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ABSTRACT

This work develops a novel Mixed Integer Model Predictive Control (MIMPC) for European Space
Agency (ESA)’s 3-dof free-floating platform which is actuated using on/off-thrusters that are subject
to activation time constraints and a Reaction Wheel (RW). It compares a penalty-term, a Linear
Complementarity Constraints (LCC), and a Mixed Integer (MI) based formulation to transcribe
the on/off thrusters within the optimization problem. A set of linear constraints is presented to
enforce the thruster time constraints. Analyses show that under the activation time constraints and
real-time requirements, only the MI formulation provides a functional MPC controller. Hence,
an MIMPC which directly controls the system’s eight thrusters and RW is developed. Simulated
results show that the controller can (sub-) optimally control and stabilize the system in real time
for a short enough prediction horizon. By including the thruster’s timing and on/off constraints,
the controller is able to exploit the system’s structure to provide efficient control.
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Nomenclature

𝜃 = Platform orientation (yaw) in world coordinates
¤𝜃 = Platform angular velocity in world coordinates
𝑥, 𝑦 = Platform position in world coordinates
¤𝑥, ¤𝑦 = Platform velocity in world coordinates
𝜔𝑅𝑊 = Reaction Wheel (RW) rotational speed
I𝑛×𝑛 = Identity matrix of size 𝑛 × 𝑛
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0𝑛×𝑚 = Zero matrix of size 𝑛 × 𝑚

s𝜃, c𝜃 = Sine and cosine of 𝜃
x, u = State and input vector of the system
x̂ = Target state
𝐹n = Nominal thrust force applied by a single thruster
𝑟 = Platform radius
𝑚, 𝐼S = Platform overall mass and inertia on the 𝑧-axis.
𝐼RW = RW’s inertia on the 𝑧-axis.
x 𝑗 |𝑡 , u 𝑗 |𝑡 = State and input prediction of time step 𝑗 , predicted at time step 𝑡

𝑁 = Prediction Horizon
Δ𝑡 = Discretization time of the system dynamics within the controller
U𝑡 ,X𝑡 = Set of all predicted states and inputs at time step 𝑡

ubin,𝑡 = Set of all predicted binary inputs at time step 𝑡

Q,W = Diagonal cost matrices for state and input cost terms.
𝑡𝑠 = Solver time to find the solution
𝑡𝑠 = Maximal or desired solver time to find the solution, and hence also control period
[[0, 𝑁]] = Closed integer interval from 1 to 𝑁 , i.e. {0, . . . , 𝑁}
[[0, 𝑁)) = Right-open integer interval from 1 to 𝑁 , i.e. {0, . . . , 𝑁 − 1}

Acronyms
ESA European Space Agency. 1, 3, 16

LCC Linear Complementarity Constraints. 1, 3, 6–8, 10, 13
LCP Linear Complementarity Program. 3
LCQP Linear Complementarity Quadratic Program. 9
LP Linear Program. 6

MI Mixed Integer. 1, 6
MILP Mixed Integer Linear Program. 4, 7, 9–11, 13
MIMPC Mixed Integer Model Predictive Control. 1, 4, 11–13
MIP Mixed Integer Program. 3, 7, 9, 10
MPC Model Predictive Control. 3, 4, 6, 7, 9–11
MPCC Mathematical Program with Complementarity Constraints. 3, 4, 7–11, 13

NLP Non-Linear Program. 8

OCP Optimal Control Problem. 3, 6, 9–11
ORGL Orbital Robotics and GNC Lab. 3, 16

p-p peak-to-peak amplitude. 13
PWM pulse-width modulation. 3
PWPF pulse-width pulse-frequency. 3

QP Quadratic Program. 3, 7, 9–11, 13

REACSA REcap-ACrobat-SAtsim. 3–5, 9, 11, 12
RMS root-mean-square. 12, 13
RW Reaction Wheel. 1–5, 7, 9, 11–13

TVLQR Time-Varying Linear Quadratic Regulator. 3, 13
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1 Introduction
Spacecraft rendezvous maneuvers are a pressing topic due to current issues such as space debris

removal [1, 2]. To carry out such maneuvers and test the associated sub-assemblies on earth, air-bearing
floating platforms are used [3]. European Space Agency (ESA)’s Orbital Robotics and GNC Lab (ORGL)
features a 9 m × 5 m flat-floor for air-bearing satellite testbeds [4]. On top, the 200 kg heavy air-bearing
platform REcap-ACrobat-SAtsim (REACSA) simulates a satellite [5]. REACSA is equipped with eight
cold gas thrusters and a Reaction Wheel (RW) to be able to control its linear and angular acceleration. Like
any system that uses thrusters and RWs, this experimental platform is subject to certain input constraints.
Besides the RW’s maximum applicable torque, its minimum and maximum angular velocity, the thrusters
can only be on/off (binary) actuated. Thus, the thrusters either deliver full or no thrust. Moreover, due to
physical limitations, a safe operation enforces certain activation time constraints: A thruster must remain
switched on for a minimum time 𝑡on, min to build up repeatable and reliable thrust. Also, it must be
turned off before a maximum activation time 𝑡on, max in order to comply with the pneumatic system and
to prevent icing due to expanding gas. After an activation phase, a thruster has an additional off period
𝑡off, min, while the buffer tank fills up again and the thruster nozzles warm up.

As in other approaches for control in space [6], the current controller for REACSA is a Time-Varying
Linear Quadratic Regulator (TVLQR) with preliminary trajectory optimization. However, it does not
know about the system constraints and hence, in reality, performs poorly [7]. To achieve optimal control
while respecting system constraints, Model Predictive Control (MPC) has already achieved good results
in spacecraft rendezvous application [8]. By explicitly modeling REACSA’s thruster constraints in the
Optimal Control Problem (OCP), the aim is to obtain a thrust-efficient control. Existing works on MPC
for satellite-like platforms with on/off thrusters can be divided into different classes.

Continuous MPCs model the inputs with a continuous function and convert them in an additional,
posterior step into binary values. Different works for combined attitude and position control of similar
platforms like REACSA perform the conversion by using a Delta-Sigma Modulator [9], pulse-width
modulation (PWM) [10] or simple trigger logic [11]. The MPC for only attitude control proposed by [12]
gets a little closer to direct binary control by outputting the continuous PWM parameters. However, by
assuming one firing cycle per prediction step it can not flexibly allocate binary thruster values. Another
example is the attitude controller for the Brazilian Multimission Platform Satellite, presented in [13]. It
converts the continuous inputs using a pulse-width pulse-frequency (PWPF) modulator.

Since optimal control by exploiting perfect thruster allocation that considers the timing constraints
is desired, this work focuses on the second class: formulations that know about the binary inputs. This
leads to the general class of MPCs with binary variables. Enforcing an input to be a binary variable makes
the controller’s underlying optimization problem significantly more complex since a non-convexity is
introduced. Other works tackle this kind of optimization problem using three different methods:

1) A widely used approach is to define respective variables as integer variables and formulate the
problem as a Mixed Integer Program (MIP).

2) A quadratic cost term penalizes non-binary values, while the binary variables are assumed to be
continuous, and the problem is a Quadratic Program (QP) [14].

3) A constraint, called Linear Complementarity Constraints (LCC), enforces binary values [15].
The problem becomes a Mathematical Program with Complementarity Constraints (MPCC).

While for the MIP an appropriate solver is necessary, the QP can be solved by any (non-convex) QP
solver. An MPCC can be solved with any non-linear solver [16], whereby there exist specialized solvers
and techniques similar to MIP [17]. The LCCs appeared first in a Linear Complementarity Program
(LCP) [18]. MPCCs have already been shown to work for binary decisions in the area of contact-implicit
trajectory optimization [19]. However, binary decision problems are NP-hard and solvability in real-time
depends strongly on the problem [20]. For the MIP formulation, there exist several works in similar
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context. In [21] an attitude Mixed Integer Linear Program (MILP) based control for entry vehicles with
on/off thrusters is presented. It does not consider any timing constraints and no statement about the
real-time capability is made. Timing constraints are considered in [22]: an attitude control with on/off
thrusters under minimum on and off time constraints, assuming equal minimum on and off time. To
be used as a real-time Mixed Integer Model Predictive Control (MIMPC), it is designed as an explicit
MPC. In addition to that, in [23] an MILP based MPC whose objective is to minimize the thrust firings
is presented. For a short prediction horizon, state-of-the-art solvers provide an approximate solution
fast enough. However, they consider no thruster time constraints. A similar MILP approach with on/off
thrusters that have a minimum impulse bit is developed in [24]. It is able to run in real-time on a modern
computer. Although all these works explicitly model the on/off constraints of the thrusters thus belonging
to the second class, they only consider attitude control. Only in [25] position is considered by reducing
oscillations of a cable-driven platform with cold gas thrusters. However, no thruster time limits are
considered, and the implementation is not real-time capable. Various works have successfully developed
MIMPCs for satellites, using the integer variables for collision avoidance [26, 27]. For the penalty-term
and MPCC formulation, to the authors’ knowledge, there are no results for a similar application.

The literature refers to the minimum thruster on and off times as minimum dwell time constraints [28].
Only a few of the works from the space context listed above develop an MPC that takes these constraints
into account. None of these works combine all three: minimum on, minimum off, and maximum on
time constraints. An important fact to consider for this system is that with on/off engines it is impossible
to stabilize the system to a steady state [29]. Instead, these systems are kept in a limit cycle around the
target [21–23, 28].

The scope of this work is a comparison of the different formulations that enforce binary inputs. It
compares which is the most appropriate in terms of real-time capability, while also respecting the timing
constraints. Based on these results, it develops a novel real-time capable MILP based suboptimal MPC
for free-floating platforms with on/off thrusters under timing constraints, using REACSA as an example.
For that, a novel thruster timing constraint formulation is introduced. The paper is organized as follows:
Section 2 introduces the two system models used in this work and studies REACSA’s limit cycle. The
decoupled model simplifies REACSA to only have four binary inputs and no RW. This model is used to
evaluate the different binary constraint formulations and the timing constraints. The coupled model fully
models REACSA’s inputs and is used for the final controller, which is designed based on the findings of
the analysis of the decoupled model. Section 3 introduces the MPC and explains the constraints in detail.
The analysis of the different binary constraint formulations is done in Section 4, followed by simulation
results of the final controller in Section 5. Section 6 provides a summary, discussion, and conclusion.

2 System Description
REACSA has one RW and eight pairwise arranged thrusters to apply force along the tangential lines

(Figure 1b). A detailed system description can be found in [30]. The values of the system constants are
given in Table 1.

Table 1 REACSA’s physical properties

𝑚 𝑟 𝐼𝑠 𝐼𝑅𝑊 𝜔𝑅𝑊,max 𝐹n 𝜏max 𝑡on,min 𝑡on, max 𝑡off,min

202.81 kg 0.35 m 12.22 kg m2 0.047 kg m2 ±250 RPM 10.36 N 1.44 N m 100 ms 300 ms 200 ms
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2.1 System Models
The decoupled model is sketched in Figure 1a. Here, the two respective thrusters that accelerate in the

same direction are lumped together into one force 𝐹𝑖. Therefore, this model only has four binary inputs.
A thruster firing and hence a binary input does not introduce a torque. Torque is only applied by the
continuous torque source 𝜏. Linear and angular inputs are hence decoupled in this model. Additionally,
the limits of the RW are not included in the model. The system dynamics are:

¤x =

[
03×3 I3×3

03×6

]
︸          ︷︷          ︸

A



𝑥

𝑦

𝜃

¤𝑥
¤𝑦
¤𝜃

︸︷︷︸
x

+


03×5

0 c𝜃 2𝐹n
𝑚

c𝜃 −2𝐹n
𝑚

s𝜃 2𝐹n
𝑚

s𝜃 −2𝐹n
𝑚

0 s𝜃 2𝐹n
𝑚

s𝜃 −2𝐹n
𝑚

c𝜃 −2𝐹n
𝑚

c𝜃 2𝐹n
𝑚

1
𝐼𝑆

01×4

︸                                             ︷︷                                             ︸
B(𝜃)

[
𝜏

ubin

]
︸︷︷︸

u

, 𝜏 ∈ R, ubin =


𝑢1

𝑢2

𝑢3

𝑢4


∈ {0, 1}4 (1)

The coupled model is sketched in Figure 1b. All thrusters are modeled individually. Therefore, when
a thruster is fired, a torque is applied to the system and the angular dynamics are coupled to the binary
inputs. In addition, the torque input is modeled as the actuation of the RW: A torque applied to the RW
induces a negative torque on the system, which results in an angular acceleration. Thus, a controller using
this model can exploit all system’s capabilities and takes the RW speed into account. The dynamics are:

¤x =

[
03×3 I3×3 03×1

04×7

]
︸                  ︷︷                  ︸

A



𝑥

𝑦

𝜃

¤𝑥
¤𝑦
¤𝜃

𝜔RW

︸ ︷︷ ︸
x

+



03×9

0 −s𝜃 𝐹n
𝑚

s𝜃 𝐹n
𝑚

−c𝜃 𝐹n
𝑚

c𝜃 𝐹n
𝑚

s𝜃 𝐹n
𝑚

−s𝜃 𝐹n
𝑚

c𝜃 𝐹n
𝑚

−c𝜃 𝐹n
𝑚

0 c𝜃 𝐹n
𝑚

−c𝜃 𝐹n
𝑚

−s𝜃 𝐹n
𝑚

s𝜃 𝐹n
𝑚

−c𝜃 𝐹n
𝑚

c𝜃 𝐹n
𝑚

s𝜃 𝐹n
𝑚

−s𝜃 𝐹n
𝑚

−1
𝐼S

𝐹n𝑟
𝐼S

−𝐹n𝑟
𝐼S

𝐹n𝑟
𝐼S

−𝐹n𝑟
𝐼S

𝐹n𝑟
𝐼S

−𝐹n𝑟
𝐼S

𝐹n𝑟
𝐼S

−𝐹n𝑟
𝐼S

1
𝐼RW

01×8

︸                                                                                    ︷︷                                                                                    ︸
B(𝜃)

[
𝜏

ubin

]
︸︷︷︸

u

(2)

𝜏 ∈ R, ubin =

[
𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7

]𝑇
∈ {0, 1}8

(a) Decoupled model of REACSA. The two respec-
tive thrusters pointing towards the same direction are
modeled as one input 𝐹. Torque is applied by 𝜏.

(b) Coupled model of REACSA. Each thruster is mod-
eled as a Force 𝐹. A torque 𝜏 accelerates the RW and
generates an opposing torque in the system.

Fig. 1 The decoupled and coupled system model of REACSA.
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2.2 System Limit Cycle
In both models, linear acceleration can only be achieved through the use of thrusters. If orientation

is neglected, both axes behave like an independent double integrator. In the following, without loss of
generality, the limit cycle behavior is analyzed for one axis independently. The system is hence considered
as a point mass moving on a single axis.

When the thruster is activated for the minimum (maximum) time, the system experiences the lowest
(highest) possible thrust impulse. Resulting in a minimum (maximum) change in velocity1:

Δ𝑣min =
2𝐹n𝑡on,min

𝑚
(3a) Δ𝑣max =

2𝐹n𝑡on, max

𝑚
(3b)

A thruster firing is referred to as a firing cycle. Assuming that the thruster has just fired before, waiting
for the minimum off time, followed by the minimum firing duration is a minimum firing cycle. Within
this cycle, the system moves by a certain distance. Assuming the system is at 𝑥0 with the velocity 𝑣𝑘 and
the goal is to stop the system, there are three cases: case 1: |𝑣𝑘 | > Δ𝑣max, case 2: Δ𝑣max ≥ |𝑣𝑘 | ≥ Δ𝑣min
and case 3: |𝑣𝑘 | < Δ𝑣min. In the first case, the system can not be stopped within one firing cycle and
full thrust is applied to reduce the system velocity. In the second case, the system can be fully stopped.
For the third case, a minimum thrust firing overcompensates. The system will start moving in the other
direction, with again a velocity smaller than Δ𝑣min2. Hence, the system can not be fully stopped by using
the thrusters. Note that case 1 might end up in case 2 or 3 after a few firings. Case 2, in reality, might
also degenerate into case 1 and then case 3 due to disturbances and modeling errors. In summary, the
system might be fully stopped or held in a limit cycle with a velocity less than Δ𝑣min around the target
position. Assuming an optimal controller, an upper bound for the limit cycle can be calculated3:

|Δ𝑥lc | ≤
(
5𝐹n𝑡min, on

2

4𝑚
+ 2𝐹n𝑡off, min𝑡on,min

𝑚

)
(4)

3 MPC Formulation
From the three different binary constraint formulations, this work assembles three different MPCs.

Thereby either a linear or quadratic cost function is used, allowing the OCPs with Mixed Integer (MI)
constraints and LCCs to be formulated as simpler Linear Program (LP)s. The OCPs are listed in Table 2,
and follow the following general structure:

𝐽∗(x𝑡) = min
U𝑡 ,X𝑡

L 𝑓 (x𝑡+𝑁 |𝑡) +
𝑁−1∑︁
𝑘=0

L(x𝑡+𝑘 |𝑡 , u𝑡+𝑘 |𝑡) (5a)

s.t. x𝑡+𝑘+1|𝑡 = x𝑡+𝑘 |𝑡 + Δ𝑡Ax𝑡+𝑘+1|𝑡 + Δ𝑡Bu𝑡+𝑘 |𝑡 , 𝑘 ∈ [[0, 𝑁)) (5b)
−𝜏max ≤ u0,𝑡+𝑘 |𝑡 ≤ 𝜏max, 𝑘 ∈ [[0, 𝑁)) (5c)

xlb ≤ x𝑡+𝑘 |𝑡 ≤ xub, 𝑘 ∈ [[0, 𝑁)) (5d)
xf,lb ≤ x𝑡+𝑁 |𝑡 ≤ xf,ub (5e)

ubin,𝑡+𝑘 |𝑡 ∈ Ubin, 𝑘 ∈ [[0, 𝑁)) (5f)
ubin,𝑡+𝑘 |𝑡 ∈ Utime, 𝑘 ∈ [[0, 𝑁)) (5g)

x𝑡 |𝑡 = x𝑡 (5h)

1The system’s equations of motion under thruster timing constraints are given in Appendix A.1
2The proof for entering the limit cycle is stated in Appendix A.2
3The derivation of the limit cycle upper bounds are done is Appendix A.3

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



The cost function (5a) minimizes the error towards the target state x̂ and the control effort the two cost
functions are shown in Section 3.1. The system dynamics are linearized using the first-order Taylor
expansion around the current state xt. This is equivalent to evaluating the respective state-dependent
input Matrix at the current orientation, i.e. B = B(𝜃𝑡). Using the backward Euler approach with a
sampling rate of Δ𝑡, they are added as a set of linear equality constraints (5b). The continuous applied
torque is limited by a maximum torque constraint (5c) and the system state is limited by a lower- and
upper bounding box constraint (5d) to stay below a safety linear and angular velocity, and not to exceed
the flat floor. Moreover, in the coupled model, this also enforces the minimum and maximum speed of the
RW. To ensure recursive feasibility, the final predicted state is constrained by more restrictive terminal
bounds (5e). The derivation of these bounds is given in Section 3.4. The different binary constraint
formulations, in equation (5f) expressed as a general constraint, are explained in Section 3.2. The linear
input timing constraints (5g) are introduced in Section 3.3. To solve the control problem, the first state
variable is constrained to the current (measured) system state (5h).

Table 2 The three different MPC formulations that are compared in this work.

Binary constraints Cost function Solver
MILP Integer constraint L1 Norm SCIP Solver [31]
(non-convex) QP Penalty term L2 Norm SNOPT [32]
MPCC LCC L1 Norm, L2 Norm SNOPT [32], LcqPOW [17]

3.1 Cost Functions
The linear L1 norm is expressed as a sum of linear auxiliary constraints:

L(x𝑡+𝑘 |𝑡 − x̂, u𝑡+𝑘 |𝑡) = 1
𝑇e𝑥,𝑘 + 1𝑇e𝑢,𝑘 (6a) L 𝑓 (x𝑡+𝑁 |𝑡 − x̂) = 1

Te𝑥,𝑁 (6b)

Where e𝑥,𝑡 , e𝑢,𝑡 are the auxiliary vectors for state and input cost, with the same dimension as state and
input vector. They are related to the state and input by additional linear constraints:

−e𝑥,𝑘 ≤ Q(x𝑡+𝑘 |𝑡 − x̂) ≤ +e𝑥,𝑘 (7a) −e𝑢,𝑘 ≤ Wu𝑡+𝑘 |𝑡 ≤ +e𝑢,𝑘 (7b)

The quadratic L2 norm is expressed as quadratic costs:

L(x𝑡+𝑘 |𝑡 − x̂, u𝑡+𝑘 |𝑡) = (x𝑡+𝑘 |𝑡 − x̂)𝑇Q(x𝑡+𝑘 |𝑡 − x̂) + u𝑡+𝑘 |𝑡
𝑇Wu𝑡+𝑘 |𝑡 (8a)

L 𝑓 (x𝑡+𝑁 |𝑡 − x̂) = (x𝑡+𝑁 |𝑡 − x̂)𝑇Q(x𝑡+𝑁 |𝑡 − x̂) (8b)

3.2 Binary Input Constraints
In the MIP the respective variables are constrained to integer decision variables with value 0 or 1:

𝑢𝑖,𝑡+𝑘 |𝑡 ∈ {0, 1}, ∀𝑢𝑖 ∈ ubin, 𝑘 ∈ [[0, 𝑁)) (9)

For the (non-convex) QP a quadratic penalty term (10a) is added to the general cost function (5a):

𝐽∗(𝑥𝑡) = min
𝑈𝑡 ,𝑋𝑡

L 𝑓 (x𝑡+𝑁 |𝑡) +
𝑁−1∑︁
𝑘=0

L(x𝑡+𝑘 |𝑡 , u𝑡+𝑘 |𝑡) +
∑︁

∀𝑢𝑖∈ubin

𝛽 (𝑢𝑖,𝑡+𝑘 |𝑡 − 𝑢2
𝑖,𝑡+𝑘 |𝑡), 𝛽 > 0 (10a)
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The weighting factor 𝛽 relates the penalty term to the rest of the cost function. A bounding box
constraint (10b), ensures that (10a) is only optimal if the respective variable is 0 or 1:

0 ≤ 𝑢𝑖,𝑡+𝑘 |𝑡 ≤ 1, ∀𝑢𝑖 ∈ ubin, 𝑘 ∈ [[0, 𝑁)) (10b)

In the MPCC the LCC is added to the respective variables:

0 ≤ (1 − 𝑢𝑖,𝑡+𝑘 |𝑡) ⊥ 𝑢𝑖,𝑡+𝑘 |𝑡 ≥ 0, ∀𝑢𝑖 ∈ ubin, 𝑘 ∈ [[0, 𝑁)) (11)

The "⊥" means that either the left or the right term must be zero. While the bounds ensure that both
are non-negative [33]. An MPCC is difficult to solve, and there are many works and specialized solvers
for different specializations of MPCC [17]. Note the reformulation into a general Non-Linear Program
(NLP), that can be solved with any NLP solver [16]:

(1 − 𝑢𝑖,𝑡+𝑘 |𝑡) 𝑢𝑖,𝑡+𝑘 |𝑡 = 0 (12a) 0 ≤ 𝑢𝑖,𝑡+𝑘 |𝑡 ≤ 1 (12b)

3.3 Input Timing Constraints
The timing constraints are multiples of the chosen discretization rate Δ𝑡 = 0.1s and can be expressed

as linear constraints that prevent certain combinatorial binary input patterns. A negative 𝑘 thereby refers
to the input history, before the current time step 𝑡.

The minimum on time matches the discretization rate, i.e. 𝑡on, min = 0.1s = Δ𝑡. Thus, assuming a
zero-order hold, the minimum on time is enforced naturally.

1 1 1 1 0 0
++ + +

1 1 1 0 0 0
++ + +

(a) Maximum on time constraint

1 0 1
+ - +

0 0 0
+ - +

1 0 0
+ - +

1 1 0
+ - +

0 1 0
+ - +

1 1 1
+ - +

(b) Minimum off time constraint

Fig. 2 Examples of input sequences that violate (red) or don’t violate (green) the activation time constraints

The maximum on time is three times the discretization rate, i.e. 𝑡on, max = 3 · Δ𝑡 = 0.3s. A linear
equality constraint, sketched in Figure 2a, prevents the respective binary input variables from having
the value 1 for four consecutive time steps, by constraining the sum of all four-step-sub-sequences to a
maximum value of three:

𝑘+3∑︁
𝑗=𝑘

𝑢𝑖,𝑡+ 𝑗 |𝑡 ≤ 3, ∀𝑘 ∈ [[−3, 𝑁 − 3)),∀𝑖 ∈ ubin (13)

The minimum off time is twice the discretization rate, i.e. 𝑡off, min = 2 · Δ𝑡 = 0.2s. Hence, an input
value of 1 must be followed by another 1 or two consecutive 0. The following linear constraint, sketched
in Figure 2b, is only violated on the sequence (1, 0, 1) and hence enforces the minimum off time:

+𝑢𝑖,𝑡+𝑘−1|𝑡 − 𝑢𝑖,𝑡+𝑘 |𝑡 + 𝑢𝑖,𝑡+𝑘+1|𝑡 ≤ 1, ∀𝑘 ∈ [[−2, 𝑁 − 1)),∀𝑖 ∈ ubin (14)
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3.4 Terminal State Constraint
To ensure feasibility, the system must always be brakeable within the prediction horizon. If e.g. an

obstacle appears within the field of view of the MPC, the system can still be stopped. One potential
solution is to set the final angular and linear velocity constraint to 0. However, this approach reduces
the feasible set, resulting in low system velocity. Furthermore, as demonstrated in Section 2, the system
cannot be steered towards zero velocity. Therefore, in this work, a different final constraint is chosen to
ensure feasibility.

The linear velocity terminal constraint is set to the velocity limits of the minimum limit cycle, as
from equation (3a). Hence, it can be ensured that after the final prediction step, the system can be kept
within the limit cycle bounds (4). To avoid obstacles (in this work only the edges of the flat floor), the
final position constraint is reduced by the limit cycle position bound (equation (4)).

Without loss of generality, assuming the RW’s physical speed limit is symmetric ±𝜔max
RW , a terminal

condition for the angular velocity can be constructed. Enforcing a final RW velocity which is smaller
than the physical limit | ± 𝜔limit

RW | < 𝜔max
RW leads to a maximum change of velocity before saturating after

the final prediction step. This directly leads to a maximum change of the system’s angular velocity, which
in theory could still be applied after the final prediction step:

Δ ¤𝜃max =

(
|𝜔max

RW | − |𝜔limit
RW |

) 𝐼RW
𝐼S

(15)

By constraining the RW’s terminal velocity to ±Δ𝜔limit
RW and the final system velocity to ±Δ ¤𝜃max, it is

guaranteed that the system can always be stabilized to zero angular velocity using only the RW. This
ensures that the thrusters can be used for linear feasibility.

4 Binary Constraint Formulation Feasibility Analysis
To compare the three different MPC formulations their feasible regions and the required solver

time are compared for different prediction horizons 𝑁 . Therefore, the OCPs are initialized with x0 =

[𝑥0, 0 m, 45◦, ¤𝑥0, 0 m
s , 0

rad
s ]𝑇 , with 𝑥0 ∈ [−1 m, 1 m], ¤𝑥0 ∈

[
−0.4 m

s , 0.4
m
s
]
. The target is to reach the

origin, while position error and input are minimized, via cost the functions. This analysis is done on the
decoupled model of REACSA. SNOPT solver [32] is used to solve the non-convex QP and MPCC. In
addition, the solver LCQPow [17] represents a specialized Linear Complementarity Quadratic Program
(LCQP) solver. For the MIP problem SCIPSolver [34] with python bindings [35] is used. All calculations
are done on standard hardware with a 12th generation I7 processor and 32 GB of RAM. For the MPC a
control frequency of 10 Hz is desired, which limits the maximum solver time to 𝑡𝑠 = 0.1 s.

The feasible region of the MILP is shown for different prediction horizons in Figure 3. It finds
optimal solutions for the whole range of initial 𝑥 values. Trivially, a higher prediction horizon allows
higher initial velocities ¤𝑥, as it allows for more firing cycles to brake the system into the final limit cycle
constraint. Even for the small prediction horizon of 𝑁 = 20, no optimal solution can be found within
the desired solver time for initial states close to the origin. With higher prediction horizons, this region
becomes bigger. However, the triangles indicate that always at least one feasible, suboptimal solution is
found within 𝑡𝑠.

Figure 4 shows the phase portrait for the system under MILP optimal and suboptimal control law.
The latter refers to solutions found within 𝑡𝑠. While for the shorter prediction horizons, the suboptimal
controller only shows marginal difference and still controls the system towards the origin, for 𝑁 = 50 the
phase portrait shows regions for which the system drifts away from the origin. Nevertheless, due to the
feasibility enforced by the final constraint, the system never gets into an unsafe state e.g., crosses the flat
floor edges or breaks other system constraints.
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Fig. 3 Feasible region on the x-axis for MILP formulation with different prediction horizons 𝑁 . The OCP
initialized to with the same initial state but different values of 𝑥 and ¤𝑥. Colors indicate the solving time
for the optimal solution for the respective initial condition. Stars mark optimal solutions in less than 0.1 s,
circles in more than 0.1 s. Triangles indicate that there is at least a feasible, suboptimal solution in 0.1 s.
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Fig. 4 Phase portrait of the x-axis for MPC with MILP formulation and different prediction horizons 𝑁 .
The red arrows refer to the optimal control law in which the solver might take more than 0.1 s. The black
arrows refer to the suboptimal control law where the best solution found before 0.1 s is used as control input.
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Fig. 5 Phase portrait of the x-axis for
MPC with QP formulation and different
penalty term weightings 𝛽. The different
colors refer to the different values of 𝛽.

Figure 6 shows the feasible region of the QP for different
values of the penalty term weight 𝛽. Even for a bigger region
than the MILP the optimal solution was found in less than
𝑡𝑠. Often, even below 0.01 s. However, most of the time
the binary enforcing penalty term is not fully minimized,
which means that the control inputs take continuous values.
The phase portrait of the QP control law (Figure 5) shows,
that a higher weighting of the penalty term does not improve
this. Instead, a high penalty weight leads the penalty term
to dominate the other cost terms. The system is no longer
steered toward the target state.

Analyses of the MPCC show that for a few initial con-
ditions, a solution can be found mostly below 0.05𝑠. While
without timing constraints the feasible regions look promis-
ing, with timing constraints both tested solvers fail to find
solutions except for a very few initial states around the ori-
gin. It is worth noting that there are other solvers available for comparison in future work. However,
since these solvers often use MIP solving techniques, the results are likely comparable. One other option
is to relax the LCC. However, choosing the relax parameter, in general, is not practical and suffers from
the same problem as the QP has because it allows non-binary values in the solution.
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Fig. 6 Feasible region of QP for 𝑁 = 40 with different weighting factors 𝛽 of the penalty term. The OCP
initialized to with the same initial state but different values of 𝑥 and ¤𝑥. Colors indicate the solving time for the
optimal solution for the respective initial condition. Stars mark optimal solutions in less than 0.1 s. Crosses
indicate that an optimal solution is found, but the penalty term is not fully minimized.

Since the goal is optimal control while respecting binary, timing and system constraints, only the
MILP formulation turns out to be appropriate. The MPCC formulation provides only partial or no
solution, while the QP formulation often yields non-binary inputs. They could be rounded up or down,
however, the timing constraints and theoretical assumptions assume binary inputs. In reality, also, these
constraints won’t be met. Although the MILP formulation does not always achieve optimal solutions in
the target time, the feasible solution that is always found in time is optimal enough, at least for small
enough prediction horizons, to stabilize the system at the target state. Also, it never breaks any constraints.

5 Simulation Results
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Fig. 7 Simulated system trajectories for 200 tests
with random initial poses under the suboptimal
MIMPC control law with the coupled model.

By the results of the previous section, the
MILP formulation is opted to implement the MPC.
If an optimal solution is not found within 𝑡𝑠 = 0.1 s,
suboptimal solutions are used, resulting in a sub-
optimal MIMPC control law. All the results pre-
sented in the following are obtained using the cou-
pled model. Simulation results for the decoupled
model can be found in [36]. The final coupled
controller is implemented as a fast C++ implemen-
tation4 using the SCIPSolver’s [34] C-bindings
together with EigenLib [37]. The simulation is
done using drake-toolbox’s [38] multibody sim-
ulation, which simulates REACSA with thrusters
and RW. Since the coupled model has twice as
many thrusters as the coupled, a prediction hori-
zon of 𝑁 = 20 is chosen, which is half of the
horizon which still delivered optimal enough re-
sults in the previous analysis. The controller runs
with a control frequency of 10 Hz together with
the simulation on the same hardware as in the previous section.

To evaluate the controller’s ability to steer and stabilize the system towards a target state, the system
is simulated in 200 experiments, each with a randomly initialized position and orientation. Target is the

4The resulting MIMPC library, which can control any (linearized) system with binary and continuous inputs, is open-
sourced under https://github.com/dfki-ric-underactuated-lab/mimpc. It also contains the simulation.
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origin with 0◦ orientation. The resulting trajectories are shown in Figure 7. Every experiment ends after
the system stays for at least 5 s at the origin. For every initial state, the MIMPC is able to stabilize the
system at the origin. The average root-mean-square (RMS) position error for the final second of every
experiment is 4 mm and the average RMS orientation error 0.1◦. The solver found an optimal solution
on average after 65 ms. In 30 % of the control cycles, a suboptimal solution was taken as the input.
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Fig. 8 Trajectory of the full system controlled by the MIMPC with coupled model of REACSA. In each
plot the respective two top rows show position, orientation and velocities over time. The third rows indicate
RW’s speed and torque. The bottom rows show thruster activations, with the line color denoting the body
axis along which the respective impulse is applied. Arrow symbols indicate the direction of torque applied.

One exemplary trajectory, with the system’s initial state x = [1.2 m, 1.0 m, 60◦, 01×4]𝑇 , is shown in
more detail in Figure 8. At the initial phase, the application of multiple firings of thruster 7 applies a
negative torque and due to the initial orientation a negative acceleration to the system on both the 𝑥 and
the 𝑦 axes. This is supported by a slight offset minimum firing of the orthogonal thrusters 2 and 5, which
point in the same direction as thruster 7 and thus accelerate in the same direction. The applied torque is
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canceled out by their orthogonality. In addition, the RW is accelerated to maximum velocity, resulting in
negative torque. The controller adheres to the activation time limits, which is evident in the small firing
pauses of thrusters 7 during acceleration. After 3 s, the angular speed of the RW is decelerated and so is
the system. Thrusters 2 and 4 support the angular deceleration process. After 5 s the system reaches 0◦
orientation where it keeps oscillating, due to modeling errors, simulation errors and thruster activations.
However, the controller solely utilizes the RW for compensation and fine pointing. Note that the speed
limits of the RW are never exceeded.

The system reaches the origin first on the y-axis after 27 s. On the x-axis, it reaches the origin after
30 s. The controller uses thruster pairs [5, 0], and [6, 3], pointing along the same axis respectively, to
brake the system into the limit cycle on both axes. The zoomed-in part of the figure shows that the system
stays in a limit cycle with an average oscillation peak-to-peak amplitude (p-p) of 0.008 m and 0.1◦ around
a RMS error distance of 4 mm and 0.01◦ to the origin. To do so, the controller activates the thrusters for
on average 0.046 s per second. The thruster activation plot shows, that the MIMPC fires the orthogonal
thrusters as pairs to keep the system within the limit cycle. In this way, the controller can generate the
minimum possible force on both axes without generating a torque. On the other side, at ≈38 s, ≈49 s
and ≈60 s, thruster firings do not occur as a pair. Nevertheless, they don’t introduce a noticeable large
orientation error. Instead, the RW speed shows persistent speed changes with which the controller seems
to intercept the torques generated by individual thruster firings.

6 Summary and Conclusion
The analysis of the three different formulations to enforce binary inputs, done in this work, shows

that only the MILP formulation works in practice. The non-convex QP finds optimal results, but most
of the time the binary constraints are violated. This also has an impact on the timing constraints and
theoretical considerations, which assume binary inputs. A higher weighting of the penalty function can
not counteract this, while increasing the risk of cost term domination with an unstable system as a result.
The MPCC enforces binary values by constraint and in theory provides solvability with any (non-linear)
solver. However, the LCC together with the timing constraints are not solvable by a standard solver.
Also, a special solver tested in this work failed to find enough feasible solutions. The MILP formulation
may not always yield the optimal solution in a reasonable time. Nevertheless, the analysis shows that it
can always identify at least one feasible solution, which for short enough prediction horizons is optimal
enough to stabilize the system at the target state. Also, by always respecting the constraints, feasibility,
and an always safe system state, even with suboptimal control law is guaranteed. Nevertheless, it is a
suboptimal solution, which may consume more thrust than necessary.

The simulation of the resulting coupled MIMPC, shows that the controller is not only able to drive
the system to the target, maintaining the system in a limit cycle at the target, but also exploits the
system’s capabilities to reduce the thruster usage. The thruster timing constraints, developed in this work,
guarantee their safe usage. The RW is driven to its limits but never exceeds them, and the controller does
not lose control of the orientation. Hence, it can be concluded that optimal control of a 3-dof free-floating
platform with on/off thrusters under consideration of the thruster timings can be achieved via MIMPC.
Optimal solutions can be obtained by selecting an appropriate prediction horizon. A safe system state is
always ensured even for suboptimal solutions.

After this work successfully developed a novel MIMPC for free-floating platforms, which can natively
handle on/off thrusters under timing constraints and control the system in real-time, the next steps are
tests on the real hardware to determine if it can handle model errors and disturbances by the not perfectly
even flat floor. We also plan a comparison in terms of efficiency and accuracy to the current TVLQR
based controller. For future work, this work provides the theoretical and practical base, to add, e.g.,
trajectory tracking, or obstacle avoidance.
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Appendix

A System Limit Cycle
In the following, theoretical considerations of the system’s limit cycle around a target position are

done. The system’s orientation is assumed to be fixed at 0◦. Only one axis of movement is considered.
Also, in the following, a thruster firing refers to a firing of the thruster pair that fires along the same axis
as in the decoupled model. Thus, it exerts a force of double the magnitude 2𝐹n but does not produce any
torque.

To simplify the analyses, thruster firings are considered as firing cycles. It is assumed that before a
new cycle starts, the thruster just fired. Hence, a firing cycle 𝑘 starts with the minimum off time followed
by the minimum on time. Between the minimum and maximum on time, the cycle can be stopped,
followed by an optional next (𝑘 + 1) cycle. The notation is slightly different from the rest of the paper:
𝑥𝑘 (𝑡), 𝑣𝑘 (𝑡) refer to the position and velocity during the 𝑘 th firing cycle. Position and velocity just before
the cycle are denoted by 𝑥𝑘−, 𝑣𝑘−, position and velocity just after the cycle by 𝑥𝑘+, 𝑣𝑘+.

A.1 Constrained Equations of Motion
By integrating Newtons law it follows the velocity 𝑣𝑘 (𝑡) during the 𝑘 th brake firing cycle:

𝑣𝑘 (𝑡) = 𝑣𝑘− +
{

0, if 0 ≤ 𝑡 ≤ 𝑡off,min

−2𝐹n
𝑚

(
𝑡 − 𝑡off,min

)
, if 𝑡off,min ≤ 𝑡 ≤ 𝑡off,min + 𝑡on,max

(16)

Note that because it is a brake firing, the thruster(s) opposite to the movement direction is fired, reducing
the velocity.

By integration, it follows the position during the brake firing cycle:

𝑥𝑘 (𝑡) = 𝑥𝑘− +
{
𝑡𝑣𝑘−, if 0 ≤ 𝑡 ≤ 𝑡off,min

𝑡𝑣𝑘− − 2𝐹n
2𝑚

(
𝑡 − 𝑡off,min

)2
, if 𝑡off,min ≤ 𝑡 ≤ 𝑡off,min + 𝑡on,max

(17)

It follows for a minimum and maximum firing (time) the maximum and minimum change in position
and velocity during one firing cycle:

Δ𝑣min =
��𝑣𝑘 (𝑡on,min) − 𝑣𝑘−

�� , Δ𝑥min(𝑣𝑘−) =
��𝑥𝑘 (𝑡on,min, 𝑣𝑘−) − 𝑥𝑘−

�� (18)
Δ𝑣max =

��𝑣𝑘 (𝑡on,max) − 𝑣𝑘−
�� , Δ𝑥max(𝑣𝑘−) =

��𝑥𝑘 (𝑡on,max, 𝑣𝑘−) − 𝑥𝑘−
�� (19)

A.2 Limit Cycle Entering
Assuming without loss of generality the systems is at 𝑥𝑘− = 0 with the velocity 0 ≤ 𝑣𝑘− ≤ Δ𝑣min

(Subsection 2.2, limit cycle Case 3). A brake thruster firing with minimum activation time leads to:

⇒ −Δ𝑣min < 𝑣 (𝑘+1)− < 0 (20a)

Result (20a) shows that the velocity is overcompensated by a minimum thrust, and therefore the system
starts moving with a negative velocity (into the opposite direction) but still less than |Δ𝑣𝑚𝑖𝑛 |. Hence,
alternate firings of the opposing thrusters keep it within a limit cycle with velocity bound ±Δ𝑣𝑚𝑖𝑛.
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A.3 Limit Cycle Stability
A simple control logic is derived which keeps the system in the limit cycle without drifting away

from the origin, assuming that an optimal controller knows at least this (possibly suboptimal) control
law. Without the loss of generality, assuming the system’s current position 𝑥0 = 0 and the system is
within the limit cycle bound velocity. Also, due to symmetry, only positive velocity is considered, hence
0 < 𝑣𝑘− < Δ𝑣min. Now two velocity cases are considered:

1) Case 1: 1
2Δ𝑣min ≤ 𝑣𝑘− < Δ𝑣min, 𝑥𝑘− = 0

Firing directly the opposite thruster will lead to:

𝑥𝑘 (𝑡off,min + 𝑡on,min, 𝑥𝑘− = 0, 𝑣𝑘− = 1
2Δ𝑣min) ≤ 𝑥(𝑘+1)− < 𝑥𝑘 (𝑡off,min + 𝑡on,min, 𝑥𝑘− = 0, 𝑣𝑘− = Δ𝑣min)

⇒ 𝐹n𝑡off,min𝑡on,min

𝑚
≤ 𝑥(𝑘+1)− <

𝐹n𝑡on,min
2

𝑚
+ 2𝐹n𝑡off,min𝑡on,min

𝑚

𝑣𝑘 (𝑡off,min + 𝑡on,min, 𝑣𝑘− = 1
2Δ𝑣min) ≤ 𝑣 (𝑘+1)− < 𝑣𝑘 (𝑡off,min + 𝑡on,min, 𝑣𝑘− = Δ𝑣min)

⇒ −1
2
Δ𝑣min ≤ 𝑣 (𝑘+1)− < 0

Considering the current direction of travel as forward, and therefore switching signs, the system has
a negative position and is traveling with a positive velocity toward the origin. An optimal controller
waits until the system reaches the origin 𝑥(𝑘+1)− = 0 and moves on with Case 2.

2) Case 2: 0 < 𝑣𝑘− < 1
2Δ𝑣min, 𝑥𝑘− = 0

The velocity is positive (e.g., 𝑣𝑘− > 0). Hence, an optimal controller waits till the system is at

𝑥𝑘− =
𝐹n(𝑡on,min)2

𝑚
and then fires the opposite thruster:

𝑥𝑘 (𝑡off,min + 𝑡on,min, 𝑥𝑘− = 𝑥𝑘−, 𝑣𝑘− = 0) < 𝑥(𝑘+1)− < 𝑥𝑘 (𝑡off,min + 𝑡on,min, 𝑥𝑘− = 𝑥𝑘−, 𝑣𝑘− = 1
2Δ𝑣min)

⇒ 0 < 𝑥(𝑘+1)− <
𝐹n𝑡on,min

2

𝑚
+ 𝐹n𝑡off,min𝑡on,min

𝑚

𝑣𝑘 (𝑡off,min + 𝑡on,min, 𝑣𝑘− = 0) < 𝑣 (𝑘+1)− < 𝑣𝑘 (𝑡off,min + 𝑡on,min, 𝑣𝑘− = Δ1
2𝑣min)

⇒ −Δ𝑣min < 𝑣 (𝑘+1)− < −1
2
Δ𝑣min

Considering the current direction of travel as forward, and therefore switching signs, the negative
position offset is reduced by waiting for 𝑥(𝑘+1)− = 0. Then continue with Case 1.

In both cases, the maximum deviation from the origin (i.e. 𝑥 = 0) is the limit cycle position bound: The
maximum position offset during a minimum firing cycle is the maximum of equation (17).
In Case 1, the firing starts at position 𝑥𝑘 = 0, and the velocity is bounded by 1

2Δ𝑣min ≤ 𝑣𝑘 < Δ𝑣min:

max
𝑡≤𝑡off,min+𝑡on,min

[𝑥𝑘 (𝑡, 𝑥𝑘− = 0, 𝑣𝑘− = Δ𝑣min)] =
𝐹n𝑡on,min

2

𝑚
+ 2𝐹n𝑡off,min𝑡on,min

𝑚
(23)

In Case 2, firing starts at position 𝑥𝑘− =
𝐹n(𝑡on,min)2

𝑚
and the velocity is bounded by 0 < 𝑣𝑘 < 1

2Δ𝑣min:

max
𝑡≤𝑡off,min+𝑡on,min

[
𝑥𝑘 (𝑡, 𝑥𝑘− = 𝑥𝑘−, 𝑣𝑘− = 1

2Δ𝑣min)
]
=

5𝐹n𝑡on,min
2

4𝑚
+
𝐹n

(
𝑡off,min𝑡on,min

)
𝑚

(24)

Depending on the choice of the timing constraints 𝑡off,min, 𝑡on,min, equation (23) or equation (24) gives an
upper bound on the maximum position offset. A general conservative bound is given in equation (4). In
conclusion, this analysis provides an upper bound of the limit cycle’s position and velocity.
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