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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Qualitative interactive segmentation results for light
microscopy I. Qualitative comparison of interactive segmentation for the
default SAM and our LM generalist. For both the model based on ViT-L is used.
Cyan shows the input point or box annotation, yellow the correct object and
red the model prediction. We select examples with the bestimprovement in
10U score of the generalist compared to the default model to highlight typical

improvements. The most consistent improvement is that the generalist correctly
segments individual cells in clusters, whereas the default model segments the
whole cluster. This figure serves to give animpression of how the interactive
segmentation isimproved; the quantitative improvement can be seenin Fig. 3a
and Sup. Figure 2.
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Extended Data Fig. 4 | Qualitative interactive segmentation results for light the segmentation quality is lower because the generalist segments smaller sub-
microscopy II. Qualitative comparison of interactive segmentation for the structures. This systematic effect can also be observed for Covid IF, where the
default SAM and our LM generalist (ViT-L). Opposite approach to Extended Data generalist often segments only the nucleus, whichis discernible from the rest of
Fig.3: we show the objects where the decrease in IOU is largest comparing the the cell, rather than the full cell. Note that the quantitative segmentation quality
generalist and default model. Here, we see a few different effects: in some cases for all these datasets is clearly higher for the generalist model as shown in Fig. 3
the generalist model segments several nearby cells (proving an exception to and Extended Data Fig. 2.

the general behavior observed previously) for point annotations, in other cases
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Extended Data Fig. 5| Extended quantitative evaluation for electron (a-d) and additional datasets. Note that the datasets Sponge EM and Platynereis
microscopy models. Comparison of the default SAM and our EM generalist, with (Cilia) evaluate segmentation for ciliaand microvilli, which the generalist models
MitoNet as reference for automatic mitochondrion segmentation. We use the were not trained for. They still yield improved results (except for segmentation
same experimental set-up asin Fig. 3 but give results for allimage encoder sizes with asingle point prompt). See Supplementary Table 2 for dataset references.
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Extended Data Fig. 6 | Qualitative interactive segmentation results for
electron microscopy I. Qualitative comparison of interactive segmentation
for the default SAM and our EM generalist (ViT-L). Cyan shows the input point
or box annotation, yellow the correct object and red the model prediction. We
select examples with the bestimprovement from the generalist model (see
also Extended Data Fig. 3). The generalist model overall adheres better to the

object boundaries and for single point annotations segments the selected
organelleinstead of the surrounding compartment. It also avoids segmenting
touching objects. This figure serves to give animpression of how the interactive
segmentation isimproved; the quantitative improvement can be seenin Fig. 4a
and Extended Data Fig. 5.
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Extended Data Fig. 7| Qualitative interactive segmentation results for model (see also Extended Data Fig. 4). Note that the quantitative segmentation
electron microscopy II. Qualitative comparison of interactive segmentation for quality for all these datasets is better with the generalist as shown in Fig. 4 and
the default SAM and our EM generalist (ViT-L). Opposite approach to Extended Extended DataFig. 5.

DataFig. 6: we show the objects with the largest disadvantage for the generalist
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8| Segmentation results for neuron and other organelle
segmentationin electron microscopy. Segmentation of other structures in EM.
a.Segmentation of neurites in EM using the CREMI*® dataset. We compare the
default SAM, our EM generalist and a specialist model. The specialist is fine-tuned
starting from default SAM on a separate training split; the models are evaluated
onthe same test split; the evaluation isin 2D and follows the usual approach.
The images below compare qualitative results for interactive segmentation

with the three models. Allmodels are based on ViT-L. We see that the generalist
overall decreases the segmentation quality for this task because it was trained

to segment organelles rather than membrane compartments like neurites.

Only interactive segmentation after correction (I, and Ip) isimproved, which
canbe partly explained by the effect discussed in Supplementary Fig. 1. The
specialist model clearly improves the segmentation results across all settings.

b. Endoplasmic reticulum (ER) segmentation. We follow the same strategy as
ina, but for segmenting ER instead of neurites, using the ASEM dataset from
Gallusser et al.*. Here, we somewhat surprisingly observe that the two smaller
models (ViT-T, ViT-B) perform better than the two larger models in some
settings. Annotation quality with a single point and AMG quality decrease for the
generalist compared to the default model, but annotation with abox improves
or does not change much (depending on the model). Interactive segmentation
(I, and Iy) improves. In summary the generalist does not have a clear advantage
over the default model. Training a specialist, with the default model as starting
point, improves results in all settings compared to the default model and is better
than or on par with the generalist in almost all settings, except for interactive
segmentation with ViT-T and ViT-B.
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Extended DataFig. 9 | Volumetric segmentation results. Interactive and prompts to adjacent slices. For automatic segmentation we use the slice by slice
automatic 3D segmentation. a. Quantitative evaluation for interactive and segmentation approach, followed by merging of segments across slices. We
automatic segmentation with default SAM and the LM generalist for cell report the result for AIS with our generalist models; 3D segmentation via AMG is
segmentation (left) / the default SAM and the EM generalist (right); using the tooinefficient to runit here. We report the SA50 metrics (segmentation accuracy
ViT-B models. We use a confocal microscopy volume from PlantSeg (Ovules)* atanIOU of 50%) because we found that mean segmentation accuracy is too
/aFIBSEM volume from Lucchi et al.*® for the experiments. For interactive stringent for these 3D segmentation problems. b. 2D and 3D visualizations of the
segmentation we derive a single promptin the middle slice per object and then results for automatic segmentation for both datasets.

run our interactive volumetric segmentation approach based on projecting
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Extended Data Fig. 10 | Model finetuning in resource-constraint settings.
Resource constrained finetuning. a. Improvement of different segmentation
settings with training epochs for finetuning ViT-T,B,L,H on LIVECell. We train for
100,000 iterations, otherwise using the same settings as in Fig. 2a. We see that
the majority of improvements happen early, motivating the use of early stopping
inresource constrained settings. b. Influence of the number of objects perimage
used during finetuning, which is the most important training hyperparameter
and also determines the VRAM required for training. The experiments are for a
ViT-B trained for 100,000 iterations on LIVECell with 1-45 objects per image and
we show evaluations for the usual segmentation settings. We see that increasing
the number of objects initially strongly improves results and then plateaus or
improves results with asmaller slope. c. Best hyperparameter settings for the
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Finetuning Best  Train Time
d Resource Model Stategy  Epoch (inhhmmiss)
CPU (32G) Default Full FT 24 5:41:31
CPU (32G) Default LoRA 13 2:57:08
CPU (32G) Generalist  Full FT 6 2:01:30
CPU (32G) Generalist LoRA 7 1:58:57
CPU (64G) Default Full FT 15 3:51:02
CPU (64G) Default LoRA 19 5:20:02
CPU (64G) Generalist Full FT 5 1:28:26
CPU (64G) Generalist LoRA 15 5:42:34
GTX1080 Default  MD, PE 40 1:18:05
GTX1080 Generalist MD, PE 13 0:15:05
RTX5000 Default Full FT 43 0:46:55
RTX5000 Default LoRA 16 0:17:37
RTX5000 Generalist Full FT 3 0:04:22
RTX5000 Generalist LORA 32 0:34:04
V100 Default Full FT 20 0:26:24
V100 Default LoRA 42 0:51:10
V100  Generalist Full FT 2 0:03:48
V100 Generalist LoRA 5 0:07:11

hardware configurations we have tested. For each configuration we first looked
iftraining ViT-L is possible (only for A100), using ViT-B otherwise, then how many
objects could fit. For A100 we use a batch size of 2 and for all other settings a
batch size of 1. For the GTX 1080 it is not possible to fine-tune the full ViT-B model
anditis only possible to fine-tune mask decoder (MD) and prompt encoder (PD),
which limits the model improvements, see also Fig. 2b. d Training times in epochs
and minutes for finetuning models on Covid IF (Supplementary Fig. 4) using

the different hardware configurations and best settings according to ¢, when
updating all weights (Full FT) or using parameter-efficient training (LoRA) We use
early stopping after 10 epochs without improvement and start training either
from the default model or LM generalist.
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https://github.com/computational-cell-analytics/micro-sam. It is documented at
https://computational-cell-analytics.github.io/micro-sam/micro_sam.html. The version at
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individual models. Additional models are deposited on Zenodo and the corresponding links are
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