
Analyzing and Predicting the Power Consumption
of a Publish/Subscribe IoT-Broker

Franc Pouhela˚, Maryam Arabshahi˚, Hans D. Schotten˚:

˚German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern, Germany
Email: {franc.pouhela; maryam.arabshahi; hans dieter.schotten}@dfki.de

:University of Kaiserslautern-Landau (RPTU), Germany
Email: {schotten}@rptu.de

Abstract—The rapid expansion of the Internet of Things (IoT)
has underscored the need for energy-efficient communication
protocols, with the Publish/Subscribe model standing out for its
efficiency and scalability. This paper presents a comprehensive
analysis of the power consumption patterns of a Publish/Sub-
scribe IoT broker, identifying key factors influencing energy
consumption. By employing advanced predictive modeling tech-
niques, we developed accurate power consumption models. Our
findings highlight the significant impact of message throughput,
thread count, and network conditions on power consumption.
By comparing a variety of predictive models using different
algorithms, we can identify the most suitable model for the
task. These predictive models can assist in designing energy-
efficient IoT systems, thereby contributing to the development of
sustainable IoT infrastructures.

Index Terms—IoT, Power Consumption, Machine Leaning, 6G

I. INTRODUCTION

Considerable effort is directed towards harnessing Artificial
Intelligence (AI) across various systems to detect potential
anomalies, thereby proactively addressing them and enhancing
resilience. This endeavor gains heightened significance in
environments characterized by elevated demands for safety,
security, scalability, and other critical factors.

In the realm of mobile networks (5G, 6G), there is a
notable emphasis on expending network capabilities beyond
current limitations. This is achieved by exploring innovative
approaches to incorporate AI at various stages of the network
infrastructure. The goal is to enhance network orchestration
and ensure proper operation by effectively detecting and
addressing various anomalies.

An area showing promise under consideration is the concept
of a Context Management System (CoMaS) [1]. A CoMaS
framework excels in utilizing network context data to gain
new insights into network conditions through a variety of AI
algorithms and reasoning. These insights are then applied to
enhance and streamline network operations.

Figure 2 illustrates the architecture of a CoMaS, which facil-
itates the collection, processing, and distribution of contextual
data to end-users using a Publish/Subscribe messaging model
orchestrated by a middleware known as a broker (see Figure 1).
This messaging pattern is quite scalable and flexible due to its
decoupled nature. The effectiveness of such a system relies

] Publisher + Broker � Subscriber

PUBLISH

PUBLISH

PUBACK

Fig. 1. Publish/Subscribe Pattern

heavily on its seamless and efficient acquisition and distri-
bution of contextual data from diverse sources, a challenge
compounded by the proliferation of IoT devices. The adoption
of Message Queuing Telemetry Transport (MQTT) [2] or Mid-
dleware Message Queuing Protocol (MMQP) [3] as the com-
munication protocol for such system would be of good value.
MQTT, renowned for its lightweight messaging capabilities,
is widely used in both IoT and Machine-to-Machine (M2M)
scenarios, currently serving as the predominant protocol for
enabling IoT communication.

Predicting the power consumption of a system can sig-
nificantly enhance the detection of potential anomalies in
communication scenarios, such as those found in the CoMaS
described above. Power efficiency has become an increasingly
important concern in the design and operation of commu-
nication systems especially in the IoT space. However, our
objective surpasses the mere comprehension and accurate
prediction of the broker’s power consumption; instead, we
endeavor to harness this insight as a building stone within
our CoMaS to improve anomaly detection, fortify resilience
and optimize operational efficiency.

Machine Learning (ML) has the potential to address this
challenge by enabling the automated optimization of broker
configurations based on predictions. By modeling the power
consumption of the broker as a function of various input
factors, ML algorithms can learn to identify configurations that
result in the lowest power consumption while still meeting
performance targets [4]. In addition, reinforcement learning
techniques can be used to train agents that can learn to opti-
mize power consumption and performance by taking actions



Fig. 2. Context Management System Architecture [1]

such as adjusting hard- and software configurations [5]. The
following steps were undertaken in our research:

‚ Identification of key components of the system that
contribute to its power consumption. These include traffic
data, processor temperature, memory usage, etc.

‚ Measurement of the power consumption of the system
under a variety of workloads and operating conditions.

‚ Collection of data on the operating conditions of the sys-
tem (e.g., processor frequency, memory usage, network
activity) while measuring the power consumption. This
allowed us to identify relationships between the operating
conditions and the power consumption.

‚ Analysis of the collected data to identify patterns and
trends in the power usage of the system using statistical
and ML techniques to identify relationships between the
operating conditions and the power consumption.

‚ Development of the power consumption model of the
system based on the trends identified in the data.

‚ Use the model to predict the power consumption of the
system under different operating conditions and compare
the predictions to actual measurements.

‚ Comparison on multiple models and fine-tuning the most
accurate for better results

The remaining sections of the paper are structured as
follows: Section II presents a concise review of related works
pertinent to this study. In Section III, we detail our multi-
variable model for estimating the energy consumption of a
multi-threaded process. Subsequently, Section IV offers an

extensive explanation of the data analysis conducted to extract
various patterns and trends from the dataset, along with the
outcomes of our training and predictions. Finally, Section V
summarizes the study and proposes potential avenues for
future research.

II. RELATED WORK

In a prior study detailed in [6], we demonstrated the advan-
tages in terms of power efficiency gained by adopting Entity-
Component-System (ECS) as the underlying architecture for
implementing the IoT broker. The study also provides some
insights into the enhancements made to the MQTT protocol,
culminating in the development of the MMQP protocol.

There has been a significant amount of research on opti-
mizing the power efficiency of servers and other compute-
intensive systems. Many of these approaches focus on Dy-
namic Voltage and Frequency Scaling (DVFS) as a means of
reducing power consumption [7], [8], [9]. DVFS allows the
operating frequency and voltage of the processor to be adjusted
at runtime in order to meet the performance requirements of
the workload while minimizing power consumption. However,
these approaches often require hardware support and can be
difficult to implement in practice.

Other approaches to improving power efficiency in servers
have focused on optimizing the allocation of tasks to threads
and cores [10], [11], [12]. By carefully scheduling tasks and
minimizing idle time, it is possible to reduce the power
consumption of the system without sacrificing performance.



However, these approaches are often specific to the workload
and may not generalize well to other scenarios.

In contrast, our approach uses machine learning to predict
the power consumption of a multi-threaded server process
under different workloads. By using this prediction to optimize
the allocation of tasks to threads, we are able to significantly
reduce the power consumption of the system while maintain-
ing good performance. To the best of our knowledge, this is the
first work that uses machine learning in this way to improve
the power efficiency of a multi-threaded server process.

III. MULTIVARIABLE ENERGY MODEL

This section provides critical background information on
power profiling and modeling with an emphasis on Intel
Central Processing Units (CPUs) used in laptops, desktop
computers, and servers. Our study was specifically focused on
the power consumption of the CPU. Other components such as
the Graphics Processing Unit (GPU) and the Random Access
Memory (RAM) were not considered.

A. Hard- and Software Setup

The processor used during our case study is an 11th Gen
Intel(R) i7-11800H x64 processor. It has 8 cores and 16
threads, with L1, L2, and L3 cache sizes of 640 KB, 10
MB, and 24 MB, respectively. a Thermal Design Power
(TDP) of 45W it has a base frequency of 2.3 GHz and can
leverage DVFS to achieve a maximum frequency of 4.5 GHz,
and a minimum frequency of 0.8 GHz. The CPU offers a
performance boost through hyper-threading. The system has
32 GB of RAM operating at a frequency of 3.2 GHz and runs
on the Windows 11 operating system.

1) Measurement Software: The power profiling was made
using the Intel® Power Gadget (IPG), which is a software-
based power usage monitoring tool for Intel® Core(TM)
processors. It provides drivers that can be used in C++ for
monitoring and estimating real-time processor package power
information in watts using the CPU’s energy counters. it
has the ability to collect power information on a variety of
platforms, including notebooks, desktops, etc.

2) Broker Application: As part of our study, we undertook
the development of a custom broker. This last was imple-
mented using C++17 and was carefully crafted using an ECS
architecture. ECS is a software architecture design pattern
mostly utilized in the development of video games for the
representation of in-game objects, which is different from the
common Object-Oriented Programming (OOP) technique. Its
main function is to separate data from behaviors to promote
code reuse and cache-friendliness and enhance performance.
To handle I/O operations with utmost efficiency, we integrated
the standalone version of Asio [13], a highly performant C++
networking library. Further details on the implementation and
performance are available in the cited reference [6].

Our study aimed to explore the capabilities and potential of
this implementation approach. Therefore, we conducted thor-
ough evaluations and measurements to assess its performance,
scalability, and reliability under different scenarios, providing

valuable insights into its suitability for real-world deployment
in various contexts within the IoT domain.

B. Model for frequency scaling

The execution time T [sec] of an application depends on
the number of threads (n) used and the chosen operational
frequency (f ), which in turn affects the power drawn P [Watt].
To establish the relationship between energy consumption E =
T · P [Joule] and the number of threads, and the operational
frequency, we leveraged an energy model that uses n and s
as variables. Where s is the scaling factor of f with s ď 1.
Considering a CPU with a clock frequency of f and a voltage
of V . The power consumption of the CPU can be modeled as

P “ CstaticV ` CdynV
2f

where Cstatic and Cdyn are constants that depend on the
specific characteristics of the CPU. The first term, CstaticV ,
represents the static power consumption, which is the power
consumed by the CPU when it is idle or in a low-power
state. This term is also proportional to the voltage and is
typically much smaller than the dynamic power consumption.
The second term in the equation, CdynV

2f , represents the
dynamic power consumption, which is the power consumed
by the CPU when it is actively performing computations. This
term is proportional to the clock frequency and the voltage
and is typically the dominant contributor to the CPU’s power
consumption.

Considering the frequency scaling factor s ď 1 of DVFS
processors, the operational frequency can be expressed as f “

fmax{s, where f ď fmax and fmax is the highest possible
frequency for the processor. In our case fmax “ 4.5GHz.

1) Multi-Variable Equation: A general expression of the
energy consumption of a CPU during an execution time t in
relation to the frequency scaling factor can be modeled as:

Epsq “

ż

P psq.dt

This implies that:

Epn, sv, sf q “ n˚Kn˚V 2
max˚fmax˚ptcomp˚s2v˚sf `tio˚sioq

This formula represents the energy consumption E of a
system, which depends on several parameters:

- n: Number of threads - sv: Voltage scale factor - sf :
Frequency scale factor - Kn: Coefficient - Vmax: Maximum
voltage - fmax: Maximum frequency - tcomp: Time for com-
putation - sio: Scalability factor for input/output operations -
tio: Time for input/output operations

This formula describes an approximated model of the en-
ergy consumption influenced by the number of operations
n, the scalability factors sv and sf , the maximum voltage
Vmax, the maximum frequency fmax, and the time taken for
computation tcomp and input/output operations tio.



IV. METHODOLOGY AND RESULTS

Regression methods in machine learning are a fundamental
set of techniques used to model the relationship between a
dependent variable and one or more independent variables.
The primary goal of regression analysis is to predict the
value of the dependent variable based on the values of the
independent variables. These methods encompass a wide range
of algorithms, from simple linear regression to more complex
models like polynomial regression, decision trees, support
vector machines, and neural networks. Regression models
are widely employed in various fields, including finance,
economics, healthcare, and engineering, to forecast trends, un-
derstand relationships between variables, and make informed
decisions based on data-driven insights.

A. Dataset
The data generated for analysis is depicted in Figure 3. The

dataset comprises 11 features, with 8 of them having a data
type of ”int64” and the remaining 3 featuring a data type of
”float64”. In total, the dataset consists of 9334 data-points.

Fig. 3. Dataset

Figure 4 depicts the correlation matrix of all features within
the dataset. The analysis reveals that threads exhibit negligible
influence and demonstrate minimal impact on other features.
Conversely, a robust correlation is observed between the count
of messages read by the CPU and the count of messages
sent. Furthermore, the number of sent messages exhibits a
significant correlation with the volume of sent bytes. Notably,
a pronounced correlation emerges between the volume of sent
bytes and CPU power, underscoring their interdependence.

Probability Density Function (PDF) was applied on the CPU
Power. The PDF describes the relative likelihood of observing
different values of a continuous random variable within a given
range. In other words, the PDF provides a way to quantify
the probability distribution of continuous random variables.
Figure 5 shows that the CPU Power data has positively skewed
distribution. There’s a discrepancy between the median and
the mean of the CPU power. The median, which represents
the middle value of a dataset when it is arranged in ascending
order, is 4.87. On the other hand, the mean, also known as the
average, is 5.82.

Figure 6 shows the changes in the CPU power consumption.
The range of CPU power consumption values spans from 3.02

Fig. 4. Correlation Matrix of the Features in the Dataset.

Fig. 5. Probability Density Function of the CPU Power.

to 27.01, indicating the full extent of variability in the dataset.
The third quartile, representing the 75th percentile of the data,
is 7.54. This indicates that 75% of the data points have a CPU
power consumption below 7.54.

B. Methods

We applied different machine learning regression algorithms
on the data and compared their results.

1) Linear Models:
a) Linear Regression: Linear regression [14] is a statisti-

cal method used to model the relationship between a dependent
variable and one or more independent variables. It assumes a
linear relationship between the independent variables (predic-
tors) and the dependent variable (outcome). The main goal
of linear regression is to find the best-fitting straight line that
describes the relationship between the variables.

b) Polynomial Regression: Polynomial regression [15] is
a type of regression analysis used to model the relationship



Fig. 6. Trend in CPU Power Consumption

between a dependent variable and one or more independent
variables by fitting a polynomial function to the data. Unlike
linear regression, which assumes a linear relationship between
the variables, polynomial regression allows for more complex,
nonlinear relationships to be captured.

c) Ridge Regression: Ridge regression [16] is a reg-
ularization technique used in linear regression to mitigate
multicollinearity (high correlation among predictors) and re-
duce the model’s sensitivity to the noise present in the data.
It is particularly useful when dealing with datasets where
the number of predictors (features) is large compared to the
number of observations. In traditional linear regression, the
goal is to minimize the sum of squared residuals between
the observed and predicted values. However, when the dataset
contains highly correlated predictors, the estimated coefficients
can become large and unstable, leading to overfitting. Ridge
regression addresses this issue by adding a penalty term to the
traditional least squares objective function.

d) Lasso Regression: Lasso regression [17], short for
Least Absolute Shrinkage and Selection Operator, is a reg-
ularization technique used in linear regression to address
multicollinearity and perform feature selection by imposing
a penalty on the absolute value of the coefficients. Similar to
ridge regression, lasso regression adds a penalty term to the
ordinary least squares (OLS) objective function. However, in-
stead of penalizing the squared sum of coefficients as in ridge
regression, lasso penalizes the absolute sum of coefficients.

2) Support Vector Machines:
a) Support Vector Regression: Support Vector Regres-

sion (SVR) [18] is a type of regression algorithm that utilizes
the principles of support vector machines (SVM) to perform
regression tasks. While traditional regression methods aim to
minimize the error between the predicted and actual values,
SVR focuses on fitting a hyperplane that best captures the
relationship between the input variables and the target variable.
The main idea behind SVR is to find a hyperplane in a high-
dimensional feature space that has the maximum margin, while
still minimizing the error between the predicted and actual val-
ues. This hyperplane is determined by support vectors, which
are the data points closest to the hyperplane and influence its

position and orientation. SVR operates by mapping the input
variables into a high-dimensional feature space using a kernel
function, which allows SVR to handle non-linear relationships
between the variables. Once the data is transformed, SVR finds
the hyperplane that best separates the data points, while also
minimizing the error within a certain margin, known as the
epsilon-insensitive tube.

b) Nu Support Vector Regression: Nu Support Vector Re-
gression (Nu-SVR) is a variant of Support Vector Regression
(SVR). NuSVR introduces a parameter ν (nu) that offers more
control over the number of support vectors and the flexibility
of the regression model.

3) Decision Trees: A Decision Tree for regression [19] is a
predictive modeling algorithm that partitions the feature space
into a set of simple decision rules, represented as a tree-like
structure. Unlike classification trees that predict categorical
outcomes, decision trees for regression predict continuous
numerical values. The construction of a decision tree involves
recursively splitting the data into subsets based on the feature
that best separates the data according to some criterion. The
process aims to minimize the variance of the target variable
within each subset. At each split, the algorithm evaluates
all possible splits on each feature and selects the one that
results in the largest reduction in variance, often measured
by metrics like mean squared error (MSE). Once a split is
made, the process continues recursively on each subset until a
stopping criterion is met. This could be a maximum tree depth,
a minimum number of samples required to split a node, or
when further splitting does not lead to a significant reduction
in variance.

4) Ensemble Methods: Ensemble methods leverage a fusion
of diverse algorithms, amalgamating their individual predic-
tions. The primary objective is to enhance prediction accuracy,
distinguishing ensemble methods from conventional model
selection techniques. Nonetheless, the integration of various
analytical approaches and the comparative assessment of their
outcomes serve as a means to glean deeper insights into
algorithmic behavior, particularly in scenarios where labels are
absent.

a) Random Forest: Random Forest for regression [20] is
a variant of the Random Forest algorithm designed specifically
for predicting continuous numerical values. It operates by
constructing an ensemble of decision trees, where each tree
predicts a numerical value for a given input, and the final
prediction is obtained by averaging the predictions of all trees
in the forest.

b) Gradient Boosting: Gradient Boosting for regression
[21] is an ensemble learning technique used to build predictive
models for continuous numerical values. It works by sequen-
tially adding weak learners (typically decision trees) to an
ensemble, with each new learner correcting the errors made
by the previous ones.

c) Bagging Regression: Bagging regression [22], short
for Bootstrap Aggregating regression, is an ensemble learning
technique used for building predictive models for regression
tasks. It works by creating multiple bootstrap samples (random



samples with replacement) from the original dataset and train-
ing a separate base learner (regression model) on each sample.
The final prediction is obtained by averaging the predictions
of all base learners.

d) Voting Regression: A voting regressor [23] is an
ensemble meta-estimator used in regression tasks, which fits
multiple base regressors on the entire dataset and then averages
their individual predictions to generate a final prediction. It
operates similarly to a voting classifier in ensemble learn-
ing but is tailored for regression problems. By combining
predictions from various regression models through simple
or weighted averaging, voting regression enhances prediction
accuracy and robustness, making it a powerful technique in
machine learning for regression tasks.

e) AdaBoost: AdaBoost Regression [24] is a variant
of the AdaBoost ensemble learning algorithm tailored for
regression tasks. It combines the predictions of multiple base
regression models, typically decision trees with limited depth
(weak learners), to make a final prediction.

f) K-Nearest Neighbors: K-Nearest Neighbors (KNN)
Regression [25] is a non-parametric supervised learning al-
gorithm used for regression tasks. Unlike parametric models
that learn a fixed number of parameters from the data, KNN
Regression makes predictions based on the average of the
target variable values of the K-nearest neighbors to a given
query point.

g) Radius Neighbors Regression: Radius Neighbors Re-
gression is a non-parametric regression algorithm that falls
under the category of instance-based learning. Instead of
selecting a fixed number of nearest neighbors (as in KNN),
Radius Neighbors Regression selects all data points within a
specified radius (known as the ”radius parameter”) around the
query point.

C. Implementation and Evaluation

We applied dimensionality reduction using Principal Com-
ponent Analysis (PCA) on the features’ values. After that, we
applied the above mentioned regression algorithms on the data.
Table I shows a comparison between the results of applying
different regression algorithms. The evaluation of regression
models involves assessing how well the model’s predictions
match the actual values of the target variable. Several metrics
can be used to measure the performance of regression models,
depending on the specific goals and characteristics of the
dataset. We decided to evaluate the results of the regression
by three different matrices to have better overview of the
performance.

Adjusted R-squared (R2): R-squared measures the propor-
tion of the variance in the target variable that is explained by
the regression model. It ranges from 0 to 1, with higher values
indicating better model fit. Adjusted R-squared is a modified
version of R-squared that penalizes the addition of unnecessary
predictors to the model. It provides a more reliable measure
of model fit when comparing models with different numbers
of predictors.

Root Mean Squared Error (RMSE): RMSE is the square root
of the MSE and represents the average deviation of predicted
values from the actual values. It is in the same units as the
target variable and provides a more interpretable measure of
prediction error.

Mean Absolute Error (MAE): MAE measures the average
absolute difference between the predicted values and the actual
values. It is less sensitive to outliers compared to MSE and
provides a measure of the average magnitude of prediction
errors.

Method Adjusted R-
Squared (R2)

Root Mean
Squared Error

Mean Abso-
lute Error

Linear 0.69 2.05 1.04
Polynomial 0.70 1.96 1.01
Ridge 0.69 2.05 1.04
Lasso 0.20 5.23 1.78
SVR 0.01 6.46 1.58
NuSVR 0.25 4.92 1.63
Decision
Tree

0.70 2.00 0.86

Random For-
est

0.78 1.47 0.75

Gradient
Boosting

0.74 1.71 0.86

Bagging 0.71 1.92 0.89
Voting 0.77 1.49 0.74
AdaBoost 0.67 2.17 1.07
K-Nearest
Neighbors

0.78 1.43 0.63

Radious
Neighbors

0.78 1.47 0.63

TABLE I
COMPARISON OF THE RESULTS OF ALL THE APPLIED METHODS WITH

DIEMNSIONALITY REDUCTION.

We applied the same regression algorithms on the data
without dimensionality reduction. Table I demonstrates the
results. As the table shows, the results of regression without
using dimensionality reduction got better.

Method Adjusted R-
Squared (R2)

Root Mean
Squared Error

Mean Abso-
lute Error

Linear 0.75 1.63 0.92
Polynomial 0.79 1.35 0.81
Ridge 0.75 1.63 0.92
Lasso -0.00 6.57 2.02
SVR 0.70 1.97 0.92
NuSVR 0.71 1.91 0.94
Decision
Tree

0.79 1.40 0.66

Random For-
est

0.85 0.96 0.55

Gradient
Boosting

0.84 1.06 0.61

Bagging 0.81 1.22 0.68
Voting 0.86 0.93 0.53
AdaBoost 0.73 1.75 0.95
K-Nearest
Neighbors

0.85 0.99 0.48

Radious
Neighbors

0.82 1.19 0.55

TABLE II
COMPARISON OF METHODS WITHOUT DIMENSIONAL REDUCTION



The Voting algorithm emerges as the top performer among
all applied algorithms, boasting an impressive Adjusted R-
Squared of 0.86, a Root Mean Squared Error (RMSE) of 0.93,
and a Mean Absolute Error (MAE) of 0.53. The residuals
have been calculated by subtracting the ground truth CPU
power values and the predicted values by the Voting algorithm.
Additionally, the description of the Residuals Frequency plot
(Figure 7) indicates that the residuals (the differences between
predicted and actual values) follow an approximately Gaussian
distribution, with most of them clustered around zero. This
is a desirable characteristic as it indicates that the model’s
predictions are generally close to the actual values, with rela-
tively few large errors. Overall, these results suggest that the
Voting algorithm is performing well in accurately predicting
CPU power values.

Fig. 7. The residuals of the output of the Voting regression.

Figure 8 depicts the Q-Q plot of the Residuals. In a
Q-Q plot, each point represents a comparison between the
theoretical quantile and the corresponding sample quantile. If
the residuals follow a normal distribution, these points should
fall along a straight line. Deviations from this line indicate
departures from normality in the distribution of residuals.

The prediction outcomes generated by the voting algorithm
are illustrated in Figure 9. This figure provides a visual rep-
resentation of the comparison between the prediction outputs
produced by the voting algorithm and the actual ground truth
values within the test dataset.

D. Challenges

Predicting power consumption using machine learning in-
volves several technical challenges, spanning Data Collection
and Quality, Feature Engineering, Handling Seasonality and
Trends, Model Selection and Training, Real-time Prediction
and Scalability, Evaluation and Validation, Deployment and
Maintenance, External Factors and Uncertainty, and Regula-
tory and Ethical Considerations. Addressing these challenges
requires a combination of advanced data processing tech-
niques, robust machine learning methodologies, and contin-
uous model evaluation and improvement strategies.

Fig. 8. Q-Q plot of the Residuals.

Fig. 9. Prediction vs. Ground Truth

V. CONCLUSION AND FUTURE WORK

Based on the provided scientific paper, it presents an in-
depth analysis and predictive model for the power consump-
tion of an IoT broker operating with a Publish/Subscribe
(Pub/Sub) messaging pattern. The paper integrates various
parameters such as message traffic, number of clients, threads,
topics, etc., into a cohesive framework to accurately estimate
power consumption. Through empirical validation and simula-
tion, the efficacy of the approach is demonstrated, achieving up
to 85% prediction accuracy under varying workload scenarios.
In conclusion, the research presented in this paper addresses
the critical need for understanding and predicting the power
consumption of IoT brokers, particularly in the context of
Pub/Sub messaging patterns. By leveraging machine learning
techniques and incorporating key parameters, the developed
model offers valuable insights for resource allocation, anomaly
detection, and optimization strategies within the Open6GHub
initiative. The empirical validation and simulation results
underscore the effectiveness of the approach in accurately
predicting power consumption, thus contributing to the ad-



vancement of energy-efficient communication systems.
While the current research lays a solid foundation for

predicting power consumption in IoT brokers, several avenues
for future exploration and enhancement remain open. Some
potential areas for future work include:

Enhanced Model Complexity: Investigating more complex
machine learning models, such as deep learning architectures,
to capture intricate relationships between input parameters
and power consumption. These models may offer improved
accuracy and robustness, particularly in scenarios with high-
dimensional data or non-linear relationships.

Dynamic Model Adaptation: Developing adaptive models
that can dynamically adjust their parameters based on evolving
workload patterns and environmental conditions. This would
enable real-time optimization of power consumption and re-
source allocation, leading to more responsive and energy-
efficient IoT broker systems.

Integration with Dynamic Power Management: Exploring
synergies between the predictive power consumption model
and dynamic power management techniques, such as DVFS
or task scheduling algorithms. By combining predictive in-
sights with proactive power management strategies, IoT broker
systems can achieve even greater energy efficiency without
compromising performance.

Validation in Real-World Deployments: Conducting exten-
sive field trials and validation studies in real-world IoT de-
ployments to assess the practical effectiveness and scalability
of the proposed predictive model. This would involve testing
the model across diverse scenarios, hardware configurations,
and environmental conditions to validate its generalizability
and applicability in real-world settings.

Security and Privacy Considerations: Addressing security
and privacy implications associated with collecting and ana-
lyzing sensitive data related to IoT communication and power
consumption. Developing robust security mechanisms and
privacy-preserving techniques to safeguard data integrity and
user privacy while still enabling effective power consumption
prediction and optimization.

By pursuing these avenues for future work, researchers
can further advance the state-of-the-art in energy-efficient IoT
communication systems and contribute to the broader goal of
sustainable and resilient network infrastructure.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the project Open6GHub {16KISK003K}.

REFERENCES

1 Pouhela, F., Krummacker, D., and Schotten, H. D., “Towards 6G Net-
works,” in A Context Management Architecture for Decoupled Acquisition
and Distribution of Information in Next-Generation Mobile Networks, ser.
ITG, vol. 157, VDE. IEEE, 5 2023.

2 OASIS. Mqtt version 5.0, oasis standard. [Online]. Available: https:
//docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

3 Pouhela, F., Sanon, S. P., Krummacker, D., and Schotten, H. D., “Every-
thing Interconnected via Cyberspace,” in MMQP: A Lightweight, Secure
and Scalable IoT Communication Protocol. IEEE, 8 2024.

4 Chen, Y., Gao, J., Guo, Y., and Chen, H., “A machine learning-based
approach for power consumption optimization in cloud data centers,”
IEEE Access, vol. 7, pp. 168 782–168 792, 2019.

5 Liu, Y., Chen, Y., Gao, J., and Chen, H., “Reinforcement learning-based
approach for power consumption optimization in cloud data centers,” in
2018 IEEE International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA). IEEE, 2018, pp. 636–641.

6 Pouhela, F., Krummacker, D., and Schotten, H. D., “Entity component
system architecture for scalable, modular, and power-efficient iot-brokers,”
in 2023 IEEE 21st International Conference on Industrial Informatics
(INDIN), 2023, pp. 1–6.

7 Chang, C.-H., Chen, H.-H. S., and Hsu, Y.-C., “Dynamic voltage and
frequency scaling techniques: A survey,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 54, no. 8, pp. 1792–1806, 2007.

8 Kim, Y.-S. and Lee, K., “Dynamic voltage and frequency scaling tech-
niques for low power,” ACM Computing Surveys (CSUR), vol. 41, no. 4,
pp. 1–36, 2009.

9 Wang, H., Zhang, L., He, X., and Chen, H.-H. S., “Dynamic voltage
and frequency scaling techniques: A survey,” ACM Computing Surveys
(CSUR), vol. 43, no. 3, pp. 1–36, 2011.

10 Bapatla, S. and Raghunathan, A., “Power-aware scheduling of multi-
threaded applications on multicore processors,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 1–30,
2014.

11 Mao, K. and Chen, Y., “Power-aware task scheduling for multi-core
processors: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 1,
pp. 1–38, 2016.

12 Jeon, M.-K. and Kim, K., “Power-aware task scheduling for multi-core
processors: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 1,
pp. 1–37, 2017.

13 “Asio c++ library.” [Online]. Available: https://think-async.com/Asio/
14 Maulud, D. and Abdulazeez, A. M., “A review on linear regression

comprehensive in machine learning,” Journal of Applied Science and
Technology Trends, vol. 1, no. 2, pp. 140–147, 2020.

15 Heiberger, R. M., Neuwirth, E., Heiberger, R. M., and Neuwirth, E.,
“Polynomial regression,” R Through Excel: A Spreadsheet Interface for
Statistics, Data Analysis, and Graphics, pp. 269–284, 2009.

16 Hoerl, R. W., “Ridge regression: a historical context,” Technometrics,
vol. 62, no. 4, pp. 420–425, 2020.

17 Ranstam, J. and Cook, J. A., “Lasso regression,” Journal of British
Surgery, vol. 105, no. 10, pp. 1348–1348, 2018.

18 Zhang, F. and O’Donnell, L. J., “Support vector regression,” in Machine
learning. Elsevier, 2020, pp. 123–140.

19 Tso, G. K. and Yau, K. K., “Predicting electricity energy consumption:
A comparison of regression analysis, decision tree and neural networks,”
Energy, vol. 32, no. 9, pp. 1761–1768, 2007.

20 Segal, M. R., “Machine learning benchmarks and random forest regres-
sion,” Center for Bioinformatics and Molecular Biostatistics, 2004.

21 Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., and Li, Z., “Prediction of
home energy consumption based on gradient boosting regression tree,”
Energy Reports, vol. 7, pp. 1246–1255, 2021.

22 Altman, N. and Krzywinski, M., “Ensemble methods: bagging and random
forests,” Nature Methods, vol. 14, no. 10, pp. 933–935, 2017.

23 Lindner, C. and Cootes, T. F., “Fully automatic cephalometric evaluation
using random forest regression-voting,” in IEEE International Symposium
on Biomedical Imaging, vol. 13. Citeseer, 2015.

24 Shrestha, D. L. and Solomatine, D. P., “Experiments with adaboost. rt, an
improved boosting scheme for regression,” Neural computation, vol. 18,
no. 7, pp. 1678–1710, 2006.

25 Kramer, O., “Unsupervised k-nearest neighbor regression,” arXiv preprint
arXiv:1107.3600, 2011.


