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ABSTRACT

Online lecture is one of the technology-wise challenges in the ed-
ucation field. It provides the advantage of encouraging anyone to
join from worldwide. However, understanding students’ concentra-
tion in remote is one of the difficulties. In this paper, we evaluate
multimodal sensors for estimating students’ concentration levels
during online video lectures. We collect multimodal sensor data
such as accelerometers, gyroscopes, heart rates, facial orientations,
and eye gazes. We conducted experiments with 13 university stu-
dents in Japan. The results of our study, with an average accuracy
rate of 74.4% for user-dependent cross-validation and 66.3% for
user-independent cross-validation, have significant implications
for understanding and improving student engagement in online
learning environments. Most interestingly, we found that facial
orientations are significant for user-dependent and eye gazes for
user-independent classification.

CCS CONCEPTS

+ Human-centered computing — Ubiquitous and mobile com-
puting; - Applied computing — E-learning; Distance learning;
« Hardware — Sensor applications and deployments.
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1 INTRODUCTION

Since COVID-19, education has entered an era of diverse learning
environments. According to a survey by the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT) in Japan,
many universities adopted online lectures, especially in 2020 [5].
Currently, 896 out of 1069 universities in Japan offer both onsite
and online lectures. Although the pandemic has subsided and face-
to-face classes have resumed, some universities and institutions
continue to provide online education. Therefore, offline and online
education must be the scope of the education environment.

Online education presents challenges compared to onsite learn-
ing, particularly in understanding students’ cognitive status. This is-
sue arises due to the lack of capturing non-verbal information from
students [9, 10]. As a potential solution, sensing offers a promis-
ing approach to visualizing students’ cognitive states [6, 8, 11].
Different educational institutions have different devices and sen-
sors, comparisons among sensors would be beneficial. From these
points of view, we aim to collect multiple sensors and compare their
performance in measuring cognitive state.

In ubiquitous computing, “concentration” is one of the impor-
tant cognitive states to measure in education. Uema and Inoue has
proposed an approach to measure concentration using JINS MEME
glasses to measure concentration levels [8]. Regarding the findings,
we encourage collecting gaze information and comparing it with
the other sensor features.

This research aims to compare multimodal sensors for estimating
concentration levels. To do so, we synchronously collect and com-
pare data from cameras and wearable sensors and compare sensors
against each other to verify which is the appropriate sensor. Specif-
ically, we embark on a complex process of collecting sensor data
such as accelerometers, gyroscopes, heart rates, facial orientations,
and eye gazes. Collecting multimodal sensor data, we leverage to
compare which sensors effectively estimate binary concentration
levels. This paper presents two contributions,

C1 Concentration estimation with multimodal sensors.
C2 Comparison of multimodal sensors to assess valid features.

2 RELATED WORK

Betto et al. [2] propose a method for detecting student distraction
state in e-learning lectures based on student face and posture infor-
mation collected from webcams. A binary classification model for
the user-dependent Random Forest model achieved 90 % recall.
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Figure 1: Experimental Overview.

Sevil et al. [7] proposed an algorithm to detect and characterize
physical activity and acute psychological stress from heart rate and
acceleration data obtained from wristbands. As a result, physical
activity and acute psychological stress were detected and classified
with an accuracy of 99.3% and 92.7%, respectively.

Kimura et al. [4] proposed a method to estimate intellectual
concentration using pupil diameter and heart rate variability. Ex-
periments were conducted on 31 participants, and the state of con-
centration was estimated with an average accuracy of 57.3%. The
simultaneous use of such features may enable us to estimate the
concentration level more accurately. In addition, the use of devices
that are burdensome to students may impede their concentration.

In our study, we aim to realize a sensor-based concentration
estimation system that does not depend on the student’s classroom
environment and does not burden the wearer.

3 METHODOLOGY

In this section, we describe a methodology for estimating concen-
tration levels. First, we explain the three sensors we use in this
study. Then, we present an approach to the feature engineering
preprocessing procedure before applying it to the classifier.

3.1 Multimodal Sensors

In this section, we describe the sensors used in our study. There
are various sensors that are considered to be effective for concen-
tration estimation. In this study, we use five types of sensor data:
accelerometers, gyroscopes, heart rates, facial orientations, and
eye gazes. As shown in Figure 1, we use three types of devices to
measure the five types of data. The following section describes the
sensors used in detail.

3.1.1 Accelerometer and Gyrosopic Sensing. In this study, we use
MetamotionS+! for measuring acceleration and gyroscopic. Meta-
motionS+ is a sensor that can measure various data such as accelera-
tion, gyroscopes, magnetic force, temperature, and air pressure, and
can be worn on the wrist using a special band. In this study, Meta-
motionS+ is worn on the participant’s dominant arm and measures
acceleration and gyroscopes at 100 Hz in three axes each.

Thttps://mbientlab.com/store/metamotions-p

3.1.2  Heart Rate Sensing. In this study, we use Fitbit Charge 5
for measuring heart rate. The Fitbit Charge 5 is a wristwatch-type
wearable device that can measure heart rate, sleep data, and exercise
data by wearing it on the participant’s arm. In this study, Fitbit
Charge 5 is worn on the opposite arm of the participant’s dominant
hand. Fitbit Charge 5 is basically set to measure heart rate at 12
Hz, but since measurement may fail in rare cases, the number of
data tends to be smaller than other data such as acceleration and
gyroscopes.

3.1.3  Face Orientation and Eye Gaze Sensing. In this section, we
describe a sensor that measures face orientation and eye gaze sens-
ing. In this study, we use ThinkPad X1 Yoga Gen 5 as a notebook
PC. Using a built-in web camera with a 30 frames per second, we
capture participant face images. This laptop is the same as the one
used for watching the online lecture. We record the participant’s
face during the experiment, and after the experiment is over, we
apply OpenFace [1] to extract facial orientation data from the video.
We use the angle of rotation of the face and the line of sight.

3.2 Feature Engineering

The sliding window method is used for feature extraction. In this
study, window sizes of 2.5, 5, 10, and 15 seconds are used. Data
from the 30 seconds immediately before the annotation was used.
This is because we judged that the time away from the annotation
timing is less reliable. The ten extracted features are shown in
Table 1. The signal magnitude area (SMA) was not extracted from
the eye gaze and heart rate data because data from all three axes are
required. Therefore, a total of 111 features are extracted: 28 from
the acceleration data, 28 from the gyro data, nine from the heart
rate data, 28 from the facial orientation data, and 18 from the eye
gaze data.

In addition, as mentioned in Section 3.1.2, heart rate is basically
measured at 12 Hz, so there are cases where no value is measured at
all within the window. In such cases, it is impossible to extract the
features, so in this study, they are replaced by 0. In addition to the
four window sizes described above, four overlaps (0, 0.25, 0.5, and
0.75) are employed, and a total of 16 combinations of these overlaps
are used to extract features. After feature extraction, scaling is

Zhttps://www.fitbit.com/global/us/products/trackers/charge5
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Table 1: Feature lists applied while applying sliding window.

Function Definition Algorithm

mean(s) Mean 5= % Z{il si

max(s) Maximum max; (s;)

min(s) Minimum min; (s;)

std(s) Standard Deviation o= ,;% Zl{\il(si —-35)2
mad(s) Median Absolute Deviation ~median; (|s; — median;(s;)])
energy(s) Mean Square Zﬁl si2

sma(sy,s2,s3) Signal Magnitude Area % Z?:l Z;\]ﬂ [si,j

iqr(s) Interquartile Range 03(s) — Q1(s)
range(s) Range max;(s;) — min; (s;)
rms(s) Root Mean Square ﬁ Zﬁl si2

performed using standardization, and the training model is used
for verification.

4 DATA COLLECTION

This section describes the details of the evaluation experiments
conducted based on the proposed method.

4.1 Participants

In this study, we recruited thirteen students (12 males and one
female) from a university in Japan. The participant is between 22
and 24 (M=23.2) years old. The experiment conductor provides
clear and detailed instructions to the participants, ensuring they
understand the procedure and what kind of data to collect. This
fosters a sense of confidence and knowledge. The use of the data
is also explained, and once they confirm, participants fill out the
consent form. During the experiment, participants are instructed
to opt out of the experiment anytime they want.

4.2 Procedure

In this section, we describe the experimental procedure. An exper-
iment was conducted to evaluate the accuracy of concentration
estimation during a video class using the three types of sensors
described in Section 3.1. To control the experiment settings, we in-
struct participants not to leave their seats, take notes, or fall asleep
during the experiment.

The experiment is shown in Figure 1. Our data collection pro-
cess is meticulously designed. Participants were first asked to wear
the MetamotionS+ on their dominant wrist (all participants were
right-handed) and the Fitbit Charge 5 on the opposite arm. Then,
participants sit in front of a laptop computer with a webcam record-
ing. We ask participants to watch two YouTube videos for the
online video lecture. One lecture is about explaining Git (a version
control system)®. Another video is about SQL (Structured Query
Language)*. The video has a total of 90 minutes.

In this study, the vibration function and switches of Metamo-
tionS+ were used for annotation. The shorter the annotation inter-
val, the more labels can be obtained, but the annotation should be as
unobtrusive as possible to the participant’s awareness to reproduce

3https://youtu.be/WHwuNP4kalU
4https://youtu.be/v-Mb2voyTbc
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Table 2: Balance of the collected concentration levels.

Participant | Concentration Non-Concentration
P1 35 25
P2 38 22
P3 38 22
P4 27 33
P5 36 24
P6 34 26
pP7 25 35
P8 35 25
P9 37 23

P10 39 21
P11 30 30
P12 47 13
P13 58 2
Total | 479 301

the actual classroom situation as much as possible. D’Mello and
Mills, which tracked participants’ emotional states while writing
an essay, reported that 4.8% of participants reported feeling very
frustrated when asked to rate 11 different emotional states and their
intensity every 90 seconds. Referring to the results of this study,
if the participants were only asked to answer whether they were
concentrating or not, it would not be a significant burden to require
them to take annotations every 90 seconds. During the 90 minutes,
60 labels were obtained per participant.

5 DATA ANALYSIS

In this study, we applied gradient boosting, decision tree, logistic
regression, random forests, and SVM for the binary concentration
level classification. For the performance measurement, we use accu-
racy, which is the percentage of correct predictions. In this research,
we verify two types of evaluations. User-dependent and indepen-
dent analysis.

User-dependent validation is performed by applying participant-
self data for training and testing. As explained in Section 4.2, we
collect 60 labels for each participant. We select six labels as a chunk
of data and divide them into ten segments. We apply one segment
as test data and nine segments as training data. We continue this
procedure for ten times.

User-independent analysis is performed by applying leave-one-
participant-out cross-validation. We apply one participant’s data
as the test data, and the remaining twelve participants’ data as the
training data. We continue this procedure for thirteen times until
all participant data is set as test data.

6 RESULT

In this section, we describe both user-dependent and independent
concentration estimation results.

6.1 User-Dependent Performance

In this section, we discuss the results of the user-dependent analysis.
For user-dependent analysis, we observed that the highest accuracy
rate was scored with a window size of 15 and an overlap of 0.25,
using a random forest. The following are discussed based on these
best-performed results.
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Table 3: Concentration estimation result for user-dependent (UD) and user-independent (UI) cross validation.

Accelerometer | Gyroscope | Face Orientation Eye Gaze Heart Rate All Sensors

Participant | UD Ul UD Ul UD Ul UD Ul UD Ul UD Ul
P1 0.900  0.559 | 0.733 0.556 | 0.850 0.601 0.808 0.662 | 0.642 0.583 | 0.917 0.731
P2 0.592  0.653 | 0.600 0.629 | 0.725 0.733 0.667 0.698 | 0.500 0.633 | 0.783 0.717
P3 0.683  0.586 | 0.717 0.657 | 0.667 0.647 0.592  0.659 | 0.500 0.633 | 0.750 0.651
P4 0.583  0.529 | 0.533 0.479 | 0.733 0.536 0.708 0.563 | 0.500 0.450 | 0.758  0.596
P5 0.658 0.611 | 0.708 0.613 | 0.708 0.672 0.675 0.639 | 0.600 0.600 | 0.711  0.696
P6 0.525 0.560 | 0.483 0.570 | 0.583 0.618 0.700  0.640 | 0.450 0.567 | 0.661 0.646
P7 0.450 0.418 | 0.533 0.402 | 0.808 0.661 0.783  0.640 | 0.608 0.417 | 0.842 0.650
P8 0.625  0.642 | 0.575 0.616 | 0.567 0.589 | 0.558 0.616 | 0.592 0.583 | 0.667 0.660
P9 0.617  0.622 | 0.617 0.618 | 0.525 0.627 | 0.608 0.653 | 0.517 0.617 | 0.625 0.607
P10 0.542  0.634 | 0.600 0.656 | 0.558 0.584 | 0.533 0.656 | 0.483 0.650 | 0.600 0.661
P11 0.300 0.468 | 0.325 0.506 | 0.475 0.519 | 0.433 0.514 | 0.625 0.500 | 0.606 0.564
P12 0.667 0.772 | 0.733 0.770 | 0.767 0.700 0.750 0.738 | 0.717 0.783 | 0.783 0.718
P13 0.967  0.827 | 0.967 0.913 | 0.967 0.809 0.958 0.852 | 0.950 0.967 | 0.967 0.726
Mean 0.624  0.606 | 0.625 0.614 | 0.687  0.638 | 0.675 0.656 | 0.591 0.614 | 0.744 0.663

UD column in Table 3 shows the accuracy for each participants.
These results underscore the crucial role of participant variability in
determining accuracy in user-dependent analysis. Participants like
P1, P7, and P13 scored higher accuracy than others. Upon closer ex-
amination, we found that participant P13 exceptional performance
can be attributed to the presence of unbalanced labels, as evidenced
in Table 2. However, P1 and P7 are performing significantly well.

Comparing different sensor results, we discovered that face orien-
tation performed with the highest accuracy of 0.687 and heart rate
at the lowest level of 0.591 for user-dependent concentration esti-
mation. This result states that facial orientation has user-dependent
unique movement related to concentration.

6.2 User-Independent Performance

In this section, we discuss the results of the leave-one-participant-
out cross-validation. For user-independent analysis, we observed
that the highest accuracy rate scored with a window size was 10,
and the overlap was 0, using random forest. The following are
discussed based on these best-performed results.

UI column in Table 3 shows the results of the leave-one-participant-
out cross-validation. The average concentration level estimation
performs 0.663 for all sensors as input. The highest performed
participant was 0.731 with P1, and the lowest was 0.564 with P11.
The result did not perform well with leave-one-participant-out
cross-validation.

Comparing different sensors, we observed that eye gaze per-
formed best with an accuracy of 0.656 and lowest with an accuracy
of 0.606 for the accelerometer. This result states that eye gaze is a
generalized feature that can be used as a feature to estimate partici-
pant concentration compared to the other four sensors.

7 LIMITATIONS AND FUTURE WORK

Our work compared sensors to measure student concentration lev-
els during online video lectures. We visualize which sensor performs
well for each user-dependent and independent scenario. However,

we have yet to discover data fusion between two, three, or four. In
this study, we only apply all sensor data as input.

Another area for improvement is the need for more variety in
participant backgrounds. We collected participants from Japan and
did not consider the experiment on people from other countries.
Human behavior and cultural differences have yet to be considered
and must be addressed.

Lastly, our experiment collects self-report binary concentration
levels. However, concentration cannot be measured in binary and
needs to be in regression form. We need to consider measuring
concentration levels in regression form.

For future works, we can check which combination can be the
best pattern for classifying concentration levels. Furthermore, it is
crucial to emphasize the necessity of collecting participants from di-
verse backgrounds, which will generalize the results of our research.
We also consider implementing a real-time student concentration
level estimation application while taking online video lectures.

8 CONCLUSION

In this study, we collect students’ concentration levels and multi-
modal sensor data while taking online video lectures. We collect
sensor data such as accelerometers, gyroscopes, heart rates, facial
orientations, and eye gazes. We conducted experiments with 13 uni-
versity students in Japan. Using all sensor data as input and applying
random forest, we achieved an accuracy rate of 74.4% for user-
dependent cross-validation and 66.3% for leave-one-participant-out
cross-validation. Notably, face orientation performs the highest
accuracy for user-dependent classification and eye gaze for user-
independent analysis. This study shows how multimodal sensors
measure concentration levels and which sensor is useful in user-
dependent and independent scenarios.
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