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Emerging trends in communication systems, such as network softwarization, functional disaggregation, and multi-access edge
computing (MEC), are reshaping both the infrastructural landscape and the application ecosystem. These transformations
introduce new challenges for packet transmission, task offloading, and resource allocation under stringent service-level
requirements. A key factor in this context is queue impatience, where waiting entities alter their behavior in response to delay.
While balking and reneging have been widely studied, this survey focuses on the less explored but operationally significant
phenomenon of jockeying, i.e. the switching of jobs or users between queues. Although a substantial body of literature models
jockeying behavior, the diversity of approaches raises questions about their practical applicability in dynamic, distributed
environments such as 5G and Beyond. This chronicle reviews and classifies these studies with respect to their methodologies,
modeling assumptions, and use cases, with particular emphasis on communication systems and MEC scenarios. We argue
that forthcoming architectural transformations in next-generation networks will render many existing jockeying models
inapplicable. By highlighting emerging paradigms such as MEC, network slicing, and network function virtualization, we
identify open challenges, including state dissemination, migration cost, and stability, that undermine classical assumptions.
We further outline design principles and research directions, emphasizing hybrid architectures and decentralized decision
making as foundations for re-conceptualizing impatience in next-generation communication systems.
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1 INTRODUCTION
Recent advances in information and communications technology (ICT) have spawned a class of applications
that are sensitive to latency and to reliability. Examples include remote control and industrial automatio [7, 159],
autonomous driving [45, 154, 164], and immersive XR services. These applications place unprecedented demands
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on packet transmission, task offloading, and real time resource allocation [20]. These demands expose limits of
classical queueing abstractions and motivate a fresh look at impatient queueing behavior, in particular jockeying:
the act of switching jobs or users between service queues to obtain faster service.
From the behavioral perspective, studies have categorized impatient consumers as those that observe queue

status and refrain from joining, a manner termed as balking [10, 122]. Then there are those that join a queue and
abandon it when the accumulated delay is more than expected (renege) [52, 142]. Less studied but operationally
important is jockeying, where a customer who has already joined a queue relocates to an alternative queue, often
driven by perceived differences in waiting time, price or service capability [82]. Most analytical and experimental
work on jockeying attaches costs, priorities or class labels to buffers to capture system heterogeneity and tenant
preferences [49]. This heterogeneity is the principal rationale for preferring one buffer over another, but it is not
the sole trigger for switching.

1.1 Triggers and modeling variants
Generally, the reasons that influence impatience among consumers as covered in most literature [110, 143] can
be irrational with no consideration whatsoever for prevailing buffer conditions, or rational [21]. The following
are the most widely studied triggers for impatience in queues:

Threshold-based switching: A common rule is a queue length or waiting time threshold; That is, when the
difference in queue lengths exceeds a preset margin, an agent may move from the longer to the shorter queue
[3, 51, 170] or vice versa in some models [141]. In some findings, jockeying is only permitted when the alternative
queue is empty [124, 151]. And in more versatile setups, entities can rationally choose to switch from any position
within the queue to the end of an alternative queue [90]. Or more aggressively intermingle randomly in what is
referred to as pre-emptive jockeying [59, 65].

Cost and expected delay criteria: In heterogeneous systems like mobile networks or cloud MEC platforms,
simple queue length thresholds are often inadequate. Instead, tenants either premise this jockeying behavior
on combined constraints on the queue length threshold and the expected waiting time [38, 169]. Other findings
compare the expected remaining service time [33, 49] or the distance over which the workload must be migrated
[23, 32]. Or setups that consider the expected delay [124]. Essentially, the tenant’s decision to move around
workload factors in information about changes in the system characteristics [60, 76]. This information in other
findings is defined in terms of costs, subscription profiles or network traffic classifications [70] to influence the
rationality of the jockeying tenants [141].

1.2 Queue typology and baseline assumptions
Technically, queues are composed of multi-server or single server lines. The canonical𝐴/𝑆/𝑐 classification (where
𝐴, 𝑆, 𝑐 denoted the arrival rate, service interval and the number of servers available for processing respectively)
introduced in the queueing literature [80] yields the familiar𝑀/𝑀/𝑐 , 𝐺/𝐺/𝑐 , and 𝐸/𝑃𝐻/𝑐 families [88]. Table 1
is a summary of commonly adopted queue notations symbolizing the statistical properties of arrivals, departures
and service disciplines. Several standard assumptions recur across jockeying studies in addition to the above
nomenclature:

• Arrival and service processes. Although studies that differentiate between the properties of the statistical
distributions of both arrivals and departures in buffers exist [25, 39], most findings generalize the periodicity
of these two activities to obey a Poisson distribution [125, 157]. Others presume this frequency as batch
arrivals [24, 165] for example in systems with limited capacity [147], and the performance effect that
the periodicity of these two events has on the impatiently queueing consumer has been investigated in
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Table 1. Common queueing notation 𝐴/𝐵/𝑋/𝑌/𝑍 , originated from [80]

Characteristic Symbol Explanation and remarks

Inter-arrival interval (𝐴)
Inter-service interval (𝐵)

𝑀 [𝑆 ] Exponential with random batch size 𝑆 ,
𝑆 ≡ 1 by default

𝐷 Deterministic
𝐸𝑘 Erlang type 𝑘 (𝑘 = 1, 2, . . . )
𝐻𝑘 Mixture of 𝑘 exponentials
𝑃𝐻 Phase type
𝐺 General

Number of servers (𝑋 ) 1, 2, . . . ,∞ 𝑌 = ∞ by defaultMaximal queue capacity (𝑌 )
FCFS First come, first served (default) [19, 117]

Queue discipline (𝑍 ) LCFS Last come, first served [75, 99]
RSS Random selection for service [87]
PR Priority [18, 146, 160]
GD General discipline

[54, 59, 89]. The dynamics introduced by these events in queues are mostly generalized to form continuous
or discrete stochastic chains [148].

• Service discipline. First-Come-First-Served is the default service discipline in most work, although
according to Table 1 other disciplines have been documented [88]. However, practitioners argue that
mission critical operations, such as rescue (where tasks urgently need to be prioritized by jockeying) render
the FCFS approach less feasible given the strict latency requirements in such operations [91, 93, 146].

• Homogeneous setups. Another wild assumption in most models is that the setups are homogeneous in
nature, further limiting the applicability of some modeling techniques in next generation communication
systems like 5G and Beyond.

• Join the Shorter Queue (JSQ). It has also been argued that joining the shorter queue might not be optimal
given the existential differences in queue capacities and workload [158]. Limiting jockeying to occur from
the shorter buffer to the longer one raises concerns about such jockeying thresholds as the optimal trigger
for switching buffers in heterogeneous setups.

• Queue length difference as a jockeying threshold. The use of a preset difference in the size of the
buffers (jockeying threshold) as the criterion for the task migration is not practical in heterogeneous
systems.

• Information availability. A common modeling premise is that arriving agents have access to some form
of queue status information [84]. This information guides the decision to join a queue and the common
strategy is to join the shorter one [5, 129], or switch to an alternative queue [14, 117]. Technical mechanisms
for providing tenants with access to this buffer status information have inspired proposals for broadcasting
or subscription to this information in dedicated or shared communication channels [55].

1.3 Why classical assumptions may fail in MEC or 5G
Emerging architectural trends like network softwarization, functional splits in the RAN ( Radio, Distributed,
Centralized Units and Control or User Planes), network slicing and multi-access edge computing (MEC) are fun-
damentally altering the latency, control plane and orchestration semantics that underlie modern communication
systems [73]. These transformations introduce tight service-level constraints, multi-domain heterogeneity and
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new costs (e.g., state transfer latency, orchestration handshakes, and control plane signaling) that violate key
assumptions in many classical impatient queueing models.

In particular, common primitives such as Markov modulated queues, threshold-based jockeying rules, Erlang/C
waiting-time approximations, implicitly assume fast and reliable dissemination of queue descriptors, negligible
migration cost, stationarity and trusted status reports. Under Open Radio Access Network (O-RAN) proposals for
disaggregation and multi-vendor slicing, these assumptions break down. This is because information is partial and
delayed, migration incurs nontrivial transfer and reconfiguration overhead, and decision policies face incentive
and security constraints across administrative domains. Therefore, while the modeling assumptions highlighted
in Section 1.2 are useful, the following aspects of modern MEC and 5G systems undermine their validity:
(1) Heterogeneity and multi-vendor slices. Slices assemble diverse RAN, core and MEC components with

distinct performance and cost profiles [13, 34, 118]. A simple queue length comparison does not capture
differences in processing power, transport latency, or the monetary costs that tenants incur when switching
between slices [121, 136, 140, 156].

(2) Non-zero migration cost. Stateful migration of tasks or sessions incurs transfer time proportional to
state size and network path characteristics[44, 106]. Therefore, ignoring transfer cost biases models toward
excessive switching.

(3) Information latency and overhead. Timely and authenticated dissemination of per-slice descriptors
(waiting time, load, price) consumes control plane resources[60]. Yet stale or noisy descriptor information
could yield poor decisions and may increase churn [56, 67, 138, 152].

(4) Stability and security risks. Low queue length based jockeying thresholds can induce a "ping-pong"
behavior or oscillations that could amplify the load [46, 60]. Furthermore, unauthenticated status reports
can be exploited for selfish or adversarial gain, necessitating trust mechanisms [81, 135].

1.4 Implications and objectives of this survey
Proposed Sixth Generation (6G) architectural modifications by the Third Generation Partnership Project (3GPP)
fundamentally challenge the assumptions underpinning classical jockeying models. Partial and delayed visibility,
state transfer costs, heterogeneous slice performance, and cross-domain trust constraints jointly undermine the
tractability of simple threshold or Markovian-based decision rules. In particular, heterogeneity and multi-vendor
slicing introduce non-uniform queue capacities, service disciplines, and admission rules, rendering traditional
homogeneous formulations inapplicable. At the same time, information latency and dissemination overhead become
critical in MEC and Software Defined Network (SDN)/ Network Functions Virtualization (NFV) deployments,
where stale or excessive signaling can negate the benefits of jockeying decisions. Moreover, stability and security
risks, including oscillatory switching (ping-pong effects) and adversarial or corrupted state reports, threaten
SLA compliance and trust in decentralized decision making. Taken together, these transformations render many
existing jockeying models infeasible, and they highlight the pressing need for next-generation approaches
that explicitly incorporate slice heterogeneity, communication-constrained information flows, and robustness
guarantees under adversarial or unstable dynamics.

Motivated by these shifts, this survey consolidates the state of the art in jockeying models for communication
systems, identifies the limitations of existing techniques under emerging 5G/6G architectural paradigms, and out-
lines the critical directions where future modeling and system design efforts must focus. Hence, the contributions
of this chronicle can be summarized as follows:
(1) Taxonomy and synthesis. This chronicle catalogs existing jockeying models and control primitives,

highlighting their assumptions, analytical tools, and applicability. It provides a retrospective survey of
techniques for modeling this impatience behavior, for which we know no equivalent compilation has been
published.
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(2) Quantitative gap analysis: We evaluate the practicality of jockeying under contemporary architectural
constraints. That is, we assess the limits of classical models in 5G/6G contexts, focusing on heterogeneity,
signaling constraints, and security stability challenges.

(3) Integration with emerging architectures: We analyze how Multi-Access Edge Computing (MEC),
SDN/NFV, and network slicing redefines modeling jockeying behavior by introducing heterogeneity,
signaling delays, and cross-domain trust constraints. This unravels where classical homogeneous and fully
observable impatience modeling no longer applies.

(4) Design criteria and Future directions: From the taxonomy and gap analysis, we outline design principles
and research directions for developing robust, communication-aware, and jockeyingmodels suitable for next
generation distributed environments. These preeminent challenges include but are not limited to migration
latency and bandwidth cost, dissemination delay and staleness, multi-slice heterogeneity, robustness to
stale or noisy information, prototype validation on MEC or Non Terrestrial Networks (NTN) testbeds etc.

In Section II of this chronicle, we provide a concise overview of the principal techniques used to model jockeying
in queues. Following that, we classify the literature by methodological family and examine individual studies in
each class, emphasizing their models, assumptions, and numerical or empirical results. We intentionally avoid
lengthy formal proofs; where analytical results are essential to the argument, we summarize the key theorems or
lemmas and state their implications for jockeying policies. In the discussion section we then assess how recent
architectural proposals (notably those advocated by the O-RAN community) affect the practicality of existing
jockeying models and policies. Motivated by that assessment, we identify concrete open problems and promising
research directions. Particularly, those that address dissemination overhead, task migration costs, performance
stability, security, and the deployment challenges of impatience aware mechanisms in MEC and slice-based
deployments. The following sections systematically review existing jockeying techniques before analyzing their
applicability to next-generation networks.

2 TECHNIQUES FOR MODELING JOCKEYING IN QUEUES
Different approaches have been studied to characterize for equilibrium conditions and optimize queue descriptors
for performance enhancement. Table 2 provides a comparative summary about the individual models grouped
based on the similarities in techniques while differentiated along performance and descriptor evaluations.

2.1 Stochastic Modeling
Most literature models jockeying as a Markov decision problem: Markov Decision Processes (MDPs) (and their
generalizations Partially Observable Markov Decision Processes (POMDPs) or Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs)) formalize sequential decision-making under uncertainty and are
natural for planning agent actions in dynamic environments [2, 71, 112, 114, 120, 145]. However, these approaches
suffer well-known practical limitations: the exploration–exploitation tradeoff can trap learning in local optima,
state-space growth renders exact policy search computationally intractable for realistic multi-agent settings,
and partial observability further complicates inference and control [48, 134]. In short, despite strong theoretical
grounding, MDP-based methods often struggle to scale and to provide timely, high-quality decisions in large,
heterogeneous MEC/NTN deployments.
Game-theoretic formulations (Nash equilibrium and variants) offer an alternative by characterizing selfish

participants’ strategies and equilibrium outcomes [60, 61, 63, 94, 113]. Yet they too rely on demanding assumptions
like players’ knowing the strategies of others players and can be slow to converge[22, 28]. These techniques are
also sensitive to initialization, or susceptibile to saddle-point dynamics in sequential or repeated interactions[66, 74,
167] . Consequently, while bothMDP/POMDP and Nash-frameworks yield important insights, their computational
and information assumptions limit direct applicability in large, decentralized, latency-sensitive networked systems.
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Table 2. Different approaches used for analyzing the jockeying behavior of customers in queueing systems

Queue
model

Jockeying
threshold

Other metrics

Stochastic jockeying models
A Solution for Queues with Instantaneous Jockeying and
Other Customer Selection Rules

M/M/C 2 Distance traversed by jockeys

On Jockeying in Queues M/M/2 1 mean waiting times, impact of jockey-
ing on service rate

Two queues in parallel M/M/2 1 mean queue sizes
The shortest queue model with jockeying M/M/C 1 mean queue sizes, mean waiting times
General solutions of the jockeying problem M/M/3 +

M/M/∞
≥ 2 effect of arrival rate on jockeying rate,

system utilization
Dynamic routing and jockeying controls in a two-station
queuing system

M/M/2 ≥ 1 Workload distribution, cost efficiency

Optimal policy for controlling the two-server queueing
systems with jockeying

M/M/2 Hedge point Cost optimization

Dynamic Load Balancing in Parallel Queuing Systems M/M/2 +
M/M/C

≥ 𝑁 frequency of monitoring queues

Strategic Dynamic Jockeying Between Two Parallel Queues M/M/2 queue lengths limits for jockeying
A new look on the shortest queue system with jockeying M/M/C ≥ 𝑁 Count of jumps before being served
A Queuing Systemwith Two Parallel Lines, Cost-Conscious
Customers, and Jockeying

M/M/2 ≥ 1 Costs optimization

Analysis of job transfer policies in systems with unreliable
servers

≥ 𝑁 Workload expiry threshold

Stability analysis of some networks with interacting servers ≥ 𝑁

Two M/M/1 Queues with Transfers of Customers 2xM/M/1 1 transfer rates, time to migrate work-
load, magnitude of bulk transfer

Tail asymptotics of two parallel queues with transfers M/M/2 ≥ 𝑁

Energy-efficient heuristics for job assignment in server
farms

M/M/2 Energy Efficiency

Analytic Models
Matrix-geometric analysis of the shortest queue problem
with threshold jockeying

M/M/C ≥ 𝑁 mean queue size, mean waiting time

Analysis of two queues in parallel with jockeying and re-
stricted capacities

M/M/2 +
2xM/M/1

iff N1=0 or N2=0 traffic intensity

A matrix-geometric solution of the jockeying problem M/M/C ≥ 2 mean queue sizes, mean waiting time
The shorter queue problem: A numerical study using the
matrix-geometric solution

M/M/2 10 < 𝑛 > ∞ mean queue length, mean waiting time

Queuing Analysis of a Jockeying M/M/C ≥ 1 waiting time, traffic intensity
Transient analysis of two queues in parallel with jockeying M/M/2 iff N1=0 or N2=0 traffic intensity
Analysis of the asymmetric shortest queue problem with
threshold jockeying

M/M/2 ≥ 𝑁 mean queue length

Behavioral models
Dynamic load balancing in distributed systems
(regeneration-theory)

M/M/2 Delay mean task completion time

Bi-objective optimization for multi-layer loca-
tion–allocation with jockeying

M/M/C Fitness function Idle time, transfer overhead

Equilibrium strategies and value of information in two-line
systems

M/M/2 3 < 𝑛 > ∞ queue status information cost

Impatient queuing for intelligent task offloading in MEC G/G/1/∞ 1 Costs, response time and rewards
Resource Allocation in Mobile Networks: A decision model
of jockeying in queues

M/M/C Expected waiting
time

jockeying frequency, waiting time

Information Bulletin Strategy in Impatient Queueing M/M/2 Markov informa-
tion models

impatience rates, waiting time, service
optimality
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Analogous to continuous fluid flow, Fluid models are widely used for infinite-capacity queueing approximations
and for studying bursty traffic regimes [37, 44, 155]. They have been applied to evaluate loss rates, maximum
buffer sizes, busy periods and asymptotic/equilibrium behavior, sometimes using matrix-geometric or diffusion
(Brownian) variants [8, 79]. Extensions incorporate feedback of queue-length information so transition rates
depend on buffer state [133, 163]. However, fluid descriptions are inherently nonstationary for heterogeneous
traffic, produce nonlinear transient equations that are hard to solve, and demand substantial computation for
sensitivity analysis, optimization and validation [96].

2.2 Analytic Modeling
Matrix-geometric methods provide tractable steady-state solutions for Quasi-Birth-Death and other infinite
Markov chains by exploiting the generator’s repeating block structure [109, 115]. The idea is to essentially identify
the irregular (initial) and regular (repeating) portions of the representative generator matrices that encode the
various states a system (re)visits [62, 77]. Under mean-drift conditions one decomposes the generator into initial
and repeating blocks and computes the rate (R) matrix whose spectral structure yields equilibrium probabilities
[78]. While powerful, there are concerns about using cyclic or logarithmic reduction techniques to solve the
rate matrix being computationally complex. Also, the solution for this rate matrix depends on the partitioning
scheme between the state sub-levels to compose for initial and boundary states, making the unique solution more
intractable.

2.3 Behavioral Modeling
A growing alternative is decentralized, data-driven behavioral modeling that treats impatience and jockeying
as local decision problems rather than centrally controlled processes [55, 82]. Artificial neural networks and
related connectionist methods can capture high-dimensional, nonlinear relations and predict queue descriptors
where classical models fail [11, 85]. Their drawbacks are well known: opacity (“black box”), training costs,
over/under-fitting risks, hyperparameter tuning, convergence/stopping issues and additional compute burden at
inference time [16, 104, 126, 162]

3 STOCHASTIC MODELS

3.1 Statistical Models
Findings that investigate the behaviour of impatient consumers when queueing up for resources can be traced
back to a paper by [51]. There simple setup was composed of two service lines, one “near” and the other
“far”. Whether “near” or “far” queue was defined by the queue sizes 𝑋 (𝑡), 𝑋 ′ (𝑡) at the time 𝑡 of an admission
respectively. Such that, the inequality 𝑋 (𝑡) ≤ 𝑋

′ (𝑡) meant new customers preferred to join the shorter buffer
(“near”) line. On the other hand, existing consumers were allowed to switch to the “far” queue when deemed
beneficial. New customers arrived to the “near” or “far” queue following a Poisson distributed with rate 𝜆;
And were processed at Poisson distributed service rates 𝜇1 and 𝜇2 respectively. The switching happened when
the queue sizes varied by one and this was always from the longer to the shorter line. The objective was to
formulate expressions for steady state conditions in infinite time. Expressions for the rate of change in queue
sizes 𝛿𝑝𝑥𝑦 (𝑡 )

𝛿𝑡
were first derived. Then, from the formulations of the queue occupancies 𝑝𝑥𝑦 (𝑡) as 𝑡 → ∞ (where

𝑝𝑥𝑦 (𝑡) = 𝑃𝑟 {𝑋 (𝑡) = 𝑥, 𝑋 ′ (𝑡) = 𝑦}) evolved Equation (1) as the bi-variate generating function that defined for
equilibrium conditions. This was a product over state space changes 𝑠𝑥𝑠 ′𝑦 whose summations characterized for
the generating function. Partial derivations of this generating function were then evaluated under variations
in queue states [(𝑠 = 𝑠

′
= 0), (𝑠 = 1, 𝑠 ′ = 0), (𝑠 = 0, 𝑠 ′ = 1), (𝑠 = 𝑠

′
= 1)] given arrivals, exits or both events
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Fig. 1. Jockeying strategies: In the left-most (A) of the illustration is the Maitre d’Hotel queueing strategy where customers waited in a single line and got
served when one of the available stations was empty. In the middle (B) is the Tellers’ Window strategy where customers joined and waited in the shorter of the
two queues and no switching lines was permitted thereafter. In the right-most (C) was the Tellers’ Window with Jockeying, a behaviour where despite a new
customer having joined the shorter of the two queues, switching to an alternative one was permitted later given a deviation in the sizes by one.

happening simultaneously:
Φ(𝑠, 𝑠 ′ ) =

∑︁
𝑥

∑︁
𝑦

𝑃𝑥𝑦𝑠
𝑥𝑠

′𝑦, (1)

where 𝑠 and 𝑠
′
denoted the states of the “near” and “far” queues in terms of their queue lengths respectively.

The distributions of the sizes for each queue and the overall system occupancy were formulated for from the
representational difference equations. In conclusion, the findings derived for the stability conditions of the queue
lengths when customers needed to switch from one line to another. And the solutions for these conditions in
each of the states were expressed for in terms of probability that both queues were not occupied.
[90] would later on conduct more concrete studies that compared heterogeneous queue setups. The findings

assumed tenants could instantaneously jockey given some threshold on queue length difference (adjacent queue
shorter by one) or jockey based on some stochastic computations (based on how the differences in sizes of the
queue changed). Figure 1 was a depiction of the heterogeneity in setup (also referred to as strategies). Here, each
setup was associated with a set of behavioral rules for the customers. For example, under the "Tellers’ Windows
with Jockeying" strategy (Figure 1C), new arrivals were queued to the end of the shorter line. They could however
move to the other queue when the difference between the two queues exceeded one i.e. instantaneous strategy.
The case of the stochastic-based jockeying strategy on the other was a factor of the rate 𝑘 (𝑤𝑖−𝑤 𝑗 ) (where𝑤𝑖 ,𝑤 𝑗 as
queue sizes) at which the queues varied in size. Specific of the probabilistic jockeying, the structure of the generator
function and the evaluations for the steady state conditions exhibited known properties. These properties were
descriptive of a phenomenon observed in similar setups where customers simply joined the shortest queue and
never left until the end of service ("Teller’s Window"). For the instantaneous jockeying, equilibrium conditions
were characterized for under the three presumed occupancy state categories (𝑛, 𝑛), (𝑛 + 1, 𝑛) and (𝑛, 𝑛 + 1) (where
𝑛 was the average number of occupants in a given queue). These categories restricted jockeying within the system
to the shorter line always . More complexity was introduced in the "Lane Changing" strategy (setup) where
switching was not based on a preset jockeying threshold but the rate at which the two service lines differed in
length. It was however observed that under this setup, the number of customers that wanted to jockey grew
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exponentially and that equilibrium conditions were a factor of only 𝜆, (𝜆 = 𝜆1 + 𝜆2) and not 𝜆𝑖 , 𝑖 = 1, 2. In addition
to that, it was noted that some of these strategies led to states where one service line was empty while the
other had customers queueing up, states in which queue utilization was compromised. Another interesting
customer flow "Route changing" was presented where jockeying was probabilistic, depending on how dissatisfied
a customer was being at a certain position in the queue. This was given the fact that customer had no access
to queue status information . The probability that a customer moved from queue 𝑖 to 𝑗 at time 𝑡 was therein

computed as 𝑃−→
𝑖 𝑗
(𝑡) =

{
0, 𝑛𝑖 = 0
1 − 𝑒−𝑘𝑖 (𝑛𝑖−1)𝑡 , 𝑛𝑖 ≥ 1

where 𝑛𝑖 was the number of users in queue 𝑖 and 𝑗 was the preferred

queue.
From the transition equations, the following system descriptors were characterized for: the equilibrium conditions
of the average queue occupancy, the expected number of customers processed and the probability that the a queue
was not occupied. The work finally presented results from the numerical studies that involved experimenting
with varying queue parameters under the aforementioned strategies (setups). Further insight was shared about
the queues’ performance and quantitative measures on certain queue descriptors.
It would later be revealed that, using the generating function to formulate for the steady-state solution was

not the only approach to the problem. According to [32], a closed form solution for some queue descriptors like
queue length could be derived from inversion operations on the representational state space matrix. Customers
that joined the𝑀/𝑀/𝐶 queue system were governed by different rules at admission (like which queue to join
based on probabilities or queue size). Jockeying was permitted only when the difference between the sizes of the
two queues hit the preset threshold (two). The authors differed in methodology to reason that the underlying
Markov process could be modeled using a transition diagram to capture the changes in states. The formulation
for the proof followed from the definitions of coefficient matrices that underpinned the transitions in state
spaces (Λ0,Λ𝑛). The constituent sub-matrices were then partitioned (Λ0𝑖 ,Λ𝑛𝑖 , 𝑖 = 0, 1...𝐶) to characterize for this
coefficient matrix Λ in equation (2) and the equilibrium conditions Λ𝑃 = 0. Here 𝑃 denoted a column vector
that defined for the probabilities that a queue was in a given state. This matrix Λ was composed of sub-matrices
(like Λ0𝑖 ,Λ𝑛𝑖 , 𝑖 = 0, 1, . . .𝐶) partitioned along the number of queues and there respective sizes. According to the
authors, this matrix was constituent of the regularity property and it was from this property that the solution
emanated. It was therefore argued that the solution depended on choosing the proper sub-divisions.

Λ =



𝜆01 𝜆02 0 0 0 0 ....

0 𝜆11 𝜆12 0 0 0 ....

0 0 𝜆21 𝜆22 0 0 ....

0 0 0 𝜆31 𝜆32 0 .....
...

...
...

...
...

...
. . .


(2)

The matrices of varying dimensions were defined and elements partitioned into vectors to characterize specific
queue state probabilities. This iterative technique was followed by an inversion of each matrix (Λ𝑛2 and Λ02) to
yield derivations for the closed form solution of all state probabilities. It was shown how the preference for a
certain buffer when both were equal in size then became be a factor of the distance (𝑛𝑖 − 𝑛𝑘 ≥ 2; 𝑖, 𝑘 were queues)
the jockey candidate had to traverse to the alternative queue. It was also shown how a closed form solution could
exist in scenarios where the coefficient matrix was dependent on the number of customers in a queue.
The idea of [32] about sub-dividing the coefficient matrix motivated further exploratory work with queue

descriptors as documented in [36]’s findings. The authors studied how queue parameters like time-until-service
and how often newcomers arrived in the system influenced the jockeying behavior. To switch to any shorter
line was preconditioned on the size of one of the queues in an𝑀/𝑀/𝐶 setup differing by two. Also, a different
technique for the partitioning of the state space transitions into sub-matrices was utilized. The first model
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considered the case when no jockeying was permitted. The authors formulated for the stability conditions and
transition probabilities from the representational differential equations. Analytically, these differential equations
were generalized as 𝐴𝑃 = 0. 𝐴 denoted an 𝑛(𝐶2 − 1) + 1 sized matrix whose elements corresponded to the
weights (coefficient) of the state probabilities (where 𝑛 was the queue’s capacity). Vector 𝑃 on the other hand
denoted the actual probabilities that a queue was in a certain state and 0 was a vector that constituted non-zero
elements. It was this matrix 𝐴 that was sub-divided into a series of other column vectors and sub-matrices
of varying dimensions . Then by applying boundary constraints to the generalized equation 𝐴𝑃 , expressions
that evaluated for the probabilities of the queue being a given state were formulated. The second model then
analyzed the jockeying behavior under recalibration in queue descriptors like the arrival 𝜆, the service 𝜇 rates
and system utilization 𝜌 relative to the state of the a given queue. This was evident in the variation in the
representative matrix 𝐴 and magnitudes of the state probabilities. The performance results revealed that the time
a customer had to wait until being processed was greater when jockeying was not allowed compared to when the
behavior was permitted. This was affirmative of [32]’s findings about the benefits associated to such impatient
behavior. Additionally, it was observed that there was a higher probability of the queues staying idle under the
non-jockeying setup. Other performance measures like the predicted system occupancy under varying degrees of
the system utilization were documented.
[170] was contentious about the techniques in the preceding studies, arguing that besides the approaches

being repetitive, the solution ignored boundary conditions when defining the state space transitions. In their
𝑀/𝑀/𝐶 model therefore, the findings were aimed at unraveling some hidden dependencies between the transition
rate matrix 𝑅 and the overall queue utilization. New admissions to the shorter of 𝐶 ≥ 2 queues tended to a
Poisson distribution with rate 𝜆. Each server processed jobs at Identical and Independently Distributed (IID)
rates 𝜇1, 𝜇2, . . . , 𝜇𝑛 . In infinite time, the changes (𝑆 = {−→𝑖 = (𝑖1, . . . , 𝑖𝐶 |𝑖𝑖 ≥ 0) for 1 ≤ 𝑗 ≤ 𝐶} and |𝑖𝑘 − 𝑖𝑙 | ≤ 1)
in the server sizes were generalized as a stochastic process ({(𝑋1 (𝑡)), 𝑋2 (𝑡)), . . . , 𝑋𝐶 (𝑡)), 𝑡 ≥ 0}). Here 𝑘 and
𝑙 denoted the number of customers in given states and stable conditions for this process were defined as
𝑝−→
𝑖
= lim𝑛→∞ 𝑃−→𝑖 (𝑡),

−→
𝑖 ∈ 𝑆 . The generator matrix𝑄 and its partitions (sub-matrices𝐴𝑖 𝑗 with varying dimensions)

resulted from arranging the state space, that is, the ordering of state transitions 𝑖 and 𝑗 . This was based on
a function that defined which state came prior to or after another. The distributions of −→𝑝 𝑖 were said to each
constitute 2𝑛 − 1 elements as states that formed a block 𝑖 with 𝑃0,

−→
𝑝 1 as the bounds. From this evolved the

difference equations essential for the derivation of the equilibrium probabilities as a factor of the traffic intensity
𝜌 . Taking the case of 𝑖 ≥ 2 (therefore only interested in the 2𝑛 − 2 probabilities in −→

𝑝 2 since the bounds were
known), it was shown that a solution only existed under steady conditions defined by −→

𝑝 𝑖+1 =
−→
𝑝 2𝜔

𝑖−1, 𝑖 ≥ 1 only
when det(𝐴0 +𝐴1𝜔 +𝐴2𝜔

2) = 0, 0 < |𝜔 | < 1 (where 𝜔 = 𝜌𝐶 ). Then building on the theoretical properties of the
eigenvalue(s) 𝑟𝐶2 − 1 of the rate matrix R in the determinant, it was shown that 𝜌𝐶 was the only quantity that held
true under this conditionality. These theorems were the basis for evaluating for the boundary and equilibrium
probabilities of 𝑝 (𝑖1, ..., 𝑖𝐶 ), −→𝑝 𝑖+1(for block i+1 ) and −→

𝑝 2 to yield a relation between the rate matrix and the
equilibrium probabilities. Then taking the case of𝐶 servers, to show that 𝑝𝐶 was the lone zero in the determinant
above, a new chain for the stochastic process (𝑆 = {(𝑖1, 𝑖2, ...., 𝑖𝐶 ) |𝑖𝑡 = 0 or 1, 1 ≤ 𝑡 ≤ 𝐶}⋃{𝑚 |𝑚 > 𝐶}) consisting
of 2𝐶 states was defined. The associated transition state infinitesimal generator matrix 𝑄 was also constructed.
Most (2𝐶 − 1) of the columns in both generator matrices (𝑄 and 𝑄) were similar except for some few states (for
which a specific generator matrix was formulated). The proof showed that for any server 𝑘 in the server deck 𝑛,
( 𝑝

𝑛

𝜔
)𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑖 ≥ 1 if and only if 𝑝𝐶 = 𝜔 (𝜔 as the only real solution of the determinant). It was from these

derivations that quantitative measures in the average system occupancy, the time jobs took until exiting the
system, were characterized for. The formulations were validated using numerical experiments under varying
configurations of the system descriptors.
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Unlike single-customer impatience models, [107] studied bulk workload migration. Arriving jobs were tagged
with an expiry time and, if not processed before this time lapsed, were transferred to other servers. The transfer
was defined by a policy chosen to minimize holding and migration costs. Arrivals obeyed a Poisson distribution
while the service times were exponentially distributed. The paper first analyzed the case of a single-server fallback
(where expired jobs reneged) and then generalized to 𝑁 servers with a transfer probability matrix 𝑄 = (𝑞𝑖, 𝑗 ).
Transfer rates take the form 𝛽𝑖𝑞𝑖, 𝑗 and stationary probabilities 𝑝𝑖, 𝑗 (where 𝑖 was the server status of up or down
and 𝑗 as the number of jobs) are derived for key cases. An iterative Poisson approximation was used to compute
transfer rates and total cost, but the search for optimal 𝑄 becomes combinatorial hard as 𝑁 grew. The authors
therefore evaluated heuristic rules (round-robin, fastest-other, etc.) and reported numerical comparisons showing
when heuristics approached optimal performance.

More like an extension to his [151] earlier work, [150] investigated the evolution in the transition state space
of an asymmetric𝑀/𝑀/2 setup of finite capacity 𝐿. Therein, two theoretic propositions (randomisation theorem
and Runge-Kutta) were essential in the formulation for the the dynamics in the state space. Jockeying was only
allowed from the longer line only when any of the other service line was empty. The probability of having a
certain number of customers at a time 𝑡 (𝑝𝑖, 𝑗 = 𝑃𝑟 (𝑁1 (𝑡) = 𝑖, 𝑁2 (𝑡) = 𝑗)) in either service lines was defined in a
series of difference equations ([150], Equations 1 - 21). The formulation of the model stemmed from the definition
of the state probability vectors 𝑃𝑘 (𝑡) (and their derivatives 𝑃 ′

𝑘
(𝑡), 𝑘 = 0, 1, 2, 3, . . . , 𝐿) for all state transitions

over 𝐿 during this time 𝑡 . The difference equations were then re-defined in terms of these state probability
vectors. These equations were re-arranged into a generalized block-matrix formation 𝑃 ′ (𝑡) = 𝑄𝑃 (𝑡) (where
𝑃 (𝑡) = (𝑃0 (𝑡), 𝑃1 (𝑡), 𝑃2 (𝑡), . . . , 𝑃𝐿 (𝑡))𝑇 ) constituted by sub-matrices (𝐴, 𝐵,𝐶). The sub-matrices denoted state
space partitions to compose the generator matrix 𝑄 as:

𝑄 =


𝐵0 𝐶1 0 ... 0
𝐴0 𝐵1 𝐶2 0 0 0

𝐴1 𝐵2 𝐶3 0 0
...

0 .. 0 𝐴𝐿−1 𝐵𝐿


(3)

It was argued therein that, the expressions for the rate matrices (𝑅𝐿 = 𝐵−1
𝐿
, 𝑅𝑘 ) could be ascertained from iterations

of computations. This approach was in deviation from the usual technique of calculating for the eigenvalues
and eigenvectors of the rate matrix. The modified vector-geometric solution for the equilibrium probabilities of
the stochastic process emerged therefore from the evaluations of the block-matrix equations in relation the rate
matrix given 𝑃 ′ (𝑡) = 0. And the solution for state transition probabilities (𝑃𝑖, 𝑗 (𝑡)) in finite state space followed
from the randomization theorem [150, Theorem 3.1]. From the subsequent application of the same theorem to
the difference equations emanated the recurrence expressions. And based on the properties of these recurring
expressions, the distribution of the state transitions was formulated for. It was also shown how the Runge-Kutta
method could be manipulated to provide an equivalent evaluation for the transition state distribution. The work
then provided numerical and comparative analyses of both methods used in formulating for the densities of
selected descriptors like the system occupancy. The studies also assessed how the probabilities and capacities of
the queues were influenced by the overall system utilization 𝜌 under variations in queue parameters. Also, the
impact of switching queues on the average processing times and sizes of the queues was analyzed versus when
no switching queues was possible.
[169] studied the jockeying behavior and it’s applicability to packet routing in multi-beam satellite systems.

The earth-stations were ordered as disjoint zones to form up-link and down-link connections and the sequence
of the incoming packets was defined by an independent distribution function. New packets were appended to the
end of any of the shortest buffers at the satellites. They were then processed at varying Markovian service rates
following the First -Come-First-Served (FCFS) rule. The vector-geometric solution was based on the assumption
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that the underlying process that characterized for such behavior was non-Markovian. Therefore, the process
was segmented to first define an "imbedded Markov chain" ({−→𝑋 𝑙 = (𝑋1 (𝑡𝑙 ), 𝑋2 (𝑡𝑙 ), ...., 𝑋𝑐 (𝑡𝑙 ))𝑙 = 1, 2, ....}). Then
expressions for the probabilities of the buffers’ capacities for this chain were ascertained under ergodic conditions.
The solution therefore for stable conditions of the buffers arose from dividing the state spaces into groups 𝐵<𝑟 , 𝐵𝑚
(maximum size of the buffers and maximum deviation between smallest and largest buffer respectively). The
division was premised on the the probability (𝜔) that there existed only a one-to-one relationship between any
two states (with the exception of the boundary states) and that new packets did not necessarily visit all states.
Following the sub-division of the state transition matrix was the formulation of the equilibrium equations (both
for non-boundary and the boundaries states) that characterized for these sub-divisions. The solution for the queue
equations borrowed from earlier findings ([116], lemmas 1.2.4). That is, there existed an eigenvalue 𝜔 = 𝜔0;
0 < 𝜔0 < 1 of the transition rate matrix 𝑅 and its determinant det(𝜔𝐼 − ∑∞

𝑘=0𝜔
𝑘𝐴𝑘 ) was 0. Here 𝐼 denoted

an Identity matrix and 𝐴𝑘 was a square sub-matrix block of states when there were 𝑘 packets in the system.
This lemma was fundamental to ascertaining whether the vector-geometric solution was valid for the boundary
equations . This was by simply taking the probabilities of any of the boundary states (𝑝𝑟,𝑟,...,𝑟 ) in −→𝑝 𝑟 and evaluating
each for redundancy in the equilibrium equations. For the stationary probabilities of this "imbedded Markov
chain" 𝑋1 therefore, there existed a geometric parameter 𝜔 = 𝜎 that defined the uniqueness of the solution.
Relatively, the stationary probabilities vector (𝜋−→

𝑖
= lim𝑡→∞ 𝑃{

−→
𝑋 (𝑡) = −→

𝑖 },−→𝑖 ∈ 𝑆 , 𝑆 denoted the state space) of
the buffer capacities was also a modified vector-geometric solution governed by similar uniqueness constraints.
The studies furthermore defined another "imbedded semi-Markov chain" (𝑋 ∗

𝑖 (𝑡), 𝑖 = 1, 2, . . . , 𝑐) that represented
the buffer capacities prior to any last packet at any time. It was discovered that the stationary probabilities for
this kind of process were similar to those of the "imbedded markov chain". Then, from the sub-division of the
stationary probability vectors −→𝜋 = (−→𝜋 <𝑟 ,

−→𝜋 𝑟 ,−→𝜋 𝑟+1, . . . . . .), it was shown that the process assumed a modified
vector-geometric solution too. Numerical evaluations of the performance when jockeying was permitted versus
when this behavior was prohibited were documented. The performance results showed how the time the packets
spent in the buffers varied relative to the processing times, justifying the positive effects of this impatience
behavior.
The application of impatience in resource allocation was amplified by [161]. The work derived for optimal

rule-sets that controlled packets in an𝑀/𝑀/2 setup of multi-beam satellite stations as buffer with infinite capacity.
Every packet that joined the server incurred holding costs and moving (instantaneous) a packet from one lane
to another generated a jockeying cost but no preemption was allowed. Controlling the admission or jockeying
behavior was also conditioned on the state of current service station. This state was defined by the magnitude of
the load and the monotonic properties of the function 𝐹𝑖 𝑗 . This control function 𝐹𝑖 𝑗 (optimal rule-set) encapsulated
the accumulated costs under discounted or non-discounted service costs and long-run average costs. Therefore,
a packet would only be routed to or migrated to another station if that station was in a valid state (𝑥1, 𝑥2) at
time 𝑡 . In the model, actions were state dependent; that is, given an increase or decrease in the size of either
queues. Basically, the work argued for the existence of a function 𝐹 (𝑥) that defined when it was okay for a new
packet to be routed to a given queue, and when or not to move packets. These functions were then adopted
in the characterization of the optimal rule-sets for the different behavior. Explicitly, a new packet was routed
to lane 2 only if 𝑥2 ≤ 𝐹 (𝑥1) was true. That is, if 𝐹12 and 𝐹21 were true then it was okay to move a packet from
lane 1 to 2 (𝑥2 ≤ 𝐹12 (𝑥1)) or from lane 2 to lane 1 (𝑥2 ≥ 𝐹21 (𝑥1)). Migrations of packets was not optimal when
𝐹12 (𝑥1) < 𝑥1 < 𝐹21 (𝑥1) and when 𝐹12 (𝑥1) < 𝑥2 < 𝐹21 (𝑥1). One restrictive characteristic of the control functions
was that the decision to move from a station with lower costs than its alternative was only plausible if the
alternative station was idle. This characteristic was evaluated by taking a state of the system when the alternative
station was not empty and validating it under the optimal policy when jockeying was permitted. The studies
additionally formulated for the asymptotic profiles of the control functions that defined the optimal rule-set 𝐹
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under discounted cost. These asymptotic characteristics were were observed to be generic to the non-discounted
mean costing over time. Expressions for the expected reduction in costs (𝑉𝑡 (𝑥1, 𝑥2) over time 𝑡 and a predicted
mean costs over longer time-span under steady conditions were also documented. It was ascertained though that,
the control functions under both costing environments only converged under specific conditions of the both the
jockeying and service costs.
This notion of cost-oriented modeling to guide the impatience in queues was further studied by [141]. In

their findings, it did not matter whether the shorter or longer queue was joined or jockeyed to as long as the
choice for either yielded costs below a preset limit 𝑐 . These costs were a factor of both the size of the queue (𝑁𝑖 )
and processing fee 𝛽𝑖 > 0, (𝑖 ∈ {1, 2}, 𝑖 denoted a queue). A control function was also embedded to manage the
admission of new customers whose arrival periodicity obeyed a Poisson distribution with rate 𝜆. The arrivals
were routed to a queue therefore based on the measure 𝛼𝑖𝑁𝑖 + 𝛽𝑖 ≤ 𝑐 (where 𝛼𝑖 = 1 was a weighting measure on
queue) of either queue. Alternatively, consumers had the option to stay away from the services when the overall
service costs would turn out to be excessively high. Each buffer eas finite in capacity to a maximum defined
by 𝐾𝑖 = [𝑐 − 𝛽𝑖 + 1]. The representational Markov chain 𝑋 (𝑡) = (𝑋1 (𝑡), 𝑋2 (𝑡)) of the changing queue sizes was
irreducible and a factor of the underlying costs. Formulations for the steady-state distribution deriving from
theoretical comparisons between selected queue descriptors (𝐾𝑖 , 𝛽𝑖 , 𝑐) were defined under specific quantities of the
system utilization (𝜌 = 𝜆

2𝜇 , 𝜌 ≠ 1, 𝜌 ≠ 1
2 ). The comparisons were performed for three cases that were distinguished

based on the magnitude of 𝐾1 − 𝐾2. This measure determined whether a new client had to join or jockeying to
either 𝑠𝑒𝑟𝑣𝑒𝑟1 or 𝑠𝑒𝑟𝑣𝑒𝑟2. For each of the cases 𝛽2 − 𝛽1 − 1 < 𝐾1 −𝐾2 < 𝛽2 − 𝛽1, 𝛽2 − 𝛽1 < 𝐾1 −𝐾2 < 𝛽2 − 𝛽1 + 1 and
𝐾1 −𝐾2 = 𝛽2 − 𝛽1 all possible states reachable were defined. And for each of these inequalities, balance equations
definitive of the influence of leaving or entering the queue in a given state were shown. Then taking into account
what circumstances a specific state was reachable was essential for the proof for equilibrium probabilities (𝜋𝑖, 𝑗 ) of
the system. The solutions for these balance equations evolved from them being re-written as difference equations
in relation to the state sequence 𝑠𝑖 , 𝑖 ∈ Z+. It was shown from induction principles how 𝜋 (𝑖, 𝑗) could be derived
for from relations between 𝜋 (1, 0) and 𝜋 (0, 0).
Similar admission-control schemes route arrivals between two service lines (M/M/C, 𝐶 = 2) using Bernoulli-

assigned probabilities and charge customers for waiting and for any jockeying between queues [100], building
on earlier work [29]. Customers continuously receive queue-state updates and decide whether to stay or switch
so as to minimize expected cumulative cost; the system state is 𝑥 = (𝑞1, 𝑞2, ℓ) and actions 𝑎 ∈ {0, 1} incur
position-dependent costs 𝑉𝑛,𝑉 ′

𝑛 that evolve with time. The authors derive threshold-type (limit) policies: there
exist queue-length bounds 𝑞∗ (𝑞1, ℓ), ℓ∗ (𝑞1, 𝑞2) and an admission threshold 𝜀 (𝑞1) such that a customer switches
only when the alternative queue lies below (or above) these limits, and a new arrival prefers one queue when
the other exceeds 𝜀 (𝑞1). Monotonicity properties of the optimal rule set are proved to show that the limits are
nondecreasing or nonincreasing in the relevant arguments. So both jockeying and admission rules reduce to
simple threshold decisions in the long run — results that echo and refine the limit-policy analysis in [33].

More theoretical models to optimize impatience among jockeying consumers was the subject of [129]’s work.
The studies analytically expressed for the frequency of jockeys made from one service station to another before
getting served. New arrivals (obeyed a Poisson distribution) were pushed to the shorter station or one of the two
stations with equal probability. Each jockeying activity accumulated a cost for moving from the tail-end of a
more occupied station to the end of the less occupied station. This was given that the difference between the
length of any of 𝑘 ≥ 2 servers hit the preset threshold 𝑑 . (Each station served waiting customers at IID processing
times. The transition state space partitioning here was different. It was based on queue length statistics like
customers ahead (𝑓 ) or behind (𝑏) a given customer ((𝑓 , 𝑏) =⇒ 𝑏 ≥ 𝑓 ≥ 1) in the service line. An additional
constraint on the behavior was whether the next move by that customer was a jockey or a forward in the same
queue. Inspired by concepts from generating function theory, the objective function encapsulated mappings for
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a customer’s position in the queue to the possible number of jockeys (𝑌𝑓 ,𝑏 ) that the customer would make before
being processed. The evaluation of the generating function was a procedural and iterative formulation of the
relationships (Φ𝑓 ,𝑏 (𝑠) 0 ≤ 𝑠 ≤ 0) between these states and actions. This required initial statistical computation for
the chance (𝑃𝑓 ( 𝑗 |𝑏), 1 ≤ 𝑓 ≤ min𝑏, 𝑗 ) that the customer’s next state (𝑓 − 1, 𝑓 ) followed a jockey to the alternative
queue or a forward move in the same queue; Such that the customer ended up in state (𝑓 − 1, 𝑓 ) 𝑓 ≤ min 𝑗, 𝑏. The
expression for the chance that a customer would move to the alternative station (in state (𝑓 − 1, 𝑗), 𝑓 ≤ 𝑗 ≤ 𝑏 − 1
or 𝑗 ≤ 𝑏) were premised on the prevailing conditions in the current queue. That is, provided that 𝑏 > 𝑓 − 1
and that the variation between the number of clients behind the current customer that left that station versus
the number that wanted to join any of the queues was 𝑏 − 𝑗 . Equation (4) was this generator function that
characterized for the conditions, state probabilities and relations. This function mapped the expected number of
jockeys (𝑌𝑓 ,𝑏 ) from one queue to another before the customer was serviced. This frequency was dependent on 𝑓
(the number of people ahead of the current customer being served) and the arrival rate.

Φ𝑌 (𝑆) =
2 − 𝜌
2 + 𝜌

[
2 + 𝜌

2
+ 2𝐵0 (𝑆) +

4
𝜌
𝐵1 (𝑆)

]
(4)

where 𝐵0 and 𝐵1 were linear expressions that denoted aggregations of state relations and service line utilization over
n customers in a queue. And 0 ≤ 𝑠 ≤ 1.
Additionally, a generating function (Ψ𝐾 (𝜃 )) that yielded the random distribution of how many customers 𝐾 ahead
of the current customer left the queue was defined. This followed the analysis of the process representative of
either actions (joining or leaving) over time, therein referred to as a "difference random walk" (DRW).
The authors in [100] combined static and dynamic admission, service and jockeying controls to derive an

equilibrium “hedge-point” policy. Here, incoming jobs did not pre-select a queue but were routed by an admission
controller [29]. Each queue operated at exponential service times, and the admission rule 𝑢 ∈ U mapped system
state 𝑥 to actions that traded off holding, service and jockeying costs via a discounted value 𝐽𝑢 (𝑥). For optimal
control, the value function 𝑉 (𝑥) = max

𝑢∈𝑈
𝐽𝑢 (𝑥) had to be maximized. This was by iterating a Bellman operator 𝑇

and retaining only value functions with the required structural properties (sub-modularity or concavity) so that
the operator converged. The resulting optimal policy was threshold-style and described by switching functions
𝑆1, 𝑆2, 𝐿𝑖 ,𝐺𝑖 that governed admissions, routing and migrations. The numerical value-iteration experiments for
symmetric servers (equal costs and rates) illustrated the approach and the convergent approximation of 𝑉 (𝑥).
Building on earlier findings [58, 111], [72]’s work focused on the asymptotic properties of the boundary

conditions of the queue length distributions. In an𝑀/𝑀/2 setup, the aim was to formulate for the tail probabilities
of the two heterogeneous queues. The growth in size of the main buffer was continuously monitored at exponential
time intervals. And when the size 𝐿 of this main queue exceeded a preset threshold 𝐾), workload was transferred
to the auxiliary queue. For the representative continuous Markov chain {(𝐿1 (𝑡), 𝐿2 (𝑡)), 𝑡 ≥ 0}, steady-state
conditions of the queue sizes were first derived for as 𝜆𝑞 < 𝜇2 and 𝜆 < 𝜇1 + 𝜇2. Here, 𝜆 < 𝜇1, 𝜆 < 𝜇2 denoted
the arrival rates and 𝑞 the probability that new arrivals joined the auxiliary buffer). The proof developed from
adoption of the Foster-Lyapunov[40][108] condition for stability to show that the some process states were
revisited in finite time (positive recurrence). For uniformity, the transition probability matrix 𝑃 = 𝐼 +𝑄 (where Q
represented that rates at which the queue varied in size and 𝐼 an Identity matrix) was subsequently divided into
sub-matrices based on levels. It was observed that one of the sub-matrices 𝐷 (𝜎) = 𝐴 + 𝐵𝜎 + 𝐶𝜎2 (where 𝜎 as
defined by Eq. (5) was the decay rate, and A,B and C were sub-matrices depicting state space splits) was irreducible
and inherent of special spectral properties. These properties were fundamental to the derivations, such that a
further split of the sub-matrix 𝐷 along the boundaries was followed with evaluations for its convergence norms
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−→𝜎 , 0 < 𝜎 < 1; And verification for the existence of the 1
𝜎
− 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 measures [72, Lemmas 4.1-4.2].

𝜎 =
(𝜆𝑝 + 𝜇1 + 𝜂) −

√︁
(𝜆𝑝 + 𝜇1 + 𝜂)2 − 4𝜆𝑝𝜇1

2𝜇1
(5)

where 𝑝 was the probability of joining the main queue, 𝜂 was a distribution of the server polling intervals.
Specifically, when 𝜆𝑞 < 𝜇2 and 𝜆 < 𝜇1 + 𝜇2, it was shown that the asymptotic properties for joint stationary
distribution 𝜋𝑖, 𝑗 (𝑖, 𝑗 denoted the level and phase in the state space composition) as approximated from the decay
rate decreased geometrically. In essence, it was conclusive that, the decay rate varied with the individual queue
sizes such that the number of customers in the main line decreased at some constant ratio in infinite time. This
was contrary to the number of customers in the auxiliary line, which stayed constant. Numerical analyses of the
these formulations were performed, experimenting with different queue parameter settings for the arrival or
processing rates in each queue. At different monitoring intervals, results were compared under changing values
of the arrival rate and it was observable that the increase in the decaying rate was linearly proportionally to the
rate at which customers joined the queue. It was interesting to also observe how the decaying rate responded to
increasing quantities of the processing rates. Of performance significance was the observation that the decaying
rate decreased linearly with respect to an increase in the service rates of the queues.
[132]’s work proposed an alternative energy-efficient heuristic for guiding efficient use of energy when

allocating jobs in multi-server processor sharing setups. The setup was composed of heterogeneous infrastructure
with finite buffer sizes. The job streams followed a Poisson distribution at rate 𝜆 to land on any of 𝑗 ≤ 𝑛 servers
for processing at exponentially distributed rates. Each server consumed energy (𝜀) at a rate ( defined by (6)) that
was monotonically decreasing with the service rate. The object of the studies was to develop energy efficiency
policies when apportioning workload while maximizing throughput.

𝜀 (𝜇) = 𝜇3 (6)

where 𝜇 denoted the node’s processing speed.
In the studies, two policies were benchmarked. The baseline heuristic was the insensitive jockeying policy,

therein referred to as slowest-server-first (SSF). Jockeyed jobs displaced existing jobs backward or forward and
position allocations for jockeys were defined with equal probability to departures. The proposed energy-efficient
(EE) rule-set on the other hand allocated tasks to the first 𝑛̂ ≤ 𝑛 set of busy servers such that the tasks were
routed to the least occupied or empty buffers. Then the next 𝑠

𝑏
servers were selected for task processing if

all instances in the 𝑛̂ set were occupied. Here, 𝑏 defined for the finite size of a particular queue and the state
space 𝑠 ∈ 𝑆 denoted the number of jobs in the queue. The energy efficiency of the servers was then collectively
calculated as the ratio of the summed long-run mean throughput 𝑇 and the expected consumed power 𝐸 as 𝑇

𝐸
.

It was revealed that this server cascading (in states 𝑛̂ < 𝑠 ≤ 𝑛̂𝑏, 𝑠 ∈ 𝑆) yielded relatively lower task processing
times to minimize the overall load and balance server utilization. Formulations for comparative analysis of the
two heuristics followed from the theoretical propositions that showed conditions for 𝑛̂, 𝑏, 𝜂 and 𝜇 𝑗 (𝑛̂ ≥ 1) under
which the energy-efficient policy was more optimal than the SSF policy. Qualitative measures were then defined
by the relative error between the two rule-sets computed using (7). Numerical evaluations of this error were
performed in selected quantities of 𝜂 and 𝜇 in a series of experiments. This was purposely to determine the
optimal 𝑛̂ that maximized the servers’ energy use (𝑇

𝐸
) in the entire set.

Δ𝐸𝑆𝑆𝐹𝐸𝐸𝑛̂
= Δ

(
𝑇𝐸𝐸𝑛̂

𝐸𝐸𝐸𝑛̂
,
𝑇𝑆𝑆𝐹

𝐸𝑆𝑆𝐹

)
(7)

It was shown that, a certain measure of 𝑛̂∗ provided a ceiling such that the mean aggregated processing rates
should never exceed the mean arrival rates. Under preset configurations of 𝑏, 𝑎𝑖 (where 𝑎𝑖 was a measure of how
two cascaded server groups differed in processing capacity), the EE policy was more optimal energy-wise than
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the SSF. However, this efficiency decreased with server utilization or traffic intensity. This meant that EE was
only more optimal under limited traffic conditions. Under similar settings though, no significant improvements
were recorded in the throughput of the EE ruleset.

Limitations of Statistical Models in Next Generation Networks: Statistical modeling of jockeying in queues
faces several practical limits in next-generation networks. For example, in such environments telemetry is often partial,
delayed or censored, producing biased and high-variance estimates. Also, the system is very dynamic (mobility, auto-
scaling, flash crowds) causing rapid concept drifts. New architectural abstractions like slice or tenant heterogeneity
invalidates pooled models. And rare but useful tail events like SLA breaches, are underrepresented by standard loss
functions. closed-loop effects (predictions changing behaviour) and multi-agent interactions break offline validity; edge
compute and latency constraints limit model complexity and freshness; uncertainty quantification is frequently absent
or miscalibrated; telemetry can be adversarially manipulated; and ground-truth labels for “beneficial” jockeying are
ambiguous—altogether making naïve statistical predictors fragile unless paired with censoring-aware estimators,
adaptive retraining, causal or closed-loop evaluation, and robust telemetry authentication.

3.2 Nash Equilibrium based Models
Nash equilibrium rules have also been applied in studies that model for impatient in buffering systems. Take the
case of [60] who was interested in how valuable prior queue status information was to the prospective consumer
before joining the system. The experiment in an 𝑀/𝑀/𝐶 = 2 setup were motivated by the notion that such
information underpinned optimal usage of the service lines to consequently minimize waiting times . This meant
that, for new arrivals, preference for which queue to join was influenced by the precedent customer having
bought similar information (externalities). Basically, on arrival a customer purchased a probability value that
abstracted the potential benefits given the current state of the queue. The authors sought to ascertain whether this
information from prior clients impacted the subsequent client positively or negatively. Analogous to a cost benefit
model, the authors deployed Nash-equilibrium strategies that put a value on the purchased status information
by evaluating how much benefit a client got from it. Two strategies arose here 𝑝, 0 ≤ 𝑝 ≤ 1 which denoted the
probability whether the information was purchased or not respectively. That is, a pure and a mixed strategy. But
the strategies (𝑔(𝑝) = 𝐶,𝑔(𝑝) ≤ 𝐶,𝑔(𝑝) ≥ 𝐶) were a factor of the relation between the benefit of the acquired
information 𝑔(𝑝) and the costs 𝐶 . The expected benefit 𝑔(𝑝) meant knowing how much less time the consumer
would be waiting to get serviced given the charges for that information. Following a partitioning of the state
space, the authors used the matrix-geometric method [116] to obtain the stationary probabilities 𝜋𝑖, 𝑗 (i or j being
sizes of either queues) of each queue size given the jockeying threshold 𝑁 = 3(3 ≤ 𝑁 ≤ ∞). The stationary
probabilities were then characterized for from the eigenvalues/eigenvectors and spectral properties of the rate
matrix 𝑅. For each assumed position in the therefore, a function 𝑔(𝑝) for computing the benefit (expected waiting
time) at that position under a given Nash-Equilibrium strategy. The numerical results compared the benefit from
purchases under varying measures in the jockeying threshold 𝑁 and the service line utilization 𝜌 = 𝜆

2𝜇 (where 𝜆,
𝜇 were the arrival and service rate respectively). The study conclusively expressed for the magnitude of influence
(be it negative or positive) of the actions of prior customers on new arriving customers when they purchased
knowledge. The effect was considered positive if the acquired knowledge helped the consumers optimally use
the service line and negative if the customer ended up waiting longer than expected. Performance evaluations for
the average sojourn time under varying magnitudes in system occupancy revealed that as 𝑁 grew larger than 4,
the benefits of purchasing knowledge were negligible.

Limitations of Nash EquilibriumModels in Next Generation Networks: Nash models assume well-specified
utilities and substantial knowledge (or common priors) about other players, assumptions that fail under partial,
delayed, or privacy-constrained telemetry in slice-based MEC or 6G settings. They also require fully rational agents
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and often slow iterative dynamics; in practice agents are bounded-rational, run learned heuristics, and environments
change too quickly for equilibria to form. Scalability is problematic—computing equilibria for many tenants, slices and
cross-domain constraints is intractable—and enforcement across administrative domains (migration budgets, billing,
penalties) is nontrivial. Finally, standard NE ignores adversarial misreporting. Mitigations include Bayesian/mean-
field formulations, bounded-rationality or learning dynamics, mechanism design for enforceability, and trace-driven
validation, but Nash Equilibrium techniques are mainly useful as a baseline or for small, slow subsystems.

3.3 Fluid Theory based Models
[33]’s fluid model analyses extend jockeying studies by treating bulk arrivals and transfers as continuous flows.
In an𝑀/𝑀/2 setting with periodic Poisson batches, controllers decided bulk transfers between a low-cost and
a high-cost service line to minimize long-run costs (holding plus fixed/variable transfer costs) while avoiding
idling. Equation (8) characterized for the average predicted cost of a client starting in a state 𝑥 . Then adopting a
given rule-set 𝜋 as 𝑔𝜋∗ (𝑥), the optimal rule-set 𝜋∗ was conditioned on 𝑔𝜋∗ (𝑥) ≤ 𝑔𝜋 (𝑥) for all states.

𝑔𝜋 (𝑥) = lim
𝑛→∞

𝑠𝑢𝑝

E𝜋𝑥

{∑𝑛
𝑖=0 [𝑘 (𝑋𝑖 , 𝑌𝑖 ) +

∫ 𝜌𝑖+1
𝜌𝑖

𝑐 (𝑋𝑖 , 𝑌𝑖 )𝛿𝑡]
}

E𝜋𝑥 {𝜌𝑛}
(8)

where 𝑋𝑖 was the state at the 𝑖𝑡ℎ decision step and E𝜋𝑥 the expectation (given policy 𝜋) that taking action 𝑌𝑖 would
accumulate 𝑘 (.) as the overall cost at a cost rate 𝑐 (.) Policies 𝜋 specified the transfer magnitudes and timings
and each policies were evaluated by their asymptotic average cost. The optimal rules were then those whose
sample-path cost 𝑔𝜋 (𝑥) was minimal for every state. The fluid model was said to be in equilibrium when all
incoming clients had been processed (𝑀̄ (𝑡) = 0, 𝑡 ≥ 𝑡0) by the system (where 𝑀̄ (𝑡) defined for changing system
occupancy given instantaneous arrivals and service completions ). And otherwise (𝑀̄ (𝛿) ≠ 0; 𝛿 > 0) if at a certain
time-frame 𝛿 > 0 the queues were still occupied. The theory yielded threshold/non-idling conditions under
which bulk migrations were justified (move to the costly line only to prevent idling), and enforced symmetry
constraints for single or bulk transfers. Numerical experiments for asymmetric multi-queue setups (varying costs
and arrival rates) showed how polling interval 𝑇 , transfer granularity and policy choice affected total cost and
system load. And confirmed the benefits of carefully parameterized bulk-transfer rules. These results generalize
earlier discrete-control findings by [92] while highlighting computational/design tradeoffs.

In [31]’s studies, fluid theory was the basis for formulating steady-state expressions for a cluster of cascading
servers. The endpoints were stacked so that they collaborated to share task executions. Specific classes of
customers with IID arrival times were assigned positions in specific queues. But these class specific queues served
customers from other classes only when they were idle at IID processing times. Two variations in modeling were
presented therein. One of the class of X-models as a setup with two servers , such thateach represented a class of
customers. The other model on the contrary, therein referred to as a "tree-cascade system", was defined with
three servers (classes). It was argued that to compute the steady-state conditions for such a networked system,
one needed to prove the stability of the underlying fluid limit model. necessary for these conditions was the
emergent Markov process 𝑋 having a non-repeating consistent statistical value [27]. Theoretically therefore,
as earlier suggested by [30], given a service line with a lower processing rate (𝑟1, 𝑟2 ≥ 1 or 𝑟1, 𝑟2 < 1) than the
other (given 𝑟1 =

𝜇1
𝜇2,1

and 𝑟2 =
𝜇2
𝜇1,2

), then stability for fluid limit based models could only exist under specific
conditions of comparative variations in the arrival (𝜆) and service rates (𝜇). These conditions were specified by
Eq. (9), such that the aggregations over the quantities 𝑄 (0),𝑈 (0),𝑉 (0) of the queue network equations at a time
𝑡 ≥ 0 equaled unit, 𝑄 (𝑡) = 0, 𝑡 ≥ 𝑡1. {

(𝐴1) 𝜆1 − 𝜇1 + 𝜆2−𝜇2
𝑟2

< 0,
(𝐴2) 𝜆1−𝜇1

𝑟1
+ 𝜆2 − 𝜇2 < 0.

(9)

ACM Comput. Surv., Vol. XXX, No. XXX, Article XXX. Publication date: January 2023.



XXX:18 • Anthony Kiggundu, et al.

where𝑈 (𝑡) = the time before a new arrival seeks to join the server, 𝑉 (𝑡) = time left to service end for customers and
𝑄 (𝑡) = size of the buffer at any time.
The proof for the stability of the 𝑋 −𝑚𝑜𝑑𝑒𝑙 then derived from the adoption of the Lyapunov function 𝑓 (𝑡)[108].
This function encapsulated the relationships between the sizes of the queues(𝑄 (1), 𝑄 (2)) over time 𝑡 ≥ 0.
Essentially, it was then necessary to show that under varying conditions of 𝜆𝑖 ) and 𝜇1, 𝜇2,( 1, 2 being queues), this
function was bounded by the inequality 𝑓 (𝑡) ≤ −𝐶 (𝐶 > 0 ). The studies were extended to the tree-cascade setup
under work-conserving rules. In this setup, jockeying was allowed to any of the servers empty. However, the third
station was dedicated to supporting the other two stations. The corresponding Markov process 𝑋 was similar
to the one for the two server setup with the exception that the new state space had a higher dimensionality.
The implication of this was slight differences in the system equations that expressed for the interactions within
the service stations. The stability of the fluid model in this setup was also premised on ratios of processing
times (𝑟1,3 ≤ 𝑟1,2, 𝑟2,3) and the rate at which customers sought to join a given buffer. Similarly, the respective
Lyapunov function 𝑓 (𝑡) was defined [108]. And this function was inherent of comparable differentials at any time
𝑡 with the server sizes. The proof for the equilibrium conditions then gathered from evaluation of the inequality
𝑓 (𝑡) ≤ −𝐶 < 0; 𝐶 := min{𝐶1,𝐶2,𝐶3} to hold under varying sizes of the queues (𝑄𝑖 (𝑡), 𝑖 = 1, 2, 3). It was shown
how the fluid limits on the servers’ occupancy hold stable in infinite time. Hence, the conclusion that under such
server conditions, the stochastic process was characterized by revisits to some specific states in measurable time,
that is, positive Harris Recurrent.

Limitations of Fluid Models in Next Generation Networks: Fluid models average discrete events into
continuous flows, which can obscure tail events and discrete triggers (spikes, deadlines, migration cascades) that drive
SLA violations in MEC or 6G networks. These models also assume smooth, slowly varying inputs, yet abrupt network
function scaling, fast mobility or rapid slice reconfigurations produce transitions not easy to encapsulate in fluidmodels.
Hard constraints (migration budgets, per-task costs) and event-driven control logic are also awkward to represent, and
fluid controllers can become unstable when feedback is delayed or partial. Fluid modeling however remains valuable
for aggregate insight and baseline controller design but must be robustified for operational deployments.

4 ANALYTIC MODELS

4.1 Matrix-geometric models
Modeling of the shortest queue problem using matrix geometric approaches was pioneered by [116]. This
was the building block for [46]’s experiments to expressed for the stationary probability vectors of queueing
systems. The study simulated an𝑀/𝑀/𝐶 = 2 airport setup with planes that accessed runways (as queues) at a
frequency defined by a Poisson distribution with rate 𝜆. The time at which planes took off was exponentially
distributed with rate 𝜇 for each runway. The state space transitions evolving from all the dynamics within the
systems were encoded by a continuous time markov chain. That encoding morphed into a form of an infinitesimal
generator matrix Q defined by Eq.(10). The matrix was fundamentally constituted of sub-matrices (𝐴0, 𝐴1, 𝐴2 and
𝐵0) representative of the state transitions.

𝑄 =


𝐵0 𝐴0 0 0 0 ....

𝐴2 𝐴1 𝐴0 0 ....

0 𝐴2 𝐴1 𝐴0 0 ....

0 0 𝐴2 𝐴1 𝐴0 0.....
.


(10)

Ideally, it was suggested that completing a service in either queue and a jockey to a shorter queue summed to a
total transition rate of 2𝜇. This had the direct implication that, the dimensions of the sub-matrices that composed
the generator matrix Q. It was therefore argued that, necessary steady state conditions of the stochastic process
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existed only if 𝜆 < 2𝜇 and a redefinition for the a non-negative rate matrix 𝑅 that represented the rates at which
states changed. This was premised on the proposition ([46], proposition 1) that, given the underlying dynamics in
such processes, there was a probability that certain queue states (𝑖, 𝑗 ) in the process were revisited in finite time
(positive recurrence [116]). Subsequently expressions for the stationary probability vectors 𝜋 = (𝜋1, .....𝜋𝑛) were
formulated. And the stationary probability vectors were verified to exist under the steady conditions 𝜆 < 2𝜇. The
work provided a numerical analysis comparing experiments with variations in parameter settings for the queue
intensity 𝜌 . Under varying dimensions of the jockeying threshold 𝑛(𝑛 = 5, 𝑛 = 10, 𝑛 = 15 . . .), it was conclusively
suggested that as the threshold 𝑛 increased (10 < 𝑛 > ∞), differences in stationary probability vectors became
negligible. The experiments also provided computations for some queue statistics like the means of individual
queue lengths and the mean waiting time. The findings were a further justification of earlier revelations [169]
that systems where jockeying was permitted performed better than those where the behavior was prohibited.
[77] extended the application of these matrix-geometric techniques to an Markovian/ Markovian/ number

of queues (M/M/C) queue setup. This followed the author’s counter arguments about the methods used when
partitioning the state space in [36]. That, by manipulating the structure of the generator matrix, a more reliable
approach for ascertaining the stationary probability vectors for the stochastic chain of events. The experiments
assumed multiple servers with an infinite number of tenants that arrived following a Poisson distribution with
rate 𝜆. Each server processed tenants at an exponentially distributed rate 𝜇. New arrivals joined the shortest
queue but if the queues were equal in length, they joined either queues with the same probability. Jockeying on
the other hand was allowed only when the difference in queue sizes was two (jockeying threshold 𝑛 = 2). The
representation of such a Quasi-Birth-Death (QBD) process was an infinitesimal generator matrix 𝑄 composed of
sub-matrices that denote the state transitions of the queue lengths. However, slight modifications were introduced
to the structure of the stationary probability vectors. The justification of their argument followed from the
proposition that the boundary conditions required a special extension of the probability vectors, hence the need
for re-expressing for the rate matrix 𝑅. And theoretical findings (theorem 3 [47]) were fundamental for the
formulation for this rate matrix 𝑅. The studies also revisited [128]’s work, arguing that because the structure of
the infinitesimal generator matrix exhibited the likelihood of boundaries state being revisited, there was need for
new definitions of the average size L of the queue. Therefore, the representative infinitesimal generator matrix
was first re-partitioned. Then, it was proposed that, as part of the state space of the underlying QBD was an
absorbing state 𝜃 . That is, a state when a new arrival got processed immediately. From the formulations of the
Laplance Transform, expressions for the stationary waiting time probabilities and a closed-form solution for the
average waiting time were derived. The authors additionally showed how application of randomization methods
could yield for the characterization of the stationary waiting time probabilities𝑊 (𝑡) for QBD processes. These
definitions followed from the assumption that, given a statistical initial state denoted as a vector 𝑧, there existed
an 𝑛𝑡ℎ transition step of the stochastic process such that the queue was idle (state 𝜃 ). The numerical analysis
initialized a few system parameters to compute for some properties of rate matrix, the average queue occupancy
𝐿 plus other system descriptors.
In contrast to earlier suggestions [46] [169] that a solution for the steady state could not be achieved when

the number of queues C exceeded 2, [3] disagreed to assert that the solution lay within the state transition
space sub-division method used. In the M/M/C setup, new entrants joined the shorter queue and jockeying was
permitted given hitting a preset threshold defined around the difference between the queue sizes. It was argued
therein that, although existing studies presumed that ergodic conditions could be derived from the sub-division
of the state spaces, the solutions did not take the rate matrix into account. And that this necessitated revisiting
the state space splitting approach. As a result therefore, the partitioning was based on sub-levels such that sets
of sub-levels were mapped to sets of states. The splitting was a factor of whether a sub-level’s behavior was
regular (𝑙 = 𝑇,𝑇 + 1, . . .) or otherwise (1, . . . ,𝑇 − 1). Here, l denoted a collection of states and T the jockeying
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threshold. From these sub-divisions, it was showed that, the condition for ergodicity was only possible when the
system utilization 𝜌 < 1. After partitioning based on sub-levels, the generator matrix Q took a different form
that was irreducible but resolvable given [116](1.7.1)’s theoretical findings. Following the sub-divisions of the
stationary probability vectors, it was possible to generate mappings between the sub-levels and the probability
vectors using Eqs. (11) and (12).

𝑝𝑙 = 𝑃𝑇𝑅
𝑙−𝑇 , (𝑙 < 𝑇 ) (11)

𝐷0 + 𝑅𝐷1 + 𝑅2𝐷2 = 0 (12)

where 𝐷0,𝐷1 and 𝐷2 denoted square sub-matrices constituting states at all sub-levels ≥ 𝑇 and 𝑝𝑙 or 𝑝𝑇 as stable
probability vectors corresponding to the level 𝑙 (bound on 𝑇 ) that resulted from the split of the stable probability
vector 𝑝
One of the sub-matrices in the generator Q took different dimensions due to the constituent states in the

sub-level set. Then based on these structural deviations, a solution for the rate matrix 𝑅 could be expressed.
Borrowing from [128]’s theoretical formulations for the maximum eigenvalue of the rate matrix, the solution for
this matrix was defined by Eq. (13).

𝑅 =

(
0
𝑤

)
(13)

where 𝑤 = −𝑣 (𝐷1 + 𝜌𝑐𝐷2)−1, (𝑤 = 𝑤0, ....,𝑤𝑚−1), m being number of states at a given level that defined the
dimension of the square sub-matrices. c was the number of queues available

Contrary to the mostly homogeneous setups studied, [5] analyzed the behavior of two heterogeneous queues
(𝑀/𝑀/𝐶 = 2), each operating at a different service rate. The studies were purposely to apply matrix-geometric
techniques to derive expressions for sizes of the queues under stable conditions. New customers joined the
shorter of either queues, or were alternatively routed based on a probability of the sizes of the two queues were
equal. It was allowed to switch from a longer to shorter one given some jockeying threshold 𝑇 . The work built
on [4, 6]’s studies, where it was shown that, in infinite time when no jockeying allowed between queues, the
equilibrium probabilities (𝑝𝑚,𝑛 ,𝑚,𝑛 as queue sizes) of the queue sizes conformed to product-form solutions. These
observations were subject to verification on whether the same assertion was true when jockeying was permitted.
It was found that the evaluation held true only for a defined portion Q (𝑚𝑎𝑥 (𝑚,𝑛) > 𝑇 and (𝑇,𝑇 )) of states. Then
observing the rates of change in state of the stochastic process for only this portion of states, it was conclusive
that the process was irreducible. This meant further analysis of this portion of states as a separate process (with
distribution 𝑞𝑚,𝑛) with a relation to the main process (whose distribution was 𝑝𝑚,𝑛 = 𝑞𝑚,𝑛𝑃 (𝑄)). Here 𝑃 (𝑄) was
the probability that the portion 𝑄 included the main process. The product-form solution then derived from the
notion of defining a set of metrics. These metrics were defined as a factor of the arrival rate, the service rate
of the shorter queue and the queue admission probability. Then, the general purpose principle was the basis
for the derivation of equations that resolved for these metrics. This system of equations characterized for the
steady-state and ergodicity conditions for this portion of states 𝑄 . The work sought to also draw comparisons
between the product-form solution and the one ascertained using the matrix-geometric technique. The authors
proved that when the size of the larger line exceeded the jockeying threshold 𝑇 , because of the unique formation
at the boundaries, the formulation of the solution was the product of the stationary probabilities of each service
line. Hence that given the appropriate sub-division of the state space, the matrix-geometric method yielded the
same solution. For the geometric solution, the generator matrix emanated from sub-division of the steady-state
probability vector into sub-levels. These sub-levels grouped the states depending on the size 𝑙 of the longer queue
(𝑙 < 𝑇 and 𝑙 ≥ 𝑇 ). And each sub-level was associated to a steady-state probability vector −→𝑝𝑙 . It was noticeable that
some of sub-matrices (𝐴0, 𝐴1, 𝐴2) in the generator matrix𝐺 were irreducible. Adopting theoretical foundations
in [116] (Theorem 1.7.1, 1.7.11) was sufficient for the proof for ergodicity. That is, given knowledge about the
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maximum eigenvalue of the 𝑅 matrix, taking the unique structural properties of 𝐴0, −→𝑝 𝑙 when 𝑙 > 𝑇 could be
computed for. The the matrix-geometric formulation was found to bear similarities to the product-form solution.
[151]’s work then offered a performance comparison with slight adjustments in the 𝑀/𝑀/𝐶 = 2 system.

The arrivals were simulated to imitate a Poisson distribution with rate 𝜆, choosing the shorter of the two
service lines. Each operated at exponentially distributed service rates (𝜇1 and 𝜇2) and the capacity of each
queue was restricted to 𝐿. If none of the service lines was shorter than the other, preference for one would
follow probabilities (𝛼 or 𝛽 , 𝛼 + 𝛽 = 1). Instantaneous jockeying was possible when one of the service line was
empty. For the Markovian chain, the author defined a sequence of difference equations that characterized the
probability (𝑃𝑖, 𝑗 ) of queues (i,j) being in equilibrium state. The compressed form of the difference equations
(𝐴𝑘−1𝑃𝑘−1 + 𝐵𝑘𝑃𝑘 +𝐶𝑘+1𝑃𝑘+1 = 0, 𝑘 = 2, 3, 4, ...., 𝐿 − 1 and 𝐴𝐿−1𝑃𝐿−1 + 𝐵𝐿𝑃𝐿 = 0, 𝑘 = 𝐿) were first re-arranged to
compose for a matrix block 𝐴1𝑃1 + 𝐵2𝑃2 +𝐶3𝑃3 = 0. Here 𝐴, 𝐵 and 𝐶 were sub-matrices that encapsulated the
dynamics in queue sizes and traffic intensities. Then the evaluations for the sub-matrices were computed from
the definition of column vectors that encoded state transition probabilities over all positions in both queues.
Theoretically, the proof required that the sub-matrix 𝐵𝑘 was invertible. This required computing the inverse of
the sub-matrix and its determinants. Such that, there existed an inverse of this sub-matrix only if its determinant
did not evaluate to 0 for all values of the traffic intensity 𝜌 . Then taking 𝑃+

𝑘
as the theoretical solution for stability

conditions, 𝐴𝐿−1𝑃𝐿−1 + 𝐵𝐿𝑃𝐿 = 0, 𝑘 = 𝐿 was conditional for the existence of this determinant. This solution
characterized for probability that the system was occupied to maximum capacity (𝑃𝐿 = −𝑅𝐿𝐴𝐿−1𝑃𝐿−1, 𝑘 = 𝐿)
when 𝑅𝐿 = 𝐵−1

𝐿
(𝑅 being the rate matrix). Iteration of computations for 𝑅 evolved into solutions for the differential

equations expressed in terms of 𝑃0,0 (probability that both queues were idle). The proof by induction on 𝑘 was
essential to relate the queue intensities and the total number of customers in the system as 𝑔𝑘 = 𝜌𝑘−2𝑔2 for
𝑘 = 2, 3, ..., 2𝐿. Based on this relation, equilibrium probabilities of the M/M/2 system were formulated for as the
capacity doubled (2L) or as 𝐿 =⇒ ∞. A numerical analysis initialized the arrival and service rates to different
values. Then comparisons were made with earlier results from the Conolly’s model[26]. Performance evaluations
for the effect of the system utilization on the equilibrium probability 𝑔𝑛 under different queue setups showed that
the author’s model was quantitatively better.

The more practical and challenging aspects arise when multiple tenants seeking to switch buffers in an instant.
[64] setup such a scene as two parallel𝑀/𝑀/1 servers. The portion of workload 𝐾 (0 < 𝐾 < 𝐿) would be moved
from the longer to the shorter of either queues ( 𝑞1 to 𝑞2 or vice versa) when the difference between their sizes
hit the preset threshold 𝐿. Admissions obeyed a Poisson distribution with rate 𝜆𝑖 while the processing times of
either servers were exponentially distributed at rates 𝜇1 and 𝜇2 . This activity was generalized as QBD process
((𝑞1 (𝑡), 𝑞2 (𝑡)), 𝑡 ≥ 0) with state space (𝑛1, 𝑛2) : 𝑛1 ≥ 0, |𝑛1 − 𝑛2 | < 𝐿 ( where 𝑛𝑖 , 𝑖 = 1, 2 were the number of
customers in a given queue). According to the authors, the structure of the stochastic process made it hard to
analyze. However, the process constituted special properties (𝑞1 − 𝑞2 |> 𝐿 − 1) which, coupled with inherent
recurrence properties of such processes, allowed for the sub-division of the state space {(𝑞1 (𝑡), (𝑞2 (𝑡)), 𝑡 ≥ 0}. This
sub-division was essentially to convert the process into a valid QBD to which matrix-geometric techniques could
be applied for a solution to the equilibrium probabilities. The studies then built on the theoretical propositions
of [64, 86], that for such processes, steady-state conditions could only exist under specific conditions of the
traffic intensity (𝜌 < 1). This therefore meant re-organizing the state space until the resultant stochastic process
(𝑋 (𝑡), 𝐽 (𝑡), 𝑡 ≥ 0) (individual queue occupancy as a level variable and the difference 𝐽 (𝑡) = 𝑞1 − 𝑞2 in sizes as
the phase variable) was irreducible and not dependent on the system occupancy 𝑞(𝑡) = 𝑞1 + 𝑞2. The matrix
geometric solution was similar to [116],[97] and sought to resolve for the eigenvalues (one with the largest
modulus - Perron-Frobesius eigenvalue) of the 𝑅 matrix at each of these different sub-division levels in 𝐿. Besides
formulating for the stable conditions of common descriptors like system redundancy or number of processed
tasks, the rate at which bulk load was moved around in the system was also expressed for. Expressions for the rate
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Fig. 2. Illustrating the impatient customer that had the option to either process a task on a MEC server or locally depending on the latency requirements of
the underlying application

at which the distribution of system occupancy diminished were formulated. From this, it was deducted that this
decay rate was neither affected by the workload transfer threshold 𝐿 nor the number of workload migrations 𝐾
under varying inequalities of the traffic intensity 𝜌 . The analytic solution was validated by numerical evaluations
that involved experimentation with variations in queue design parameters. The results revealed evidence of the
convexity properties characteristic of the relationship between the service rates and the rates at which customers
were transferred from one queue to another. It was conclusively suggested that, choosing the right processing
rate for each queue was requisite for even load distribution. The parameter that exerted much influence on these
decisions was the deviation in queue utilization (traffic intensity).

Limitations of Analytic Modeling in Next Generation Networks: Matrix-geometric methods yield exact
solutions for structured, stationary Markovian systems. However, emerging 5G/6G architectures that are characterized
by slice heterogeneity, non-stationary dynamics, partial or delayed observations, migration/signaling costs, federated
multi-vendor policies etc, invalidate the the assumptions in these analytic models.

5 BEHAVIORAL MODELS

5.1 Modeling based on the Value of Information
Recent growth in latency-sensitive applications forces operators to prioritize traffic and manage selfish, impatient
tenants. Han et al. [55] modeled this impatience (reneging/balking, akin to jockeying) in an FCFS setting. As
depicted in Figure 2, the customers had the option to continuously weigh the risk related to either process jobs
locally (on their devices) or forward them to a cloud server. The preference for either local or cloud server was
a factor of the latency requirements of the jobs to be processed. These requirements were defined in terms of
the expected cloud server response times 𝜏𝑐 . Additionally, the predicted waiting time (𝜏𝑤,𝑘 ) of a user landing
in position 𝑘 at joining time also influenced the decision for a processing platform. A reward 𝑢 that decays
with total delay Δ𝑡 drives decisions: users maximize expected reward while minimizing risk 𝑃0 from varying
network conditions. With accurate channel information the model shows a user will not immediately withdraw a
submitted task, since predicted remaining latency decreases as earlier jobs are served (see [55] , Lemmas 1–2).
The paper further studies decision behavior under imperfect information: learned experience and estimator error
change perceived risk and can make users either overly cautious or rash. Numerical experiments quantified
the regret, learning gain and reward or loss under correct versus partial system knowledge, highlighting how
queue-state information quality shapes offload and jockeying choices.
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[124]’s work then provided an extended analysis of the value of buffer status information and its applicability
in balancing the load within distributed compute systems. Here, the state of a node’s knowledge about prevailing
queue setup was fundamental for admitting tasks to the queues and transferring them around to alternative
queues. The nodes cooperated on task executions by migrating excess load (total system load minus load on
node) to other nodes. Equation (14) (the case of 𝑛 ≥ 3 for example) was definitive of the excess load partitioning
and distribution to 𝑛 − 1 nodes. The transfer of this excess load depended on the size of the partition such that
the least loaded node received the bigger partition.

𝑝𝑖 𝑗 =


1

𝑛−2

(
1 −

𝜆−1
𝑑𝑖
𝑄𝑖 (𝑡−𝜂 𝑗𝑖 )∑

𝑙≠𝑗 𝜆
−1
𝑑𝑙
𝑄𝑙 (𝑡−𝜂 𝑗𝑙 )

)
,

∑
𝑙≠𝑗 𝑄𝑙 (𝑡 − 𝜂 𝑗𝑙 ) > 0

𝜆𝑑𝑖∑
𝑘≠𝑗𝜆𝑑𝑘

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(14)

where 𝜂 𝑗𝑙 was the expected lag when node 𝑙 and node 𝑗 communicated, 𝜆𝑑𝑖 was the rate at which a countable number
of tasks departed the queue 𝑖 . Also 𝜆𝑑𝑘 denoted the departure rate at preset values of the 𝑘𝑡ℎ load balancing instant.
And 𝑄𝑙 (𝑡 − 𝜂 𝑗𝑙 ) was node 𝑗 ’s assumption about the number of tasks running on node 𝑙 which depended on the
communication lag not exceeding time 𝑡 .
The load balancing algorithm resident on each node was executed before accepting any collaboration in the task
processing. The deployment of the algorithm followed from a prior broadcast from all nodes about their current
buffer sizes as an update to the local state of the knowledge. Two load balancing policies were evaluated, i.e.
centralized one-shot and dynamic load balancing. For the centralized one-shots rule-set, the proof evolved from
adoption of principles of conditional expectation and regeneration-event decomposition. From these theoretic
findings, it was possible to characterize for the average overall completion time (AOCT). The centralized one-shots
rule-set was extended for distributed environments as a sender-initiated dynamic load balancing (DLB) policy
capable of meeting the dynamic processing speeds of the infrastructure. For the one-shot centralized policy,
experiments were setup with two servers with the aim of optimizing the overall time to complete (AOCT) tasks.
It was observed that load balancing actions taken when 𝑡𝑏 increased beyond one second evolved into the slower
node carrying more load. This resulted in larger measures in the AOCT because of delayed updates to the
knowledge state. The performance of the DLB policy was evaluated in terms of the time it took to complete
a given task within a defined time frame. This metric, therein referred to as the mean task completion time
(ACTT) was quantified from the processing, queueing and transfer time. From the analysis of the two qualitative
measures (system processing rate (SPR) and ACTT) for both policies under different configurations of the load
balancing gain 𝐾 , the following generalizations were drawn: In either policies, improvements in SPR were
recorded under lower measures in 𝐾 . However, more transfer activity in higher measures of 𝑘 ∈ 𝐾 or excessive
load migration delays that led to higher ACTT for the static load balancing policy (one-short). The DLB policy on
the other hand yielded lower queueing transfer delays to reduce the ACTT. Further comparative assessment of
the proposed policies against classical DLB policies like Shortest-Expected-Delay (SED) or Never-Queue (NQ)
revealed measurable improvements in the ACTT with the DLB over NQ and SED.

In a shift from centralized to decentralized control in multi-tenancy MEC environments, [82] pioneered work in
behavioral modeling of impatience in queueing systems. Their decision model sought to understand the benefits
switching queues brings to the impatient tenant. The authors propose for decentralized control of the impatient
tenant’s behavior. This follows from the argument that current centralized control of this behavior might not
be practical in next generation communication systems. That the inherent dynamics in such systems further
explode the state space leading to intractable stochastic models. Hence, that the rationale to move workload from
one queue to another should be made by the individual tenants after assessing the up-to-date availed information
about the expected waiting time. The Monte Carlo experiments assumed a setup of network slices arranged as
queues in an𝑀/𝑀/𝐶 , 𝐶 = 2 configuration. The arrivals that obeyed a Poisson distribution with rate 𝜆 and joined
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the shorter of the two heterogeneous buffer lines. This was assuming the new tenants were availed with given
prior knowledge about queue lengths. The tasks were processed at exponentially distributed service times. Then
at each completion of a given task in either queue, tenants evaluated whether to stay in their current position(s)
𝑘 or to jockey to the alternative buffer line. Here, there was disregard for whether jockeying was to the shorter
queue or not. Instead, the rational was premised on the expected waiting time that the jockeyed task would take.
However, the position and therefore the effective expected waiting time of the jockey in the alternate queue was
a factor of what portion of the new arrivals 𝛽 ≤ 𝜆 would prefer the same queue as the jockey. To manifest this
competitiveness therefore, the jockey’s final position followed a shuffle operation with the portion 𝛽 of new
arrivals. Assuming 𝑁 ≥ 1 departures at an instant and 𝛽 ≤ 𝜆 arrivals seeking to join the preferred queue at that
point in time, then switching buffers was only if the expected waiting time in the preferred queue (at position 𝜏)
was less than when the tenant stayed put (at position 𝑘). (15) was definitive of this behavioral decision following
from these sojourn time-position dependencies.

𝐹
−→
𝑖 𝑗

𝑇𝑤 |𝜏 (𝑡𝑤 |𝜏) =


𝑇𝑤 | 𝑃

𝛽

𝑄𝑖,𝑗
(𝑡 + 1) if 𝛽, 𝑁 ≥ 1

𝑇𝑤 | 𝑃 (𝑁 ≥ 1) if 𝛽 = 0
𝑇𝑤 if 𝛽, 𝑛 = 0

(15)

where 𝑇𝑤 was the expected waiting time and 𝑃𝛽
𝑄𝑖,𝑗

(𝑡 + 1) denoted the probability that 𝛽 new arrivals joined the
preferred queue at 𝑡 + 1 when the jockey decision was to be taken.

Formulations for the number of times that tenants switched from one queue to another then followed from the
adoption of principles of conditional probability theory (Baye’s theorem). The numerical analysis then compared
the empirical measures from the Monte Carlo experiment to these analytical expression given the underlying
dependencies. It was observed that tenants that jockeyed more than once ended up waiting less until service in
comparison to tenants that did not jockey at all.
Dispatching queue descriptor information as Markov models at varying intervals was investigated in [83] to

assess what kind of information or at what interval does this information about queue states lead to optimal
system performance. The study involves disseminating two Markov models, one for the service rates of either
queue and another Markov model of the how often the queue sizes change. The queued tenant then weighs
the decision to jockey or renege based on the comparison of the Markov encapsulations of the service times
and queue length dynamics for both queues. A tenant reneges from the queue to prefer the local processing if
the estimated remaining waiting time at a given position must be less than the time it takes to process the task
locally given that there’s no waiting involved. The jockeying tenant compares the statistical distributions of the
service times using First-order Stochastic Dominance (FSD). A rule based policy is then devised such that the
queue learns from the tenant impatience and adjusts it’s service rates to minimize the delay and impatience. In
their Monte-Carlo setup, the information models are disseminated at intervals of 3,5,7,9 seconds and for each
interval is characterized by hundreds of iterations. Numerical results reveal that indeed the interval at which
broadcasting takes places has an effect on the eventual impatience of the tenants. The rule-based heuristic yields
less volatility with regard to the impatience and sub-optimal service operations.

5.2 Artificial Neural Networks modeling
Although not yet prevalent in jockeying modeling literature, active queue management techniques ideally embed
Artificial Intelligence (AI) algorithms to optimize routing and workload distribution. One such study was in
Facility location problems (FLP) problems where [23] studied a cooperative multi-layered setup of queues. The
authors were interested in dynamically availing the facilities in each layer effectively so as to meet the emerging
demand in small and large systems. The demand for service queues followed a Poisson distribution. A job was
processed through each layer by those facilities in closest proximity to the job’s location. The service rates at
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each facility were exponentially distributed and each facility in a given layer participated in the processing of a
jockeyed applicant. The optimal solution therefore involved determining the set of facilities that could partake in
the servicing of the job request. Starting with a solution for small-scale systems, expressions that characterized
the objective functions (reduce jockeying plus mean waiting times and keeping all facilities busy) were formulated.
For the small scale scenarios, an augmented 𝜖-constraint method was used to validate the global solution to
the multi-objective model. And for medium to large scale service systems, an Non-Dominated Sorting Genetic
Algorithm (NSGA)-II was deployed. The behavior of each entity in the population and system components like
layers or facilities were abstracted as chromosomes. How worth a chromosome was for parenting the next
generation was determined by associating that chromosome to penalties defined by 𝑝 (𝑥) = 𝑈 ∗𝑀𝑎𝑥{0, 𝑔 (𝑥 )

𝑏
− 1}

(such that) 𝑈 was a constant, 𝑔(𝑥) the constraint and 𝑝 (𝑥) the punishment on chromosome 𝑥 ). The Taguchi scheme
was found relevant for the adjustment of input parameters used for the initialization of the population. The
final mating population evolved from the iterative application of conventional genetic operations (like selection,
cross-over, etc) until the fitness function quantitatively yielded no better results for a series of selection runs.
The authors concluded the investigations with a numerical analysis of the model by setting up a manufacturing
system. Performance comparisons were done when jockeying was permitted versus when no jockeying activity
within the layers. Results further gravitated the benefits of jockeying not only at the system level but also at the
consumer level. At the system level, the job transfer overhead was minimized plus the time queues were idle.
This was because only facilities within the proximity of a potential jockey were those considered to participate in
a job’s sub-processing. Yet still at the user-level, the jockeying behavior was beneficial in terms of the overall
time the user waits before being served.

Limitations of Behavioral Modeling in Next Generation Networks: These models assume timely, low-cost
and accurate queue-state information and stationary service laws—assumptions that break down under mobility,
NTN links, strict privacy constraints and heterogeneous, virtualized SDN stacks.

6 DISCUSSION, CONCLUSION AND FUTURE WORK
The dynamic migration of queued jobs between service pools has shown measurable performance improvements
in MEC and heterogeneous 5G/Beyond environments [57, 171]. By leveling demand spikes, it raises average
server utilization toward optimality. In the MEC, this is achieved by routing tasks across heterogeneous access
points[17, 50, 69], slices and compute tiers to mitigate performance bottlenecks under variable traffic conditions
[9, 53]. In end-to-end slice setups, task offloading that employs jockeying behavior reduces processing delays and
improves service performance [98, 102]. Numerical studies show that adaptive workload redistribution reduces the
mean-sojourn by up to 20− 30% to accelerate task completion for latency sensitive MEC applications [33, 38, 124].
The benefits extend to real-time load balancing use cases where jockeying heuristics reallocate jobs to minimize
buffer growth and packet loss. When combined with network-level state information, they further improve
application-specific resource allocation and utilization [101, 145]. Additionally, under SLA regimes, jockeying can
prioritize ultra low-latency traffic [105] and improve QoS/QoE when integrated with packet schedulers [43, 168],
slice controllers or sub-band selection mechanisms [1, 53, 139, 144]. And reducing customer holding times or
aggregate waiting minimizes service costs in energy constrained or SLA-penalized settings such as UAV assisted
MEC [42, 53].
Fully realizing these qualitative benefits in next-generation systems demands careful attention to MEC and

slice deployment constraints. That is, impatience manifested as jockeying introduces coordination overhead. The
behavior can also destabilize scheduling given that it is sensitive to physical layer effects and mobility dynamics.
Understanding and mitigating these factors is therefore essential before jockeying can move from a promising
technique to a dependable production strategy in heterogeneous, multi-vendor networks. Besides understanding
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why workload migration improves general system utilization, the previous sections in addition expose which
techniques and how each model abstracts this practice.
However, two higher-level questions motivate reopening this line of inquiry for modern networks: (1) what

architectural and technological changes are emerging in communication systems, and (2) are the classical
modeling approaches still adequate under these changes, or do new issues arise that require different techniques?
In response to these queries, Section 6.1 examines how these architectural trends in next-generation networks
challenge traditional jockeying assumptions. We then identify concrete modeling and engineering challenges
that arise from these architectural transformations.

6.1 Architectural transformations and the expected Operational challenges
6.1.1 Network Slicing Implications: Third Generation Partnership Project ( 3GPP ) recommends a major evolution
in how RAN and Core networks are structured. This change is called the functional split. Proposals hint decoupling
the traditional Baseband Unit (BBU) and Remote Radio Unit (RRU) into two flexible components, that is, the
Distributed Units (DU) and the Centralized Units (CU). These units have separate paths for the Control Plane and
User Plane [95, 123]. The objective is to decompose the network functionality into modular software components
and service chains that can be instantiated, scaled and composed by multiple vendors [13, 119]. These modular
components, when combined into an end-to-end network slice expose a slice specific set of compute or network
resources, control policies and SLA metrics (latency, reliability, cost) [35, 41]. From a queueing theory perspective,
each slice (or slice sub-component, e.g., an edge compute pool) can be modeled as a logical service queue (or
small queue network) with its own service rate characteristics and pricing. Tenants must then choose the best
slice to minimize both cost and latency. Because slices differ in both service parameters and cost schedules, this
choice incentivizes impatience behaviors (reneging or jockeying) when slices become transiently adverse to the
tenant’s objective[121]. Allowing tenants to pick between vendor slices creates conditions where jockeying is
common. This behavior has been found to help improve resource sharing between multiple vendors [140, 156].

6.1.2 Multi-vendor Challenges: Unlike abstract queue networks, real MEC deployments must consider physical
topologies and user mobility since MEC nodes span fronthaul and/or backhaul links. Hence, network delays and
user movement complicates the optimal selection of target queues. Embedding jockeying policies within network
slicing frameworks necessitates joint optimization of compute placement and communication cost. Moreover,
designing jockeying-aware schedulers that guarantee latency and reliability SLAs across network slices is critical
for future edge applications. In such heterogeneous MEC environments, jockeying becomes a tool for dynamically
shifting workloads between slices or queues to minimize perceived delay and operational expenses. However, to
realize the full benefits in these environments, we find the following operational challenges that still have to be
overcome.

• Real-time status dissemination: Broadcasting up-to-date queue lengths or time-of-flight estimates can
congest control channels. While timely information aids routing [68, 138, 153], it adds overhead and may
require lightweight, event-driven or piggybacked updates. Partial, inaccurate or maliciously altered status
data could induce inefficient switching or mimic denial-of-service patterns.

• Topology and mobility: Unlike abstract queue networks, MEC deployments must account for fronthaul
and/or backhaul latency, user mobility, and multi-hop paths between collaborating nodes [44, 106]. These
factors affect task transfer times and can undermine the timeliness of jockeying decisions.

• Batch versus individual switching: Bulk migrations of queued jobs may improve throughput but risks
transient overloads. Conversely, overly frequent switching at low jockeying thresholds can cause “ping-
pong” behavior that wastes resources.

Addressing these issues demands cost-sensitive migration rules, authenticated state dissemination and context-
aware policies that jointly optimize queue selection, compute placement, and communication cost under realistic
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network constraints. This necessitates quantifying the trade-offs between the performance gains from jockeying
and the control or transfer overheads it incurs. The operational challenges identified above, in addition to
migration and signaling costs, and cross-domain policy constraints, motivate a pragmatic reappraisal of design
choices. In Section 6.2, we synthesize these challenges to guide suggestions for more practical hybrid architectures
and propose mitigation techniques as part of the future work.

6.2 Conclusion and Future Work
Third Generation Partnership Project (3GPP) positions Quality of Experience (QoE) as a key metric for 5G and
Beyond. In such networks where users expect predictable QoS or QoE, modeling selfish but impatient tenants is
essential for slice admission and resource allocation policy design. Existing implementations ignore the need to
separate state dissemination from decision control and therefore two design aspects must be distinguished:

• Centralized dissemination, involves aggregation and broadcasting of queue metrics (e.g., queue lengths,
service rates, waiting times) from a central point to ensure system-wide visibility of queue states [12, 82, 138].
While centralized dissemination offers consistency, it can incur significant control-channel overhead. Con-
versely, centralized control without fresh visibility of system states risks delayed or suboptimal responses
in dynamic MEC environments.

• Centralized control, in which a single authority enforces or overrides user decisions (forbids jockeying,
enforces admission). Centralized control can be optimal when latency and freshness are guaranteed, but it
suffers single point delays, scaling limits and fragility in large, mobile, or NTN deployments. Decentral-
ized decision-making, where each user or local agent autonomously evaluates and acts upon available
information, can still function effectively provided that dissemination of state information—centralized or
otherwise—is sufficiently timely and accurate. Decentralized decision making scales better but depends
critically on the timeliness and fidelity of disseminated state [137].

A practical hybrid architecture separates the roles of publishing and decision making. Queue descriptor metrics
(length, mean/or variance of wait, tenant tier, signature etc) are collected by a telemetry aggregator and published
through a topic-based publish/subscribe broker. Then the edge agents, such as MEC nodes, base-station proxies,
or UE proxies, subscribe based on the QoS requirements. Centrally, the slice orchestrator retains slice-level
enforcement (migration budgets, cool-downs, admission rules), while individual jockeying or reneging decisions
are decentralized or remain local to meet latency constraints. To reduce the overhead, state could be piggybacked
on existing control messages (e.g., Radio Resource Control /N2 signaling between the g-NodeB and control-
plane function or lightweight periodic keepalives). Then the updates can be event-triggered such that they are
transmitted only when metrics cross meaningful thresholds. This hybrid design minimizes decision latency and
avoids single point performance bottlenecks. Centralized dissemination ensures global visibility, decentralized
agents act quickly on local conditions, and the slice orchestrator can enforce global constraints. Evaluating such
designs requires measuring decision latency, control plane throughput, and the trade-offs or performance gap
compared to centralized optimal policies across diverse topologies and mobility patterns.
We advocate for modeling impatience behavior through the Value-of-Information (VoI) approach. In this

approach, high-fidelity updates are triggered only when the expected utility gain outweighs the communication
cost [60, 166]. A lightweight VoI surrogate can be used to map state, uncertainty, and action costs to the expected
utility gain. Bayesian methods, such as ensembles or predictive intervals, provide estimates of information value
and determine when refreshes or on-demand requests are necessary. Predictors are expected to deliver both
point estimates and calibrated uncertainty. For simple settings, lightweight Markov models are suitable, while in
richer contexts neural network ensembles or Bayesian neural networks offer greater accuracy [103, 127, 149].
The learning capacity of these neural models has motivated studies that move beyond statistical quantification of
queueing descriptors. Instead, these data-driven methods increasingly make deductive inferences that support
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automation processes [11, 127]. Their performance is qualitatively assessed using the Root Mean Square Error
(RMSE), calibration error, decision accuracy, and marginal QoE gains per signaling byte.

Incorporating jockeying in next-generation networks requires integration with orchestration frameworks and
strong safety controls. Migration decisions must account for service-level improvements relative to migration
costs, with slice budgets, cooldown intervals, and fairness schemes to ensure stability [15, 130, 131]. Telemetry
and control channels need authenticated communication and safeguards against malicious reporting, while
adversarial testing helps assess the resilience of these defenses. While these mechanisms establish the foundation
for secure and policy compliant jockeying, the dynamics of unconstrained switching introduce new risks.
Excessive jockeying can lead to unnecessary oscillations, wasted resources, and unstable scheduling. Stability can
be improved with hysteresis thresholds, cool-down timers, explicit accounting of migration costs such as transfer
delay and energy expenditure etc. Evaluating these safeguards requires measuring the number of switches per
session, signaling reduction, migration overhead, and worst-case oscillations.

There is need for empirical validation of the above proposals through practical investigations in multi-access
edge computing (MEC) testbeds. These testbeds should embed telemetry brokers, MEC decision agents with
predictors and value-of-information logic, orchestrator hooks, containerized migration, and radio emulation
environments such as srsRAN or OpenAirInterface. And the testbeds should allow for controlled experiments that
compare dissemination strategies (periodic, event-driven, or piggyback). The testbeds also need to incorporate
mechanisms for assessing the role of value-of-information, uncertainty, and study performance under conditions
of high mobility, flash crowds, or adversarial reporting. In addition, complementary large scale simulations,
driven by real traffic traces, could help quantify migration latency, control plane overhead, energy costs, latency
percentiles, task completion rates, and fairness indices. Then analytical studies, including bounds on minimum
update frequency to maintain decision error within certain bounds or large-deviation asymptotics for rare events,
provide further theoretical grounding. Together, these mechanisms constitute a key performance indicator suite
(covering service quality, signaling overhead, computational footprint, and migration costs) that can guide robust
deployment of jockeying in real-world networks.

In conclusion, for systems where Quality of Service (QoS) and Quality of Experience (QoE) determine resource
entitlement and pricing, selfish and impatient tenants pose a harder control problem. Their incentives to minimize
completion time or maximize utility interact with slice-level policies and pricing, producing complex, feedback-
driven behavior that simple rules cannot reliably manage. This chronicle shows that classical jockeying models
remain informative but are increasingly inadequate for 5G/6G deployments. Future models must explicitly
represent slice heterogeneity and multi-vendor stacks, where non-uniform queue capacities, service disciplines,
and admission rules invalidate homogeneous assumptions. They must also treat information flow as a constrained
resource: latency, sampling rate, and signaling cost all affect whether a jockeying decision is actionable. Finally,
models should include stability and security guarantees so controllers can limit oscillatory switching (ping-
pong), bound migration overhead, and resist adversarial or corrupted state reports. Addressing these factors is
necessary to produce robust, efficient, and audit-able impatience models suitable for research and system design
in next-generation networks.
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