentation in LM' >, cell, neuron and organelle segmenta-
tionin EM*”and cell tracking in LM®°. Most of these methods provide
pretrained models and yield high-quality results for new data similar to
their training data. However, due to limited generalization capabilities
oftheunderlying deep learning approaches, quality degrades for data
dissimilar to the original training data and they can only beimproved by
retraining. Generating annotations for retraining relies on manual work
and is time consuming. Some approaches for semiautomatic annota-
tion based on manual correction of initial segmentation results exist’.
These are still time consuming if the initial results are of low quality.
Furthermore, a unified method that addresses diverse segmentation
tasks in different modalities like LM and EM is missing.

Visionfoundation models have recently beenintroduced forimage
analysis tasks in natural images, echoing developmentsin natural lan-
guage processing'®2, These models are based on vision transformers®
and are trained on very large datasets. They can be used as a flexible
backbone for different analysis tasks. Among the first successful vision
foundation models was CLIP'’, which combines images and language,
and underlies many generative image models™. More recently, founda-
tion models targeting segmentation have beenintroduced”?. Among
them Segment Anything Model" (SAM), which was trained on a large
labeled dataset and achieves impressive interactive segmentation
performance for a wide range of image domains. The application of
such foundation models in microscopy has so far been limited, but
their potential in this domain has already been identified®.

Here, we introduce Segment Anything for Microscopy, called
pSAMinthe following, thatimproves and extends SAM for microscopy
data. Our main contributions are:

« Atraining procedure to fine-tune SAM, including a new decoder
that provides improved instance segmentation results.
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Fig.1| Overview of pSAM. a, We provide a napari plugin for segmenting
multidimensional microscopy data. This tool uses SAM, including our
improved models for LM and EM (see b). It supports automatic and interactive
segmentation as well as model retraining on user data. The drawing sketches
acomplete workflow based on automatic segmentation, correction of the
segmentation masks through interactive segmentation and model retraining

Default

Fine-tuned Default  Fine-tuned

sojdwex3

based on the obtained annotations. Individual parts of this workflow can also

be used on their own, for example, only interactive segmentation can be used as
indicated by the dashed line. b, Improvement of segmentation quality due to our
improved models for LM (top) and EM (bottom). Blue boxes or blue points show
the user input, yellow outlines show the true object and red overlay depicts the
model prediction.

« Improved models for LM and EM segmentation that perform
considerably better than the default SAM modelsin their respec-
tive domains.

« Atoolforinteractive and automatic data annotation, provided as
anapari®plugin. This tool can use the default SAM models, our LM
and EM models or custom models fine-tuned by users.

Figure 1shows a high-level overview of u{SAM and examples for
improved segmentation results. Prior work has already investigated
SAM for biomedical applications, for example, in medical imaging",
histopathology™ and neuroimaging'®. However, these studies were
limited to the default SAM and did not implement retraining for
their respective domains, whichis crucial according to our findings.
Retraining SAM for other domains has been investigated for a nar-
row interactive segmentation task in medical image data®. Using
SAM as the basis for automatic segmentation has been investigated
for histopathology* and using it for cell segmentations has been
investigated based on prior object detection®’. None of this prior
work combines retraining of the full interactive segmentation capa-
bilities with improved automatic segmentation in a single model as
in our contribution.

Compared to established segmentation and tracking tools,
USAM is more versatile because its pretrained models cover both LM
and EM, covering a wide range of segmentation tasks. It supports
two-dimensional (2D) and volumetric segmentation as well as tracking
inthe sametool. It combinesinteractive and automatic segmentation
using the same underlying model. As aresult, both aspects of the model
are improved during fine-tuning, which can massively speed up data
annotation. In contrast, the in-the-loop training mode of CellPose 2
(ref.23), which has pioneered integrated data annotation and training,

relies on manual pixel-level correction. In summary, our tool’s main
distinguishing features are its applicability to diverse segmentation
tasks across different modalities and dimensionalities and its fast
annotation speed thanks to its interactive segmentation capability.
We demonstrate these aspects in three user studies where we find
competitive performance with CellPose? for cell segmentation, clearly
improved performance compared to ilastik carving? for volumetric
segmentation and compare to TrackMate’ for tracking. Overall, our
contribution shows the promise of vision foundation models to unify
image analysis solutions in bioimaging. Our toolis available at https://
github.com/computational-cell-analytics/micro-sam/.

Results

We compare the default SAM with models that we fine-tune for differ-
ent microscopy segmentation tasks. First, we study interactive and
automatic segmentation on the LIVECell* dataset. Then, we train and
evaluate generalist models, encompassing training on multiple data-
sets, for cell and nucleus segmentation in LM as well as for mitochon-
drionand nucleus segmentationin EM. In the following, we refer to the
original models provided by Kirilov et al." as ‘default’ models, models
that we have fine-tuned on a single dataset as ‘specialist’ models, and
models we have fine-tuned on multiple datasets as ‘generalist’models.
Note that training a single model that consistently improves across
different microscopy modalities is not feasible given the current SAM
architecture (see ‘EM’sections and ‘Discussion’ for details). Hence, we
trainseparate generalist models for LM and EM. We further investigate
fine-tuning SAM in resource-constrained settings. Then, we introduce
our user-friendly tool, implemented as a napari'® plugin, for interac-
tive and automatic data annotation for (volumetric) segmentation
and tracking. We compare it to established tools in three user studies
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for cell segmentationin LM, nucleus segmentationin EM and nucleus
trackingin LM.

Fine-tuning SAM improves cell segmentation

Inref. 11, SAM is introduced as a model for interactive segmentation:
it predicts an object mask based on point, box or mask annotations.
The point annotations can be positive (part of the object) or negative
(not part of the object). The model was trained ona very large dataset
of naturalimages with object annotations. The authors alsointroduce
amethod for automaticinstance segmentation called automatic mask
generation (AMG) based on covering an image with a grid of points,
using all of them as point annotations for SAM and filtering out unlikely
or overlapping masks. They evaluate interactive and automatic seg-
mentation on a wide range of tasks, including an LM dataset®. See
the Methods for an overview of the SAM functionality. The original
microscopy experiment and our evaluation of default SAM show a
remarkable generalization to microscopy, despite the fact that the
original training set contains predominantly naturalimages. However,
we noticed several shortcomings of the models for microscopy. For
example, SAM segments clusters of cells as a single object as seenin
Fig.1b. Toimprove SAM for application to our domain, we implement
aniterative training scheme to enable fine-tuning on new datasets. This
approachreimplementsthe original training method, which has so far
notbeenmade opensource. Furthermore, we add anew decoderto the
model that predicts foreground as well as distances to object centers
and boundaries to then obtain an automatic instance segmentation
via post-processing. We refer to this approach as AIS. The additional
decoder canbetrainedin conjunction with the rest of SAM. Both AIS and
the training methodology are explained in more detail in the Methods
(‘AIS’ and ‘Training)).

We investigate our fine-tuning method on LIVECell”, one of the
largest publicly available datasets for cell segmentation. Figure 2a
shows the mean segmentation accuracy” (higher is better; see the
Methods for details) for the default and LIVECell specialist model,
using a separate test set for evaluation. Here, we evaluate interactive
segmentation by simulating user annotations based on segmentation
ground truth. We derive either abox annotation (red bars) or a positive
point annotation (green bars) from the ground truth, correspond-
ing toiteration O in the figure. Then we sample both a positive and
anegative point from incorrect areas in the prediction, the positive
point where the prediction is missing and the negative point where it
should not be, and then rerun the model with the additional annota-
tions. This processis repeated seven times (iterations1-7) and ineach
iteration the newly sampled points are used as additional pointinputs.
We also compare automated segmentationvia AMG and AlS (only avail-
able after fine-tuning) and provide the results from a CellPose model
trained on LIVECell for reference. We use SAM based on a large vision
transformer (ViT-L) and train it for 250,000 iterations on the train-
ing split of LIVECell. We found that ViT-L provides the best trade-off
between runtime and quality; see Fig. 5a for acomparison of runtimes
with different model sizes and Extended Data Fig. 1 for an evaluation
of segmentation results. The results show a clear improvement due
to fine-tuning across all settings. Interactive segmentation with the

specialist modelsis clearly better than any of the automated segmenta-
tionresults, whereasit only reaches the performance of CellPose after
several correctioniterations for the default model.

The specialist models also achieve a consistent improvement
when provided with more annotations, which is not the case for the
default model. This is partly because we do not use the mask predic-
tion as additional model inputs; see Supplementary Fig. 1 for details.
Instance segmentation with AMG drastically improves, and segmenta-
tion with AIS, which is only available after fine-tuning, is on par with
CellPose.

We investigate different fine-tuning strategies in Fig. 2b, where
we fine-tune only parts of the SAM architecture, freezing all other
weights. Here, we perform the same evaluation experiments as in
Fig.2a.Foramore concise presentation, we only report the interactive
segmentation results for asingle point prompt (‘point’), for a single box
prompt (‘box’), for the last iteration when starting froma point prompt
(ly, correspondingtothe greenbar atiteration 7 in Fig. 2a) and for the last
iterationwhenstarting fromabox prompt (‘Iy, corresponding tothered
bar atiteration 7 in Fig. 2a). The results show that fine-tuning the image
encoder has the biggest impact, and fine-tuning the complete model
shows the best overall performance. In Fig. 1c, we fine-tune the model
with only a subset of the available training data, using the data splits
defined in the LIVECell publication. The results show that the majority
ofimprovementis achieved with training data fractions of 2%, 4% and 5%.
Overall, the results on LIVECell offer the following conclusions:

1. Fine-tuning SAM clearly improves the segmentation quality for
agiven dataset.

2. Fine-tuning all parts of the model yields the best results. Conse-
quently, we train the full model in all further experiments.

3. Most of the improvements for a given dataset can be achieved
with a rather small fraction of the training set. We investigate
this in more detail in Fig. 5b.

An LM generalist model improves across diverse conditions

Our next goal is to train a generalist model for LM that improves
segmentation performance for this modality and can thus serve as a
replacement to the default SAM. While the previous experiments have
shown that fine-tuning on data from a given image setting improves
performance, we have not yet shown that it leads toimproved generali-
zation. Totrainthe generalist, we assemble alarge and diverse training
set based on published datasets, including LIVECell*, DeepBacs®,
TissueNet?, NeurlPS CellSeg?, PlantSeg (Root)*° and Nucleus DSB?,
using a version of this dataset excluding histopathology images pro-
vided by StarDist®, and eight datasets from the Cell Tracking Challenge™.
We also train specialist models on five of these individual datasets.
Figure 3a compares the segmentation performance for default, special-
ist and generalist models. In all cases, the evaluation is done on a test
split that is not used for training. We see clear improvements of both
specialist and generalist models compared to the default model. The
generalist model overall performs similar or better than the specialist,
except for AISon LIVECell. We include automatic segmentation results
for CellPose as a reference, using specialist models for LiveCell and

Fig. 2| Results on LIVECell. a, Comparison of the default SAM with our fine-tuned
model. The bar plot shows the mean segmentation accuracy for interactive
segmentation, starting from a single annotation, either a single positive point
(green) orabox (red). We then iteratively add a pair of point annotations, one
positive, one negative, derived from prediction errors to simulate interactive
annotation. The lines indicate the performance for automated instance
segmentation methods—AMG (yellow), AIS (dark green) and CellPose (red)—
using a CellPose model trained on LIVECell. Evaluation is performed on the
test set defined in the LIVECell publication®. b, Comparison of partial model
fine-tuning. The x axis indicates which part(s) of the model are updated during
training: the image encoder, the mask decoder and/or the prompt encoder.

We evaluate AlS (dark green, striped), AMG (yellow), segmentation from asingle
pointannotation (light green, corresponding to the green bar atiteration O in
a), fromiterative point annotations I, (green, corresponding to the green bar
atiteration 7ina), fromabox annotation (magenta, corresponding to thered
bar atiteration O in a) and from a box annotation followed by correction with
iterative point annotations I; (red, corresponding to the red bar atiteration
7ina). Training the image encoder has the biggest impact and fine-tuning all
model parts yields the best overall results. ¢, Evolution of segmentation quality
for increasing size of the training dataset, using the same evaluation and color
codingasinb. All resultsin this figure use a model based on ViT-L. Extended Data
Fig.1explains the model parts and shows results for models of different sizes.
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TissueNet and the ‘cyto2’ model otherwise. Automatic segmentation
via AlS performs on par or better than CellPose except for TissueNet.
We believe that this difference is partly due to the fact that TissueNet
contains two channels, which do not map well to the RGB inputs of SAM

(Methods). Please note that the comparisons on DeepBacs, PlantSeg
(Root) and NeurIPS CellSeg are heavily biased in our favor, because
our modelwas trained on the training splits of the respective datasets,
unlike the CellPose cyto2 model.
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Fig. 3| Generalist LM model. a, Comparison of the default SAM with our set (evaluated on a separate test split) and datasets COVID IF, PlantSeg (ovules),
generalist and specialist models. We use the same evaluation procedure asin Lizard and Mouse Embryo contain image settings not directly represented in
Fig.2b,c. Thered lineindicates the performance of CellPose (specialist models training. b, Qualitative segmentation results with the default SAM and our LM
for LIVECell and TissueNet, cyto2 model otherwise). Datasets LIVECell, generalist model. The cyan dot indicates the point annotation, the yellow outline

DeepBacs, TissueNet, PlantSeg (root) and NeurIPS CellSeg are part of the training  highlights the true object and the red overlay represents the model prediction.

Tostudy whether the generalist modelimproves generalizationto  containingimmunofluorescence data, PlantSeg (ovules)*® containing
other microscopy settings, we apply it to datasets thatare notdirectly  plant cells imaged with confocal fluorescence microscopy, Lizard*
represented in the training set. We choose the datasets COVID IF*>  containing histopathology images and Mouse Embryo** containing
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mammalian cells imaged with confocal fluorescence microscopy.
Results for the default SAM and our generalist model as well as the
model cyto2 in CellPose are also shown in Fig. 3a. The improvement
of our generalist over the default model is clear for all datasets. AlS is
better than AMG in almost all cases and CellPose and AIS show overall
comparable segmentation accuracy. For Lizard, which contains a dif-
ferent modality compared to the training data and Mouse Embryo,
which represents a particularly difficult problem due to small cell
sizes, none of the automated segmentation approaches work well,
but interactive segmentation yields good results and is improved by
the generalist. Figure 3b shows example comparisons of segmentation
with the default model and generalist model. We report the results for
ViT-L, trained for 250,000 iterations for our models. Extended Data
Fig.2showsresults for SAM models of different sizes, including results
on additional datasets, Extended Data Figs. 3 and 4 show qualitative
examples and Supplementary Fig. 2b shows examples for the auto-
matic segmentation results. An overview of the LM datasets is given
inSupplementary Table1.

Overall, these experiments demonstrate that a generalist model
foragiven domain clearly improves segmentation quality. We provide
such ageneralist model for LM. It supports both interactive and auto-
matic segmentation, achieving comparable automatic segmentation
quality to CellPose, the state-of-the-art for automatic cell segmenta-
tion. Note that we do not claim that our model is better than CellPose
for automatic segmentation, but that it provides similar quality for
most practical settings, while also enabling interactive segmentation.

Improved mitochondria segmentation in EM

We further investigate training a generalist model for EM. This is
more challenging compared to LM, because in EM membrane-bound
structures are labeled unspecifically rather than having a specific
stain for a cellular component. Consequently, the segmentation tasks
in EM are more diverse and structures can have a hierarchical com-
position, for example, an organelle inside a cellular compartment.
This makes training amodel for generic EM segmentation more chal-
lenging. Hence, we focus on training a model for the segmentation
of mitochondria and nuclei, for which large public datasets exist. We
make use of the MitoLab® and MitoEM* datasets for mitochondria
and PlatyEM* for nuclei. We refer to this model as EM generalist in
the following, but want to make clear that it reliably improves EM
segmentation only for mitochondria, nuclei and other roundish
organelles. Due to the limitation of not being able to provide a uni-
fied model for EM, we also refrain from exploring a unified generalist
model for both EM and LM.

We compare the default SAM and our EM generalist model on test
splits of the training datasets and on additional test datasets: Lucchi*®
containing mitochondria imaged in FIBSEM, two MitoLab’ test data-
sets containing mitochondria in volume EM (Fly Brain) and transmis-
sion electron microscopy (TEM), UroCell*’ containing mitochondria
in FIBSEM and VNC containing mitochondria in serial-section TEM.
We also include NucMM (Mouse)*®, which contains nuclei imaged in
high-energy X-ray, an imaging modality that shares similarity with
EM. See Fig. 4 for quantitative and qualitative results. We see a clear
improvement for interactive segmentation due to fine-tuning for all
datasets. Forautomatic mitochondrion segmentation, we also compare
to MitoNet®and find that its performanceis overall comparable to AIS
and AMG, with results varying across datasets. The advantage of AIS
over AMG is not as clear as for LM. This is likely because AMG works
better for well-separated objects, like mitochondriain EM, compared
to densely packed objects, like cellsin LM. In practice, AlSis preferable
inmost cases duetoits lower runtime (Fig. 5a). Note that we don’t claim
that our method is superior to MitoNet for automatic mitochondrion
segmentation, butrather thatit provides comparable quality while also
enablinginteractive segmentation. Extended Data Fig. 5 shows results
for additional datasets and for different model sizes. Extended Data

Figs. 6 and 7 show additional qualitative results, and Supplementary
Table 2 lists an overview of the EM datasets.

We also perform experiments for other organelles and structures
inEM. We segment ciliaand microvilliwith our model (see the results for
Sponge EM and Platynereis (Cilia) in Extended DataFigs. 5-7) and find
that our EM generalist model overall performs better compared to the
default SAM. We also study segmentation for endoplasmic reticulum
(ER) and neurites (Extended DataFig. 8). We find that our EM generalist
only provides marginal benefits or is detrimental in these cases, which
is due to the different morphology of ER compared to mitochondria/
nuclei and the fact that the model prefers to segment organelles over
the surrounding cellular compartment. We train specialist models
for both cases, which clearly improve the performance for the given
segmentation task.

Overall, we find that training a model for improved organelle
segmentationin EMis feasible, and we provide a generalist model for
mitochondrion and nucleus segmentation, which can also improve
results for other organelles of similar morphology. Training an even
more general EM model should be possible given a suitable dataset,
but for training a true generalist model that improves segmentation
for both cellular compartments and organelles, a semantically aware
model and training procedure is required. However, our fine-tuning
methodology can be used to train specialist models for a given EM
segmentation task and our annotation tools (see below) can be used
for fast dataannotation to provide the required training data, making
our contribution also valuable for EM segmentation tasks where our
EM generalist model does not offer benefits.

Resource-constrained settings for inference and fine-tuning
One of our maingoalsis tobuild a user-friendly tool for interactive and
automatic microscopy segmentation. As a preparation, we investigate
how SAM can be used inresource-constrained settings, for example, on
auser laptop or aregular workstation, for inference and fine-tuning.
First, we compare the inference times for all relevant operations:
computing image embeddings, inference for one object withabox or
point annotation and automatic segmentation via AMG and AIS, for
CPU and GPU (Fig. 5a). For Point, Box, AMG and AIS, we measure the
runtime excluding the embedding computation. Runtimes are much
smaller onthe GPU, butinteractive segmentation with points or boxes
is feasible onthe CPUin around 30 ms per object, given precomputed
embeddings. We also see abig speedup of AIS compared to AMG. The
main advantage of a GPU is strongly decreased runtime for embed-
ding computation and faster automatic segmentation, especially for
multidimensional data (see below). We also compare the runtimes
for different sizes of the image encoder, including ViT Tiny (ViT-T)*.
Given the trade-off between runtimes and segmentation accuracy
(see Extended Data Figs. 1,2 and 5 for an extensive comparison of the
segmentation quality across model size), we recommend using ViT
Base (ViT-B) or ViT-L models. Using ViT Huge (ViT-H) does generally not
yield better results butincurs a higher computational cost. If runtime
isanissue, ViT-B can be used with only a small penalty on segmenta-
tion quality. ViT-T is much faster and yields good results for simple
segmentation tasks but has severely degraded quality for others. To
provide acomparison to established tools, we have also measured the
runtime of CellPose with the same hardware. It takes circa 0.3 s to seg-
ment animage with the GPU and 1.5 s with the CPU. Compared to this,
the runtime of embedding computation and AlS, whichis the relevant
measure for automatic segmentation, takes 0.2-1.2 s on the GPU and
1.5-7.5sonthe CPU, depending on the model size.

We further investigate model fine-tuning in resource-constrained
settings. While our LM or EM generalist models improve quality in
many settings, they may not be sufficient for the user’s needs or may
not match the modality of their data. To enable further improvement
foraspecific task, we investigate fine-tuning on the COVID IF data (also
usedinFig.3). We study how it behaves for asmall number of annotated
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Fig.4|EM model. a, Comparison of the default SAM and our EM generalist that
was trained to improve mitochondrion and nucleus segmentation. Of the nine

datasets, MitoEM (rat), MitoEM (human) and Platynereis (nuclei) are part of the
training set (evaluation is done on separate test splits), while the others are not.

We follow the same evaluation procedure as before. We provide the results of
MitoNet (red line) as a reference for automatic mitochondrion segmentation. All
experiments are done in 2D. b, Qualitative comparisons of segmentation results
with default SAM and our EM generalist, using the same color coding as in Fig. 3b.

images and fine-tuning on the CPU (Fig. 5b) and for other hardware
configurations (Supplementary Fig. 3), starting from either the default
or the LM generalist model. To enable training with limited resources,

we use early stopping and find the best hyperparameters that
enable training for the given hardware configuration (Extended Data
Fig. 10b,c). We also study parameter-efficient training using LORA*,

Nature Methods | Volume 22 | March 2025 | 579-591

585


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02580-4

which holds the promise of faster training (see dashed result lines in
previously mentioned figures and Supplementary Fig. 4c for an exten-
sive evaluation of training with LoRA). We find that training on only a
fewimages witha CPU isfeasible and thatitimproves the model clearly
for a given task. Training with LoRA results in longer training times
in most cases because the model needs more iterations to converge.
Trainingonthe CPUinthis setting took 5.3 h, while training on the GPU
took 30 min. The overview of training times for different hardware
configurationsis givenin Extended Data Fig.10d.

Overall, we find that applying and training SAM in resource-
constrained settingsis feasible. However, the runtimes for computing
image embeddings and training are larger compared to architectures
based on convolutional neural networks, especially when using the
CPU.Wealso find that fine-tuning on afew annotated images, which can
be quickly generated with our annotation tools (next section), clearly
improves results. Starting fine-tuning from our models can provide
clear benefits. In cases where our models are worse than default SAM,
for example, for neurite segmentation in EM, it will likely be better
to start from a default model, so users should choose the model that
performs best for their task as the starting point.

HUSAM enables fast data annotation for microscopy
We provideatoolforinteractive and automatic dataannotation, making
use of the models and knowledge described in the previous sections.
To make the tool easily available to biologists, we implemented it as a
napari'® plugin. Napariis a Python-based viewer for multidimensional
image datathat is popular for microscopy image analysis. We provide
five different functionalities within our tool: (i) for 2D image segmenta-
tion, (ii) for volumetric segmentation, (iii) for tracking in time-series
data, (iv) for high-throughput segmentation of multiple images and
(v) for fine-tuning. They are implemented as separate plugin widgets.
The annotation widgets (i-iv) supportinteractive segmentation based
on user-provided point or box annotations and automatic segmen-
tation based on AIS or AMG (except for the tracking widget (iii)). To
enableinteractive usage, we implement precomputation and caching
of image embeddings, tiled interactive and automatic segmentation
and efficient recomputation of the automatic segmentation given
parameter changes. We also support interactive segmentation for
volumetric dataand interactive tracking for time series by projecting
masks to adjacentslices or frames and rerunning SAM with the derived
annotations. For volumetric data, we implement automated segmen-
tation by running AIS or AMG per slice and merging the results across
slicesina post-processing step (Extended DataFig. 9). The fine-tuning
widget (v) allows users to choose the model and training parameters
that best fit their hardware and then fine-tune a model on their own
data. We also provide the underlying functionality as a Pythonlibrary
so that users with computational knowledge can implement training
scripts and so that developers can build upon our extensions to the
original SAM functionality. See the Methods for the details. The Supple-
mentary Videos explain the tool usage and it is documented at https://
computational-cell-analytics.github.io/micro-sam/micro_sam.html.
Wesstudy our tool for three representative annotation tasks: orga-
noid segmentation in brightfield microscopy, nucleus segmentation

in EM and nucleus tracking in fluorescence microscopy and compare
them to established software for the respective annotation tasks.
Further details about the experimental setup for the user studies can
be found in the Methods and Supplementary Information.

User study 1: Brightfield organoid segmentation

For 2D annotation, we study organoid segmentation in brightfield
images. Growing organoids is acommon experimental technique for
studyingtissues, for example, in cancer research. Organoid segmenta-
tionenables studying growth and morphology. Here, we use aninter-
nal dataset to compare different annotation approaches, comparing
our tool with CellPose and manual annotation. The results of the study
are summarized in Fig. 6a. In our tool, we compare using the default
SAM (‘uSAM (default)’), our LM generalist (‘(uSAM (LM generalist)’)
and a model fine-tuned on user annotations (‘uSAM (fine-tuned)’).
For all these models, we first run automatic segmentation, which
we then correct using interactive segmentation. We use ViT-B as the
image encoder for all models. For CellPose we use the cyto2 model
(‘CellPose (default)’), in-the-loop training starting from cyto2 (‘Cell-
Pose (HIL)’) and annotation with the model obtained after in-the-loop
training (‘CellPose (fine-tuned)’). Here, we also first run automatic
segmentation and then correct it using manual annotation. These
experiments are performed with the CellPose GUI. For each method,
we report the average annotation time per object, the quality of the
annotations compared against consensus annotations (‘mSA Ann.)
and the segmentation quality measured on a separate test split of the
organoid dataset (‘mSA test’). The latter measure evaluates model
generalization after fine-tuning. All experiments are done by five
different annotators and, we use standard deviations over annotators
to computeerrors. Theimagein Fig. 6a shows an automatic segmenta-
tion result from the default SAM model and a fine-tuned model. We
canderive several observations fromthe resultsin Fig. 6a: the default
SAM model provides better interactive segmentation results than the
LM generalist for this data. This isbecause interactive segmentation
with the generalist yields masks that are too big. This bias was likely
introduced by the generalist’s training data, which did not include
organoid-like data. We plan to address this by extending the general-
ist’s training data in the future. Note that annotation times with the
generalist are faster, because it yields a better automatic segmenta-
tion. However, due toits better annotation quality, we continue with
the default SAM model for the rest of the user study. When compar-
ing the pretrained SAM models with CellPose, we find slightly faster
annotation times, but also decreased annotation quality compared
to the consensus. Annotation is much faster than manualin all cases.
After fine-tuning, annotation time and quality is better with both
USAM and CellPose and is similar for both tools. Finally, a clear dif-
ference can be seenin the results for generalization to the test split:
the ©SSAM models improve consistently, whereas the CellPose models
deteriorate, although starting from a better initial result. We are not
sure what causes this effect, but we have qualitatively observed that
it’s because the fine-tuned CellPose models find fewer organoids
in the test set. Overall, we find that there is no clearly better tool
for this dataset: CellPose has a better initial segmentation quality,

Fig. 5| Inference and training in resource-constrained settings. a, Runtimes for
computing embeddings, running AIS and AMG (per image) and segmenting an
object via point or box annotation (per object) ona CPU (Intel Xeon, 16 cores) and
GPU (NvidiaRTX5000, 16 GB VRAM). We run AIS, AMG, point and box annotation
with precomputed embeddings. We report the average runtime for 10 different
images for Embeddings, AIS and AMG, measuring the runtime for each image five
times and taking the minimum. For Point and Box, we report the average runtime
per object, averaged over the objects in 10 differentimages. b, Improvements
due to fine-tuning a ViT-B model when training on 1, 2, 5 or 10 images of the COVID
IF dataset on the CPU (same CPU asin a). We compare using the default SAM and
our LM generalist model as starting points and evaluate the segmentation results

on 36 testimages (not part of any of the training sets). We use early stopping.
Dotted lines indicate results obtained with LORA*° using a rank of 4. Otherwise
allmodel parameters are updated, as in previous experiments; we refer to this
as full fine-tuning (FFT) in the caption. See Extended Data Fig. 10d for training
times of different hardware setups. Note that we use the segmentation accuracy
evaluated at an intersection over union (I0U) threshold of 50%, as the metric
here, because we found that mean segmentation accuracy was too stringent
for the small objects to meaningfully compare improvements. ¢, Qualitative
automatic segmentation results before and after fine-tuning on 10 images for
the default SAM (comparing AMG before and AlS after fine-tuning) and our LM
generalist (comparing AlS before and after fine-tuning).
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provides similar annotation speed and quality after fine-tuning, but ~ User study 2: volume EM nucleus segmentation

generalizes worse to similar data. We also want to stress thatresults ~ For the three-dimensional (3D) annotation tool, we study nucleus
are data dependent and will differ for other datasets dependingon segmentation in volume EM, using an internal dataset from the fruit
performance of the initial models. fly larva brain, for which we also have ground-truth annotations for
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a 2D user study
Annotation time mSA mSA
Method (s/object) (Ann.) (Test)
Manual 6.7:09 0.49:007
USAM (LM generalist) 1.2:02 0.37:017 0.42
USAM (default) 1.5:03 0.53:012 0.47:004
HSAM (fine-tuned) 0.7:02 0.72:010 0.51:0.02
CellPose (default) 1.6:04 0.60:0mn 0.51
CellPose (HIL) 0.9:02 0.66:010 0.39:0.06 USAM (default)
CellPose (fine-tuned) 0.7:03 0.76:010 0.42:0.05

b 3D user study
Annotation time
Method (s/object)
USAM (default) 84
HSAM (fine-tuned) 24
ilastik 120

Tracking user study

USAM (fine-tuned)

Annotation time

Tracking score

Method (s/track) (TRA)
USAM (default) 38 0.984
USAM (LM generalist) 24 0.982
HSAM (fine-tuned) 23 0.973
TrackMate (stardist) 19 0.950

Fig. 6| User studies of the psSAM annotation tools. a, Segmentation of organoids
imaged in brightfield microscopy with uSAM, CellPose and manual annotation.
We compare different models for uSAM and CellPose; see the text and Methods for
details. We report the average annotation time per object, quality of annotations
when compared to consensus annotations and segmentation quality evaluated
onaseparate test dataset. All experiments are done by five annotators and errors
correspond to standard deviations over annotator results. The entries ‘USAM

(LM generalist)’ and ‘CellPose (default)’in the ‘mSA (test)’ column are obtained
from evaluating the initial models; the other results in this column are obtained
from evaluating models trained on user annotations. The two images on the right
compare the automated segmentation result (without correction) obtained from
‘USAM (default)’ and ‘uSAM (fine-tuned)’. b, Segmentation of nucleiin volume

EM. The table compares the average annotation time per object for uSAM, using
adefault model and a model fine-tuned for this data, with ilastik carving. For the
fine-tuned model, we start annotation from an initial 3D segmentation provided
by the model; otherwise, we annotate each object interactively. The image below
shows the result after correction for the fine-tuned model. ¢, Tracking of nucleiin
fluorescence microscopy. The table lists the average annotation time per track for
HUSAM, using three different models, and TrackMate, as well as the tracking quality,
measured by the tracking accuracy score (TRA). For uSAM, each lineage is tracked
interactively; ‘fine-tuned’ is trained specifically for this data. TrackMate provides
an automatic tracking result, based on nucleus segmentation from StarDist, which
is then corrected. Theimage below illustrates the tracking annotation obtained
with uSAM (fine-tuned).
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several small blocks. Segmentation of nuclei or other large organelles
involume EM is an important task for analyzing cellular morphology
and differentiating cell types based on phenotypic criteria®. Here, we
compareinteractive nucleus segmentation with t{SAM and with ilastik
carving®. Carving uses aseeded graph watershed to segment objectsin
3D fromuser annotations. This method is not based on deep learning,
butis still one of the most commonly used approaches forinteractive 3D
segmentation, for example, Gallusser et al." use it to generate training
annotations. In uSAM, we first annotate the data with the default ViT-B
model, whichworked slightly better thanthe EM generalist model, likely
dueto differencesinresolution to our training data. In this case, we did
not use automatic segmentationsince it did not yield good results. We
also fine-tune amodel on another smallblock withground-truth data.
For this model, automatic 3D segmentation (based on AlS) yields good
results. Figure 6b shows the annotation time per objectand anillustra-
tion of anannotated block. Annotation with uSAM s faster thanilastik
when using the default model and much faster when using afine-tuned
model, for whichwe can correct automatic segmentation results rather
thaninteractively segmenting every object.

User study 3: fluorescence microscopy nuclei tracking

We study the tracking annotation tool on adataset of nucleiimagedin
fluorescence microscopy from Schwartz et al.*?, using every third frame
to make the task more challenging. We compare annotation via f{SAM
with the mostrecent version of TrackMate’, which has integrated sup-
portfor deep learning-based segmentation tools, including StarDist’.
Figure 6¢ shows the results for four different approaches: interactive
segmentation with our tool, using the default SAM, the LM generalist
model and a model fine-tuned for this data, as well as TrackMate with
StarDist. We report annotation times and quality of the annotations
compared to ground truth. Note that our tool and TrackMate work
quitedifferently for tracking:in our tool, each lineage hasto be tracked
interactively, whereas TrackMate automatically tracks the nuclei based
on the segmentation from StarDist, followed by manual correction.
Here, we see a clear advantage of the LM generalist model over the
default SAM; it tracks the nucleibetter duringinteractive annotation.
Fine-tuning of this model on a separate time series does not speed up
tracking further. Compared to TrackMate, our method is a bit slower,
whichis because we currently do not automatically track objects, but
yields annotations of higher quality. We aim to implement automatic
tracking that can be used as a starting point for correction, based on
initial frame-by-frame segmentations from AIS, and expect a major
speedup from this extension.

Discussion

We have introduced a method to fine-tune SAM for microscopy data,
used it to provide generalist models for LM and EM and extensively
compared these to the default SAM and reference methods for auto-
matic segmentation. We have also implemented a napari plugin for
interactive and automatic segmentation. Our quantitative experiments
and user studies show that our contribution can speed up dataannota-
tionand automatic segmentation for a diverse set of applications. Our
contribution also marks the application of vision foundation models
in microscopy. We expect future work to build on it and extend the
application of such models to further improve object identification
tasks and address other image analysis problems.

We compare our method to established tools for segmentationand
tracking and show competitive orimproved performance. However, we
expect that furtherimprovements toward usability and performance
canbe made by integrating parts of our methods with other tools. For
example, our models and interactive segmentation functionality could
beintegrated with CellPose, MitoNet or other methods for automatic
instance segmentation thatenable users to fine-tune, combining faster
data annotation with more efficient architectures for processing large
datasets. Toenable suchintegration, we have developed our annotation

tool as a napari plugin so that they can be used in combination with
other napari-based software, published our models on Biolmage.l0**
to offertheminastandard formatand also provided awell-documented
Pythonlibrary. Our models can already be used within Deep MIB** and
QuPath**¢, which offer preliminary support for SAM. Integration with
other tools that support interactive annotation, such as ilastik® or
TrackMate’, is also desirable.

We also plan to improve and extend uSAM across several dimen-
sions. In the near future, we plan to train further models for biomedi-
cal applications, in particular a generalist EM model for organelle
segmentation leveraging the data provided by Open Organelle’ and
models for other modalities such as histopathology data. We also want
to implement automated tracking to speed up annotation with the
tracking tool. To enable more efficient fine-tuning, we plan to extend
the investigations into parameter-efficient training approaches to
more recent methods than LoRA*’, which may provide faster training
times in our setting. In addition, more efficient architectures* could
replace the transformer-based encoder to reduce the computational
cost for inference and training. To move toward a universal model for
microscopy instance segmentation, we plan to also investigate how
SAM (or similar models) can be made semantically aware, to enable
ambiguous segmentation cases as in EM, how it can be extended to
full 3D segmentation and how a unified model for several domains
(LM, EM) can be trained.

While our contribution provides versatile and powerful function-
ality for interactive and automatic microscopy segmentation, it has
some limitations compared to established approaches, mainly due
to the larger computational footprint of vision transformers. While
interactive data annotation is possible due to the modular design of
SAM (enabling precomputation of image embeddings), automated
processing of large datasetsis not as efficient compared to CNN-based
approachessuch as CellPose or MitoNet. Furthermore, fine-tuning the
SAM models on new datatakes longer, especially on the CPU, sowe do
not provide ‘human-in-the loop’ fine-tuning as in CellPose, where the
modelis updated after each annotated image, but rather enable users
tofine-tune throughaseparate user interface or scripts. The computa-
tional cost also prevents us from building a3D segmentation approach
thatoperates onorthogonalslices, asis done by CellPose and MitoNet;
we process volumetric or time-series dataslice by sliceinstead and use
post-processing to avoid the resulting artifacts. Some artifacts dueto
2D inference canstill occur.

Our comparisonsto CellPose and MitoNet are meant to provide a
reference for automatic segmentation tools as they are available to a
user. While we have done our best to compare to these methods fairly,
we did not retrain them on our model’s training data (which would be
very challenging for the large dataset SAM s initially trained on). We do
notclaimsuperior performance compared to them; rather, we provide
similar automatic segmentation quality for most practical purposes
with the added benefit of interactive segmentation and support for
more datamodalities. Similarly, the user studies we conduct have many
degrees of freedom, so depending onuser experience and use case, the
conclusionabouttoolsuitability will vary. Nevertheless, we believe that
these studies provideimportant context for the application of our tool
in practice, and we have designed them to provide as fair acomparison
aspossible.Inaddition, we do not yet provide a single model that works
equally well for multiple microscopy domains, but rather provide three
sets of models (LM generalist, EM generalist for mitochondria and
nuclei, default SAM) with different strengths. We have added asection
in our documentation to guide users through choosing the correct
model for their application (https://computational-cell-analytics.
github.io/micro-sam/micro_sam.html#choosing-a-model). We believe
that, despite these limitations, uSAM offers the most versatile solution
to (interactive) microscopy segmentation currently available and we
are optimistic that the developments outlined herein will eventually
address its limitations.
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Methods

SAM

SAM is a vision foundation model for interactive segmentation. It
was introduced by Kirilov et al.". Here, we briefly summarize its main
functionality. It solves interactive segmentation tasks by predicting
an object mask for annotations describing a given object in the input
image. The annotations can be abounding box, points (positive and/
or negative) or a low-resolution mask. These annotations are called
‘prompts’inthe SAM publication; we use the terms ‘prompt’and ‘anno-
tation’interchangeably. Kirilov et al. also describe segmentation based
on text annotations, but the published version of the model does not
include thisfeature.For anewimage, the model predicts anembedding,
which correspondsto avector per pixelin adownscaled representation
of the input, with the image encoder. The image encoder is a vision
transformer™ and SAM comes in three variants with different sizes
of the encoder, using the ViT-B, ViT-L or ViT-H architectures (ordered
by increasing model size). We also include a version using the smaller
ViT-T, which was introduced by MobileSAM*. The image encoder con-
tains the majority of the model’s parameters. It has to be applied only
once per image, enabling fast recomputation of object masks if the
annotations change in interactive segmentation. The other parts of
the model are the prompt encoders that encode the user annotations
and the mask decoder that predicts the object mask and IOU score
based ontheimage embedding and the encoded annotations. The IOU
score corresponds to an estimate for the mask quality. To deal with the
ambiguity of a single point annotation, which could refer both to an
object or a part thereof, SAM predicts three different masks for this
case.See Extended Data Fig.1afor an overview of the SAM architecture.

The modelis trained on alarge labeled dataset of natural images
thatis constructed iteratively by annotators who correct the outputs
of SAMtrained onaprevious version of this dataset. The modelis then
evaluated on a broad range of segmentation tasks and shows remark-
able generalization performance to images from different domains.
The authors also implement a method for AlS, termed AMG. It covers
theinputimage with a grid of points and predicts masks for all points.
The predicted masks are post-processed to retain only high-quality
predictions. This involves filtering out masks with a low IOU predic-
tion, and masks with a low stability score, which is computed based
onthe change of the masks when thresholded at differentlogit values.
Finally non-maximum suppression is applied to remove overlapping
predictions.

SAM was trained on RGB images, so the image encoder expects
image datawith three channels asinput. To process microscopy images,
which mostly have a single channel, we duplicate this channel three
times. We found that this approach works welland assume that SAM was
also trained on grayscale images using the same approach. Applying
the model to data with a different number of channels, for example,
two for a nuclear and cytosol stain such as in TissueNet, was more
challenging. We tried two approaches: (i) appending an empty chan-
nel and (ii) averaging the two channels to obtain a single channel that
isthen duplicated three times. Both approaches have disadvantages:
inthe first case, the image statistics are altered compared to training
by adding an empty channel, while in the second case, information is
lost by averaging. We found that the second approach worked better
and applied it in the relevant experiments. Note that this approach
is detrimental compared to using both channels independently and
constitutes a limitation when applying the current SAM architecture
to multichannel images. The image is resized to 1,024 x 1,024 pixels
before being passed into the image encoder.

AlS

We extend the original SAM architecture with an additional decoder
for predicting an AlS. This decoder is based on UNETR*, It consists of
four blocks of two convolutional layers, each followed by a transposed
convolution for upsampling. Each block receives the image encoder

output as additional input. The output of the decoder has the same
spatial dimensions as the input image. It predicts three output chan-
nels: the distance to the object center, the distance to the object bound-
ary and foreground probabilities. The distances are normalized per
object; see Supplementary Fig. 2afor adepiction of the targets used for
training. We compute an instance segmentation based on them using
a seeded watershed, using the implementation from scikit-image*.
Bothdistance channels are used to derive seeds by finding connected
regions with the center distance below a threshold parameter and the
boundary distance above a threshold parameter. In addition to these
seeds, the watershed uses the distance predictions as a heightmap and
thethresholded foreground predictions as amask. We have chosen this
approachtosegment complex object morphology witharather simple
procedure: using the boundary distances prevents merging narrow
adjacent objects that would be falsely joined if only the center distances
were used. Conversely, using the center distances prevents falsely split-
ting non-convex objects that have multiple connected regions in the
thresholded boundary distance predictions. We call thisapproach AlS.
Thissegmentation procedureisinspired by other approaches that use
distance predictions for instance segmentation, for example, StarDist’
or CellPose’, but it uses a simpler post-processing logic.

We have validated our approach by comparingit to two other seg-
mentation methods: predicting boundaries and foreground followed
by watershed and predictingaffinities followed by Mutex Watershed™.
Wetrained a UNETR model based on the SAM ViT-B encoder on LIVECell
forallthree approaches, using10,000 training iterations and otherwise
using the same hyperparameters as described in the next section.
We found that the distance-based approach (mean segmentation
accuracy of 0.39) performed better than predicting affinities (0.36)
and boundaries (0.31). We have further compared how our segmenta-
tion method works when using different network architectures. For
this, we compare the UNETR architecture with a UNet* and a sim-
pler architecture based on SAM that reuses the SAM image encoder
and mask decoder to predict the foreground and distance channels
for instance segmentation. The results are shown in Supplementary
Fig.4a,b.Insummary, we see that the SAM-based architectures provide
abigadvantage for small training datasets, as long as their weights are
initialized with a pretrained model, and that the UNETR architecture
with convolutional decoder has an advantage over using the SAM mask
decoder for this task.

Note that our segmentation approach also shares some similari-
tieswith CellVIT?, which uses aSAM encoder for AlS in histopathology.
However, CellVIT does not preserve the interactive segmentation
capabilities of SAM. We have also evaluated its instance segmentation
approach, whichis based on predicting distance gradients, but found
that it does not work well for touching objects.

Training
To fine-tune SAM models, we implement and make available an
iterative training scheme following the description in Kirilov et al.".
Note that the training algorithm by Kirilov et al. has so far not been
released. Other tools that fine-tune SAM, for example, MedSAM®, rely
on asimpler training heuristic that only fine-tunes SAM for a specific
kind of prompt, for example, box prompts. We have found that such
approaches improve the segmentation quality for the given prompt
type, but that they hamper it for other prompts (see also below). To
provideamodelforinteractive segmentation, it is thus crucial to follow
asimilar training procedure as that used for training the initial SAM.
The training algorithm requires image data and corresponding
ground-truth segmentations for the objects of interest. During train-
ing, we iterate over the complete training set several times in so-called
epochs.Inasingleiteration, we sample a minibatch, corresponding to
multipleimages and the corresponding ground truth, apply theimage
encoder, derive prompts from the ground truth that are then passed
to the prompt encoder and predict objects with the mask decoder.
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We then compute the loss between predictions and ground truth and
update the network weights viabackpropagationand gradient descent.
Compared to regular training approaches for instance segmenta-
tion, a single iteration is more complex as it is made up of multiple
sub-iterations to mimic interactive segmentation. In more detail, a
training iteration follows these steps:

1. Sample a minibatch containing input images and ground truth
from the training set.

2. Sample a fixed number of objects from the ground truth. Train-
ing with all objects in a given image would require too much
memory.

3. Predict the embeddings for the sampled image(s) with the
encoder. Note that the encoder depends only on the image data
and not on the prompts.

4. Perform the following steps for all sampled objects in a batched
fashion:

a. Sample a random point from the object, which is used as a
positive input point, or use the bounding box of the object as
the prompt.

b. Predict the mask and expected IOU value for the given input
with SAM. If the model is presented with a single point anno-
tation, predict three output masks; otherwise, predict a sin-
gle output mask. See the previous section for the motivation
of this approach.

c. Compute the loss between the predicted and ground-truth
object as well as the loss between the estimated and true IOU
score. If three objects were predicted, only the loss of the ob-
jectwith highest IOU prediction is taken into account.

d. Sample two new points: a positive one where the model pre-
dicted background but where there should be foreground
(according to the ground truth), and a negative one for the
reverse case. If such points cannot be sampled because there
is no region with missing foreground predictions or vice ver-
sa, we sample a random positive/negative point from within/
outside the object.

e. Present the combined annotations from the previous steps,
that is, all points sampled so far and the box annotation if
used in the first step, to the model. We also use the mask pre-
diction from the previous step as an additional prompt with
a probability of 50%; see next paragraph for more details on
this step.

f. Compute the mask and IOU loss for the current prediction.

5. Steps4d-farerepeated for afixed number of times (we use
eight sub-iterations), all losses are accumulated; backpropaga-
tion and gradient descent are performed based on the average
loss over all sub-iterations and update all parts of the model
(image encoder, prompt encoder, mask decoder).

The goal of this training procedure is for the model to iteratively
improve segmentation masks and provide a valid mask output for any
input annotation. Weimplement it as described inKirilov et al. with the
exception of the mask sampling in step 4e. Here, the original training
scheme uses the previous model prediction as mask input for the next
sub-iteration every time rather than sampling it. We found that this
approach leads the model to ‘rely’ on the presence of a mask prompt
when multiple point annotations are given, resulting in degraded
performance if this mask prompt is not given. To enable both set-
tings, segmentation with multiple point prompts with or without a
mask prompt, we introduce the aforementioned sampling procedure.
See Supplementary Fig. 1for a quantitative comparison of iterative
segmentation with and without mask prompt using the default SAM
and a model fine-tuned with our training implementation. We have
also experimented with simpler training schemes that do notinvolve
multiple sub-iterations and that instead only sample boxes and/or
fixed numbers of point annotations from the ground truth. We found

that this approach leads to worse results for iterative segmentation;
the model does not work well for interactive correction of the model
predictions. Even simpler training approaches, like only training to
segment from a box prompt as is done in MedSAM®, lead to a further
degradation of the model’s capacity for interactive segmentation.

To train the segmentation decoder (see previous section), we
interleave a training iteration for interactive segmentation and an
iteration for automatic segmentation. Here, we make use of the same
image and ground truth as sampled for interactive segmentation. We
derive the target channels for the decoder from the ground truth:
center and boundary distances as well as foreground map (see previ-
ous section and Supplementary Fig. 2a). We then compute the loss
between these targets and the decoder predictions and update the
weights of the image encoder and segmentation decoder based on
it. We have also explored two other training strategies where we first
train the model for interactive segmentation and then for AlS, trying
both updating the weights of the image encoder and keeping them
frozen. We found that training interactive and AlS jointly leads to the
best results; the other strategies lead to diminished results either for
interactive segmentation (if the image encoder weights are updated)
or for AlS (if the encoder weights are frozen).

For the validation steps during training, we rely on a simpler pro-
cedure forinteractive segmentation where we sample abounding box
and a fixed number of points per object, using the average Dice score
betweenground-truth and predicted objects as ametric. For automatic
segmentation, we use the same loss function asin training as a metric,
andadd up the metric valuesforinteractive and automatic validation. All
experiments reportedin this paper rely on fine-tuning the weights pro-
vided by the SAM publication;insome experiments, we further fine-tune
our models. Our training method could also be used to train a model
from randomly initialized weights. However, we expect this approach
todrastically increase training times and thus did not pursueit.

We use the following settings and hyperparameters for training:

» Weuse abatch size of two, that is, two images and the corre-
sponding ground truth are sampled per batch. In cases where
we train with constrained resources (Fig. 5a and Extended Data
Fig.10) we use a batch size of 1. Further training hyperparam-
eters are documented in Extended Data Fig. 10c.

«  Wetrain all models with a patch shape of 512 x 512 pixels; some
training datasets contain smaller images, which are zero padded
to match this shape. The only exception is the LIVECell special-
ist, which we have trained with a patch shape of 520 x 704 (the
fullimage shape).

«  Weuse the Dice loss to compare ground-truth objects and mask
predictions for interactive and automatic segmentation.

«  WeusethelL2loss to compare true and predicted IOU scores.

+  We use the ADAM optimizer™ with an initial learning rate of 107,
We also investigated the impact of learning rate and optimizer,
trying the learning rates 5x10™,10™,5x 107,105 and 5 x 10 ® as
well as using ADAMW?? instead of ADAM. We found that using
higher learning rates than 10~ led to worse results and did not
find an effect of the other parameter choices.

« Fortraining the decoder outputs for AIS, we use the average
Dice loss over the three predicted channels, center and bound-
ary distances as well as foreground predictions, masking the
loss in the background for the two distance channels. Somewhat
counterintuitively, we found that using Dice as the loss function
for the distance predictions works better than using the L2 loss.
Note that the distance channels are normalized to the range
[0,1], so the Dice loss is well defined.

«  Welower the learning rate when the validation metric plateaus
(ReduceLROnPIateau).

« For most experiments, we train the models for 250,000 itera-
tions and use the epoch that achieves the best validation metric.
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We found that the EM and LM generalist models, especially
ViT-L and ViT-H, which are both trained on large and diverse
datasets, kept improving late in training, and use this setup for
all experiments where we train and compare to these models
(Figs. 3a and 4a and Extended Data Figs. 1b, 2, 5 and 8).

- For investigating which model parts to fine-tune (Fig. 1b) and
investigating lower training data fractions on LIVECell (Fig. 1cand
Extended Data Fig. 1c), we train the models with early stopping
for amaximum of 100,000 iterations. For resource-constrained
settings (Fig. 5b and Extended Data Fig. 10a) and the user study
(Fig. 6), we also use early stopping and train for a maximum of
100 epochs.

» Unless stated otherwise, the models were trained on a A100
GPU with 80 GB of VRAM, where training a model for 250,000
iterations took about 6 days. We provide an overview of all
hardware configurations used for our experiments in Extended
Data Fig.10c and list representative training times with early
stopping in Extended Data Fig. 10d.

For the implementation, we reuse the code from Kirilov et al.
wherever possible and implement the additional training logic with
PyTorch* and torch-em*, a PyTorch-based library for deep learning
applied to microscopy also developed by us.

Inference and evaluation

To quantitatively evaluate SAM for interactive segmentation, we mimic
user-based segmentation with the model, following a similar logic as
described in the previous section.

We derive prompts from the ground-truth objects, run the model
withtheimage and these prompts asinput and evaluate the predicted
masks. We do not compute any loss functions and don’t accumulate
gradients. We implement two different evaluation approaches—one
where the mask from the previousiterationis alwaysused, one whereiit
isnotused (step 4e; see also the evaluationin Supplementary Fig.1). We
evaluate theresults for each of the sub-iterationsindividually by com-
puting the meansegmentation accuracy compared to the ground-truth
masks (seebelow).InFig.2a, Extended DataFig.1b and Supplementary
Fig.1, wereport the mean segmentation accuracy for each individual
sub-iteration, stopping after seveniterations. We distinguish the cases
where we start from a box prompt (red bars) or from a single point
prompt (green bars). For all other figures, we only report the mean
segmentationaccuracy for the zeroth sub-iteration (that is, segmenta-
tion based only on the initial box or point prompt) and the respective
last sub-iteration. Note that the point prompts are sampled randomly
(subject to prediction errorsin previous sub-iterations); weinvestigate
theinfluence of this randomness in Extended Data Fig. 1b.

We evaluate models for automatic segmentation by computing
the mean segmentation accuracy (see below) between model predic-
tion and ground-truth masks. When evaluating AMG, we found that
it was crucial to also optimize two of its hyperparameters: the IOU
and stability thresholds that are used for filtering out low-quality
predictions (see also the first Methods section). While the default
settings work well for the original SAM models, they have to be low-
ered for the fine-tuned models. Presumably, this is because these
models are better calibrated to the actual prediction quality for
objects in microscopy, which is lower compared to natural images.
To efficiently perform a grid search, we precompute the predicted
object masks and then evaluate the hyperparameter ranges to be
tested. The parameter search is performed on a separate validation
set, and the best setting found is applied to the test set. For AIS, we
determined the best parameters for the threshold applied to center
and boundary distances similarly via grid search. In the annotation
tool (next section), the best values for AIS and AMG parameters are
automatically set for the selected model.

For comparisons with CellPose, we use the most suitable CellPose
model for the given data (at the time of running the experiments),
corresponding to the CellPose specialist models for LIVECell and
TissueNet and the cyto2 model otherwise. We have used these mod-
els with default settings and ran prediction with the CellPose Python
library. For MitoNet, we use the napari plugin for 2D segmentation with
the MitoNet_vl model with default parameters. Note that the MitoNet
Pythonlibrary was not available opensource at the time of running the
experiments, so we resorted to using the napari plugin (https://github.
com/volume-em/empanada-napari/) instead.

We evaluate segmentation results with the mean segmentation
accuracy. The segmentation accuracy, SA(t), was introduced in
Everingham et al.”” and is defined in terms of true positives, TP(¢),
false positives, FP(¢), and false negatives, FN(¢), at IOU threshold ¢ as:
SA(¢) = TP(8)/(TP(¢t) + FP(t) + FN()). TP(¢), FP(¢) and FN(¢) are computed
by matching segmentation and ground truth onaper-objectlevel and
counting matches with a higher IOU value than ¢t as TP(¢), unmatched
objectsinthe predictionas FP(¢) and unmatched objectsin the ground
truthas FN(¢). The mean segmentation accuracy is then computed by
averaging SA(¢) over thresholds ¢in the range from 0.5 to 0.95 with
increments of 0.05. We compute this score perimage and then average
it over all images of a given evaluation dataset. This metric has been
popularized for microscopy by the DSB Nucleus Segmentation
Challenge® and has recently been studied in depth by Hirling etal.* in
the context of microscopy segmentation. The mean segmentation
accuracy is a stringent evaluation criterion, because it includes the
evaluation at highIOU thresholds, which penalize even small deviations
fromthe ground-truth objects. For thisreason, we use the less stringent
SA (0.5) measure for some experiments where we found that it was too
strict for ameaningful evaluation.

To evaluate the quality of tracking results in the user study, we
use the tracking metric introduced by the Cell Tracking Challenge™.
This metric matches the graph defined by the ground-truth tracking
annotations and the graph defined by the predicted tracking result to
eachother and then counts errors in this matching. We use theimple-
mentation provided by the ‘traccuracy’ repository (https://github.
com/Janelia-Trackathon-2023/traccuracy/).

Interactive annotation tools and Python library

We extend the core functionality of SAM to support caching of precom-
puted image embeddings, tiled computation of image embeddings
and multidimensional segmentation based on projecting prompts to
adjacent slices/time frames. We implement this functionality in our
USAM Python library, using scipy®” and scikit-image* to implement
additional image processing logic. We also use the scientific Python
libraries numpy*®, pandas®’ and matplotlib® toimplement our library
and to perform additional data analysis and plotting for this paper.
Our Python library alsoimplements the training and evaluation func-
tionality described in the previous sections. It further contains the
implementation of our napari plugin, which implements five different
widgets: for 2D annotation, for 3D annotation, for high-throughput
image annotation, for tracking and for model training. A more detailed
description of ourimplementation for this functionality can be found
inthe Supplementary Information.

User study

We performthree different user studies to demonstrate the usefulness
of our naparitool for 2D segmentation, 3D segmentation and tracking.
The first user study is performed by five different annotators and we
compare PSAM and CellPose for annotating organoids in brightfield
images. We perform this user study with multiple annotatorsin order
tostudy the difference of annotation performance between users and
compare different annotation modes for both tools. In the second
user study, a single annotator segments nuclei in 3D EM, comparing
USAM withiilastik carving. In the last user study, nuclei are tracked in
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fluorescence microscopy by a single annotator, comparing interac-
tive tracking with p.SAM and tracking and correction with TrackMate.
A detailed description of the user studies can be found in the Supple-
mentary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

We use publicly available datasets for most experiments (Supple-
mentary Tables 1and 2). We generate new datasets for the 2D and 3D
user studies. The dataset for the 2D user study consists of brightfield
microscopy images of organoids and is available on Zenodo via https://
doi.org/10.5281/zenodo.14036956 (ref. 61). The dataset for the 3D user
study consists of volume EM blocks, in which we have annotated nuclei.
We have deposited this dataset on Zenodo via https://doi.org/10.5281/
zenodo.14037020 (ref. 62).

Code availability

Our software is available on GitHub under a permissive open-source
license at https://github.com/computational-cell-analytics/
micro-sam/.Itisdocumented at https://computational-cell-analytics.
github.io/micro-sam/micro_sam.html. The version at submission of
this manuscriptis 1.1.1. Our LM and EM generalist models are avail-
able on Biolmage.lO and Zenodo. Please refer to our model docu-
mentation for the DOIs of individual models. Additional models
are deposited on Zenodo and the corresponding links are given at
https://computational-cell-analytics.github.io/micro-sam/micro_sam.
html#finetuned-models. The tables and code for generating quanti-
tative plots are available on GitHub. Additional code for the analysis
of the 2D annotation user study is available at https://github.com/
computational-cell-analytics/user-study-v3/.
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Extended Data Fig. 1| SAM Architecture and extended LIVECell results. SAM
architecture and extended results on LIVECell. a. SAM takes the image and

object annotations asinput and predicts mask(s) and IOU score(s). Theimage
encoder computes the embeddings, which are independent of the annotations,
the prompt encoders encode the mask, point and/or box annotations and the
mask decoder predicts the output mask(s) and score(s). In the case of annotation
withasingle point, the model predicts three potential output masks to deal

with ambiguity; for example predicting the individual object highlighted by the
pointinthe example or also predicting the objects touching it. The predicted

score gives the confidence for the correctness of the mask. b. Results for SAM
(default and fine-tuned) on LIVECell with different image encoder sizes (ViT-T,
VIiT-B, ViT-L, ViT-H). We use the same experimental set-up as in Fig. 2a. The

black error bars indicate the standard deviation over five independent runs of
the interactive segmentation evaluation procedure. Note that this procedure
includes randomness because it samples prompts to correct the segmentation
masks according to segmentation errors from previous iterations. c. Training on
reduced LIVECell datasets for allimage encoder sizes; same experimental set-up
as Fig. 2c with differentimage encoder sizes.
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Extended Data Fig. 3| Qualitative interactive segmentation results for light
microscopy I. Qualitative comparison of interactive segmentation for the
default SAM and our LM generalist. For both the model based on ViT-L is used.
Cyan shows the input point or box annotation, yellow the correct object and
red the model prediction. We select examples with the bestimprovement in
10U score of the generalist compared to the default model to highlight typical

improvements. The most consistent improvement is that the generalist correctly
segments individual cells in clusters, whereas the default model segments the
whole cluster. This figure serves to give animpression of how the interactive
segmentation isimproved; the quantitative improvement can be seenin Fig. 3a
and Sup. Figure 2.
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Extended Data Fig. 4 | Qualitative interactive segmentation results for light the segmentation quality is lower because the generalist segments smaller sub-
microscopy II. Qualitative comparison of interactive segmentation for the structures. This systematic effect can also be observed for Covid IF, where the
default SAM and our LM generalist (ViT-L). Opposite approach to Extended Data generalist often segments only the nucleus, whichis discernible from the rest of
Fig.3: we show the objects where the decrease in IOU is largest comparing the the cell, rather than the full cell. Note that the quantitative segmentation quality
generalist and default model. Here, we see a few different effects: in some cases for all these datasets is clearly higher for the generalist model as shown in Fig. 3
the generalist model segments several nearby cells (proving an exception to and Extended Data Fig. 2.

the general behavior observed previously) for point annotations, in other cases
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Extended Data Fig. 6 | Qualitative interactive segmentation results for
electron microscopy I. Qualitative comparison of interactive segmentation
for the default SAM and our EM generalist (ViT-L). Cyan shows the input point
or box annotation, yellow the correct object and red the model prediction. We
select examples with the bestimprovement from the generalist model (see
also Extended Data Fig. 3). The generalist model overall adheres better to the

object boundaries and for single point annotations segments the selected
organelleinstead of the surrounding compartment. It also avoids segmenting
touching objects. This figure serves to give animpression of how the interactive
segmentation isimproved; the quantitative improvement can be seenin Fig. 4a
and Extended Data Fig. 5.
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Extended Data Fig. 7| Qualitative interactive segmentation results for model (see also Extended Data Fig. 4). Note that the quantitative segmentation
electron microscopy II. Qualitative comparison of interactive segmentation for quality for all these datasets is better with the generalist as shown in Fig. 4 and
the default SAM and our EM generalist (ViT-L). Opposite approach to Extended Extended DataFig. 5.

DataFig. 6: we show the objects with the largest disadvantage for the generalist
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Extended Data Fig. 8| Segmentation results for neuron and other organelle
segmentationin electron microscopy. Segmentation of other structures in EM.
a.Segmentation of neurites in EM using the CREMI*® dataset. We compare the
default SAM, our EM generalist and a specialist model. The specialist is fine-tuned
starting from default SAM on a separate training split; the models are evaluated
onthe same test split; the evaluation isin 2D and follows the usual approach.
The images below compare qualitative results for interactive segmentation

with the three models. Allmodels are based on ViT-L. We see that the generalist
overall decreases the segmentation quality for this task because it was trained

to segment organelles rather than membrane compartments like neurites.

Only interactive segmentation after correction (I, and Ip) isimproved, which
canbe partly explained by the effect discussed in Supplementary Fig. 1. The
specialist model clearly improves the segmentation results across all settings.

b. Endoplasmic reticulum (ER) segmentation. We follow the same strategy as
ina, but for segmenting ER instead of neurites, using the ASEM dataset from
Gallusser et al.*. Here, we somewhat surprisingly observe that the two smaller
models (ViT-T, ViT-B) perform better than the two larger models in some
settings. Annotation quality with a single point and AMG quality decrease for the
generalist compared to the default model, but annotation with abox improves
or does not change much (depending on the model). Interactive segmentation
(I, and Iy) improves. In summary the generalist does not have a clear advantage
over the default model. Training a specialist, with the default model as starting
point, improves results in all settings compared to the default model and is better
than or on par with the generalist in almost all settings, except for interactive
segmentation with ViT-T and ViT-B.
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Extended DataFig. 9 | Volumetric segmentation results. Interactive and prompts to adjacent slices. For automatic segmentation we use the slice by slice
automatic 3D segmentation. a. Quantitative evaluation for interactive and segmentation approach, followed by merging of segments across slices. We
automatic segmentation with default SAM and the LM generalist for cell report the result for AIS with our generalist models; 3D segmentation via AMG is
segmentation (left) / the default SAM and the EM generalist (right); using the tooinefficient to runit here. We report the SA50 metrics (segmentation accuracy
ViT-B models. We use a confocal microscopy volume from PlantSeg (Ovules)* atanIOU of 50%) because we found that mean segmentation accuracy is too
/aFIBSEM volume from Lucchi et al.*® for the experiments. For interactive stringent for these 3D segmentation problems. b. 2D and 3D visualizations of the
segmentation we derive a single promptin the middle slice per object and then results for automatic segmentation for both datasets.

run our interactive volumetric segmentation approach based on projecting
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Extended Data Fig. 10 | Model finetuning in resource-constraint settings.
Resource constrained finetuning. a. Improvement of different segmentation
settings with training epochs for finetuning ViT-T,B,L,H on LIVECell. We train for
100,000 iterations, otherwise using the same settings as in Fig. 2a. We see that
the majority of improvements happen early, motivating the use of early stopping
inresource constrained settings. b. Influence of the number of objects perimage
used during finetuning, which is the most important training hyperparameter
and also determines the VRAM required for training. The experiments are for a
ViT-B trained for 100,000 iterations on LIVECell with 1-45 objects per image and
we show evaluations for the usual segmentation settings. We see that increasing
the number of objects initially strongly improves results and then plateaus or
improves results with asmaller slope. c. Best hyperparameter settings for the
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CPU (32G) Generalist LoRA 7 1:58:57
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RTX5000 Generalist LORA 32 0:34:04
V100 Default Full FT 20 0:26:24
V100 Default LoRA 42 0:51:10
V100  Generalist Full FT 2 0:03:48
V100 Generalist LoRA 5 0:07:11

hardware configurations we have tested. For each configuration we first looked
iftraining ViT-L is possible (only for A100), using ViT-B otherwise, then how many
objects could fit. For A100 we use a batch size of 2 and for all other settings a
batch size of 1. For the GTX 1080 it is not possible to fine-tune the full ViT-B model
anditis only possible to fine-tune mask decoder (MD) and prompt encoder (PD),
which limits the model improvements, see also Fig. 2b. d Training times in epochs
and minutes for finetuning models on Covid IF (Supplementary Fig. 4) using

the different hardware configurations and best settings according to ¢, when
updating all weights (Full FT) or using parameter-efficient training (LoRA) We use
early stopping after 10 epochs without improvement and start training either
from the default model or LM generalist.
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Software and code

Policy information about availability of computer code

Data collection We have created a new open source software tool for microscopy image segmentation. The software is available at https://github.com/
computational-cell-analytics/micro-sam and documented at https://computational-cell-analytics.github.io/micro-sam/micro_sam.html. This
includes installation instructions with all required dependencies.

Data analysis We rely on the scientific python tools for analysis of our experiment results and plotting, in particular numpy (1.26), pandas (2.1) and
matplotlib (3.8). The version numbers given in parenthesis are for the main python environment where the analysis was run. Note that these
software packages are stable so the analysis output is expected to be stable across versions.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Our software is available on github under a permissive open source license at
https://github.com/computational-cell-analytics/micro-sam. It is documented at
https://computational-cell-analytics.github.io/micro-sam/micro_sam.html. The version at

submission of this manuscript is 1.1.1. Our LM and EM generalist models are available on

Biolmage.lO and Zenodo. Please refer to our model documentation for the ids and dois of the

individual models. Additional models are deposited on Zenodo and the corresponding links are

given in the documentation. The tables and code for generating quantitative plots are available on github. We
make use of publicly available datasets for most experiments. They are listed in Supp. Table 1

and 2. We use new datasets for the 2D and 3D annotation user studies. These datasets are avaialble on zenodo,
please see the data availability section for their DOIs.
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender NA

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We perform different kinds of experiments, with different definitions of sample size. To evaluate segmentation algorithms on existing
datasets we use approximately 30 different datasets. Here, a larger size is desirable to provide a coverage of relevant experimental settings,
but requires additional experimental and computational effort. In the user study we provide a multi annotator study with 5 subjects to
investigate inter annotator effects. There are no clear statistical criteria for the number of annotators, five was the number we could recruit
and coordinate among the co-authors.

Data exclusions  We did not exclude any data from experiments.

Replication We performed replications for one of the segmentation evaluation experiments (Extended Data Figure 1) to investigate the effect of
randomness in the interactive segmentation procedure. We tested this for five independent replications.

Randomization  Randomization of experiments is not applicable for our study.

Blinding Blinding of experiments is not applicable for our study.
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