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Abstract—Satellite remote sensing plays a critical role in
operational oceanography by providing Near Real Time (NRT)
measurements of essential climate variables (ECVs), such as Sea
Surface Temperature (SST) and Salinity with extensive spatial
coverage compared with in-situ measurements. However, these
parameters are obtained through passive measurements with
satellite data that often suffer from attenuation due to atmo-
spheric effects, resulting in missing data in satellite recordings.
To overcome this issue, we propose a novel approach towards
intelligent autonomous measurement acquisition that outlines
the potential use of Unmanned Surface Vehicles (USVs). The
aim is to measure at locations with missing data by com-
bining information-driven exploration and energy-efficient path
planning. Information-driven exploration refers to identifying
potential measurement points with high informativeness. We use
differential entropy as information metric based on a Gaussian
Process Regression (GPR) model that uncovers the variances
in the satellite data. Subsequently, we plan a path of an USV
by extending the Rapidly-exploring Random Tree Star (RRT*)
algorithm by introducing an energy-dependent cost function
considering Sea Surface Currents (SSC) to accurately capture
the complex marine environment. By this, we introduce a modi-
fied information metric trading out informativeness and energy
consumption in the path planning. The results demonstrate that
informative and energy-efficient path planning can significantly
reduce the USV’s energy consumption, with potential savings of
up to 88%.

Index Terms—gap imputation, remote sensing, unmanned
surface vehicle, autonomous navigation, path planning, RRT*,
operational oceanography, North Sea

I. INTRODUCTION

Operational oceanography encompasses long-term and sys-
tematic routine monitoring to achieve accurate ocean state
forecasts, providing support for climate research, ecological
studies, maritime stakeholders, and political decision-makers.
Satellite remote sensing builds up one of the crucial compo-
nents in the observation network of operational oceanography
as it performs Near Real Time (NRT) measurements with
extensive spatial coverage, surpassing the limitations of in-situ
measurements [1], [2].

However, satellite passive observations are retrieved by mea-
suring the naturally reflected sunlight from the earth’s surface,

which is challenging due to its attenuation in the atmosphere
caused by cloud covers, unfavourable sun glints, rain, and high
aerosol concentration [3], [4]. These atmospheric effects lead
to missing values in the Level 2 (L2) satellite recordings. More
than two-thirds of the ocean’s surface is covered by clouds on
average [5], highlighting the need for reliable and efficient gap
imputation methods.

To address this issue, considerable efforts have been dedi-
cated to developing post-hoc data-driven reconstruction meth-
ods that infer missing data values from available data to
generate higher-level satellite products (Level 3 and 4) [3],
[4]. Machine learning approaches such as support vector
regression, random forest [6], and neural networks [7] have
been applied for Sea Surface Temperature (SST) interpolation.
Additionally, data fusion techniques have been proposed to fill
the data gaps. These techniques involve merging satellite data
with outputs from an ecohydrodynamic model [8] or combin-
ing data from multiple satellites and in-situ measurements [9].

In this paper, we introduce a novel approach that outlines
the potential use of Unmanned Surface Vehicles (USVs) by
integrating advanced autonomous driving techniques into the
L2 satellite data reconstruction process to enhance the data
quality of higher-level products. To the best of our knowledge,
USVs have primarily been deployed for validation purposes
of Level 3 or Level 4 satellite data [10], [11], so-called
matchups, relying on expert knowledge to strategically select
measurement points. Contrarily, we aim to develop a data-
driven framework that lets the USV select measurement points
autonomously based on the most recent data gaps in the satel-
lite recordings in an intelligent and energy efficient manner.
We achieve this through the following steps:

1) Entropy-driven exploration: Along with the work of
[12], we identify potential measurement points with high
informativeness based on a Gaussian Process Regression
(GPR) model. As information metric, the normalized
differential entropy [13] is derived from the variance
estimation of the GPR model.

2) Energy-efficient path planning: We perform sampling-
based path planning with a modified Rapidly-exploring
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Random Tree Star (RRT*) algorithm towards potential
measurement points with high informativeness. As cost
function, we adopt the energy consumption model by
[14] considering the Sea Surface Currents (SSC).

3) Measurement point selection: To incorporate the costs
associated with the USV into the information metric,
we select the next measurement point trading of infor-
mativeness and energy consumption.

This paper is structured as follows: Sec. II presents the
datasets used in this work, Sec. III explains the methodology
comprising methods for entropy-driven exploration, energy-
efficient path planning, and measurement point selection. In
Sec. IV, we show the simulation experiments and evaluation of
the results. We discuss the applied methods and the simulation
results in Sec. V and suggest ideas for future works. Finally,
Sec. VI concludes our proposed approach.

II. DATASETS

The data sources used in our simulation setup can be divided
into three different subsets: model area with the static obstacles
constraining where the USV operates, satellite data showing
the data gaps, and environmental data providing information
about the marine environmental conditions.

A. Model area

Fig. 1 shows the model area, which is the North Sea
extending from 6.5°E to 9.15°E longitude and from 53.38°N
to 55°N latitude. We consider the following static obstacles:
land cover, offshore wind farms, and in-situ measurement
platforms such as tide gauges and offshore installations for
oil and gas exploitation. We neglect dynamic obstacles like
ships as dealing with dynamic collision avoidance is beyond
the scope of this work.

We construct the land cover using the Water Body Dataset
from the Shuttle Radar Topography mission [15] by masking
the area outside the water body. Moreover, rivers and bays
are also treated as land cover. The offshore installations
are available in the European Marine Observation and Data
Network (EMODnet, https://emodnet.ec.europa.eu/en/human-
activities).

B. L2 SST of SENTINEL-3A

The L2 SST data of SENTINEL-3A [16] lies the basis of
our work. The SST is passively measured by the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument, which
provides a spatial resolution of 1 km and a swath width of
1420 km. The model area is sensed twice a day, with daytime
measurements taken in the descending direction and nighttime
measurements in the ascending direction. Due to the diurnal
warming effect and the skin effect introducing biases in the
daytime SST data, we only consider the nighttime SST data
for analysis [17], [18].

Fig. 1 also depicts the SST data from the NRT prod-
uct, which are available three hours after sensing. The pre-
sented measurements were taken on November 2, 2021, from
21:39:59.19 until 21:40:30.10 UTC. The spatial gaps observed

Fig. 1: Model area with land cover (green) and offshore
installations (grey) as static obstacles and L2 SST data
of SENTINEL-3A in ascending direction on November 2,
2021. The North Sea was sensed between 21:39:59.19 and
21:40:30.10 UTC.

in the measurements are attributed to atmospheric effects,
whereas the sharp cutoff on the right border is due to the
swath width of the SLSTR instrument.

C. Ocean model BSH-HBMnoku

The marine environment is characterised by various dy-
namic conditions such as ocean currents and winds impacting
the energy demand of an USV [19]. For simplicity, we neglect
the winds and focus on understanding the influence of the SSC
on the energy consumption of the USV as the aim of our work
is to give a general comprehensive framework on how to utilize
USVs for gap imputation.

We use the SSC field of the operational numerical model
system BSH-HBMnoku [20] of the Federal Maritime and
Hydrographic Agency (Bundesamt für Seeschifffahrt und Hy-
drographie) which performs four times daily ocean forecasts
on two different structured grid resolutions. For this work, we
use the model output of the finer horizontal grid resolution of
0.9 km and a temporal resolution of 15 minutes.

III. METHODOLOGY

Fig. 2 outlines the workflow of this work. The methods
are divided into three parts: entropy-driven exploration based
on a GPR model, energy-efficient path planning in complex
marine environments with the RRT* algorithm, and selection
of the next measurement point trading out informativeness and
energy consumption.

A. Entropy-based exploration based on a GPR model

The objective of exploration is to minimize uncertainty
about unknown environments and maximize the acquisition of
information. In our case, the locations of gaps in the L2 SST
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Fig. 2: Outline of the workflow, highlighting the contributory
elements of this work. The green boxes showcase the essential
components of our approach. The blue boxes represent a
detailed schematic of the methods used for entropy-driven
exploration.

data represent the unknown environment and the USV should
be guided to locations where the SST is uncertain. We do that
in three steps: First, to quantify the uncertainty, we estimate
the SST field of a specific area with a GPR model by using
L2 SST data of SENTINEL-3A as training data for the GPR
model. Second, based on the variance estimates provided by
the GPR model, we compute the differential entropy [13] of
each potential measurement point. Third, we identify potential
measurement points with high informativeness.

1) Fundamentals of Gaussian Processes (GPs): A GP is a
stochastic process in which every finite collection of random
variables has a multivariate Gaussian distribution [21]. It is
a probability distribution over functions with a continuous
domain, such that the distribution is the joint distribution of
those random variables. A GP is specified by its mean function
m(·) and covariance function kθ(·, ·) of a physical process

y(x) ∈ R, x,x ∈ R2 denoting the position vector in a two-
dimensional space:

y(x) ∼ GP (m(x), kθ(x,x
)), (1)

m(x) = E[y(x)], (2)
kθ(x,x

) = E[(y(x)−m(x))(y(x)−m(x))], (3)

where m(x) is the mean function indicating the expected
process value at input x, i.e. the average of all functions in the
distribution at point x. The covariance function kθ(·, ·) defines
the correlation between process values at distinct input points
x and x with the hyperparameters θ.

The properties of a GP are fully specified by the choice
of the covariance function and its hyperparameters θ, where
the latter are inferred from the training data and the former
is a design parameter. The Log-Marginal-Likelihood is then
defined as

log p(θ|X, z) =− 1

2
zT (K+ σ2

 I)
−1z

− 1

2
log|(K+ σ2

 I)|

− N

2
log2π. (4)

To find the optimal hyperparameters θ∗, (4) is maximized with
respect to θ:

θ∗ = argmax
θ

(log p(θ|X, z)), (5)

where z ∈ RN denotes the N noisy observations, σ2
 ∈ R the

noise variance, and K ∈ RN×N is the covariance matrix of N
observations constructed by applying the covariance function.
I is the identity matrix. For the maximization of the Log-
Marginal-Likelihood with respect to θ, the first and second
terms in 4 are only relevant, as the other term is constant
for a given z and N . X = [x[1] x[2] · · · x[N ]]T ∈ RN×2

summarises all observation points N in a two-dimensional
space as a matrix. See [21] for further details on the derivation
of the Log-Marginal-Likelihood.

2) Generation of an uncertainty map: We use the module
GaussianProcessRegressor of scikit-learn [22]
to implement a GPR model. For the covariance function,
we choose the Matérn kernel [21], which is stationary and
anisotropic and has two control parameters: the characteristic
length-scale l ∈ RD, which defines the distance in which
two samples x and x correlate in D-dimensional space, and
ν ∈ R+, which controls the smoothness of the function.

The GaussianProcessRegressor only optimizes l
and requires a predefined ν. Therefore, we perform a 10-
fold cross-validation (CV) using SST data of the ocean model
BSH-HBMnoku as training data since BSH-HBMnoku pro-
vides a spatially fully covered estimation of the SST. We set
ν values in the range of 0.1 and 5 and select the ν value for
which the CV results in the lowest root mean squared error
(RMSE). The Matérn kernel exhibits the lowest μRMSE at
ν = 0.2485 such that we use this value in the next steps for
optimizing the hyperparameters θ.
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Fig. 3: Local L2 SST as training data in the GPR model
within the search area of an USV located at coordinates 7.6 °E
and 54.5 °N with a search radius of 20 km. Spatial gaps in
the satellite recordings are attributed to atmospheric effects.
Coordinate Rerefernce System: ETRS89 / UTM Zone 32.

Let an USV be located within the model area. We assume
the USV to acquire the reduced NRT product of the L2 for
its region of interest SST three hours after sensing, precisely
on November 3, 2021, at around 00:40 UTC. Specifically, the
USV retrieves the L2 SST data within a radius of 20 km from
its current position, which we refer to the search area in the
following. Fig. 3 provides an example of the L2 SST retrieval
for an USV located in 7.6 °E, 54.5 °N. Again, gaps in the
L2 SST data result from atmospheric effects attenuating the
reflected sunlight from the earth’s surface. Subsequently, we fit
the GPR model on the locally retrieved L2 SST data with the
most suited ν-value selected from the CV to infer the optimal
hyperparameters θ∗.

Once the GPR model is trained, the next step is to identify
P potential measurement points of high uncertainty. The aim
is to generate an uncertainty map h ∈ RP which serves as
a guide for the USV to navigate towards points with high
informativeness. Alg. 1 outlines the workflow of the generation
of an uncertainty map.

Algorithm 1 Uncertainty map

Input: trained GPR-MODEL, X∗
Output: hnorm

1: P ← len(X∗)
2: for i = 1, ..., P do
3: μ∗,σ∗ ← predict(GPR-MODEL,X

[i]
∗ )

4: h[i] ← differential_entropy(σ∗)
5: end for
6: hnorm ← normalize(h)

Let X∗ = [x
[1]
∗ x

[2]
∗ · · · x

[P ]
∗ ]T ∈ RP×2 be a two-

dimenstional grid of P potential measurement points with a
spatial resolution of 1.2 km over the search area. With the
trained GPR model, we predict the process value y

[i]
∗ with

i = 1, 2, ..., P at each potential measurement point x[i]
∗ with

the respective model variance σ∗ (Alg. 1, line 3). Subsequently,
we compute the differential entropy H [13] for each potential
measurement point (Alg. 1, line 4):

h[i] = H(y
[i]
∗ |X) =

1

2
log(2πeσ2

∗). (6)

normalizing the uncertainty map facilitates the comparison
of differential entropy values with other search areas (Alg. 1,
line 6):

hnorm =
h− min(h)

max(h)− min(h)
, (7)

where hnorm denotes the normalized uncertainty map, max(h)
the maximum and min(h) the minimum differential entropy
within the search area, respectively. For better readability, we
will refer to the normalized differential entropy as entropy in
the following.

3) Exploration of most informative points: In the final step,
we identify local maxima based on clustering the uncertainty
map. Clusters represent areas where uncertainty values are
grouped together based solely on their spatial locations. Fil-
tering local maxima is summarised in Alg. 2.

Algorithm 2 Filter local maxima

Input: hnorm, k
Output: hmax

1: h0.75 ← filter_quantil(hnorm, 0.75)

2: [h
[1]
cluster, ...,h

[k]
cluster] ← cluster(h[k]

0.75)
3: for i = 1,..,k do
4: h

[i]
max ← max(h[i]

cluster)
5: end for
6: hmax ← sort(hmax)

To narrow down the focus on areas with relatively higher
uncertainty, we filter potential measurement points falling
within the upper 75% percentile, denoted as h0.75 (Alg. 2
line 1). Among h0.75, we apply k-means clustering [23] with
k = 3 (Alg. 2 line 2) to identify the potential measurement
points with the highest uncertainty of each cluster h

[i]
max for

i = 1, ..., k (Alg. 2 line 4). Eventually, we rank the local
maxima according to their entropy value in a descending order
(Alg. 2 line 5).

In the subsequent analysis, we will incorporate the costs
associated with the USV into the information metric. This
comprehensive consideration of costs and information will
facilitate the selection of the most efficient and informative
measurement point for the USV’s exploration strategy.

B. Energy-efficient path planning in complex marine environ-
ments

To plan the path of an USV in an energy-efficient manner,
the complex environmental conditions need to be considered,
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encompassing the ocean currents and the winds. In our ap-
proach, we reduce the complexity of the environment by
introducing an energy consumption model proposed in [14]
that only takes into account the ocean currents. As presented
in the following, we use this energy consumption model as
cost function for the RRT* algorithm [24] to find feasible and
optimal paths from the start to the goal position.

1) Energy consumption model: We define the cost as the
energy consumption E of the USV depending on the prevailing
SSC. Let v ∈ R2 be a velocity vector in two-dimensional
space and |v| ∈ R+

0 [
m
s ] the respective speed. Assume an USV

navigating from point xi to point xi+1 with a total velocity
vg that is the resultant vector of the relative velocity vu,
contributed by the engine of the USV, and the velocity of
the SSC vc:

vg = vu + vc. (8)

Then, vg can be inserted into the energy consumption model
E such that

E = α|vu|3
xi − xi+12

|vg|
, (9)

where α ∈ R+[ kg
m ] represents the water density, drag coeffi-

cient, and the reference area of the USV [14]. For our analysis,
it is sufficient to set α = 1. Furthermore, we assume the USV
to drive constantly with |vg| = 10 km

h . Consequently, only the
relative speed |vu| varies with the velocity of the SSC |vc|,
and, thus, E linearly depends on |vu|3. The simplified energy
consumption model is defined as follows:

E = |vu|3
xi − xi+12

10 km
h

, (10)

2) RRT* algorithm: The Rapidly-exploring Random Tree
(RRT) algorithm [25] and its’ computationally more ef-
ficient version RRT* [24] are stochastic sampling-based
path planning algorithms commonly used in complex high-
dimensional spaces with obstacles. It builds a searched tree
T = {t0, ..., tM}, t ∈ R2 of M positions to find a feasible
trajectory between the start point x0 and the goal point xend.
Here, we utilize the energy consumption E (Eq. 9) as cost
function to link the SSC to the path planning.

We use the RRT* algorithm provided by the open-source
software PythonRobotics [26]. To take into account the
complex geometries of the obstacles in the model area, we
extend the RRTStar module by adding geographic infor-
mation system features to the obstacles. Collision avoidance
is guaranteed by creating safety boundaries with a distance
of 500 m around the obstacles. Furthermore, we neglect the
physical characteristics of the USV, assuming the USV to be
a frictionless particle.

Since the SSC is variable in space and time, we update the
SSC field every 15 minutes, which is the model time step of
the BSH-HBMnoku ocean model [20]. As the RRT* algorithm
stochastically generates a path, we generate a set of 20 path
segments S = {S1, ...,S20},Sj ∈ RL×2, ∀j = 1, . . . , 20 with

the RRT* algorithm in each time step, where L denotes the
number of positions of each path segment S. The altered RRT*
selects then the path segment with the lowest cost c based on
E. In the next time step, the end position of the previous
selected path segment is then used as start position and 20
candidate paths are generated again. This procedure is repeated
until the USV reaches the goal position. Alg. 3 summarises
the path planning steps under the spatiotemporal variablity of
the SSC.

Algorithm 3 Path planning in complex marine environments

Input: x0,xend, SSC
Output: T

1: T ← T ∪ x0 {initialize final path with start position}
2: i = 0 {initialize model time step}
3: while T [end] = xend do
4: S ← NULL
5: for j = 1, ..., 20 do
6: Sj ← RRT*(T [end],xend, SSCi)
7: S ← S ∪ {Sj}
8: end for
9: Smin ← costmin(S) {segment with lowest cost}

10: T ← T ∪ {Smin} {append segment to final path}
11: i = i+ 1
12: end while

C. Measurement point selection

After generating the uncertainty map, the USV aims to drive
to the test point with the highest entropy. However, considering
the challenging marine environment, it is crucial to incorporate
the costs associated with the USV when choosing the next
measurement points. While navigating towards the point with
the highest entropy would yield the highest information gain,
it may not always be feasible if the path requires a high cost
in terms of the heuristic distance or SSC. In such cases, an
alternative approach is to select measurement points that offer
a relatively low path cost while still maintaining a relatively
high entropy compared to the entire search area.

To address the trade-off between maximizing the informa-
tiveness and minimizing the energy consumption, we introduce
a modified information metric taking into account the costs
associated with the USV’s operations. Dividing the entropy
by the cost, a high value indicates a point with high informa-
tiveness and low cost. We compute the heuristic distance and
the total energy consumption of each path generated by the
RRT* planner and compare the following metrics: entropy,
entropy/distance, and entropy/energy. For each search area,
we choose the point that yields the highest value within
each metric category. Finally, we compare the total energy
consumption towards the selected measurement points.

IV. RESULTS

We analyze three search areas within the model area (Fig.
4). For exemplary purposes, we only show the exploration and
path planning results of search area 3 because it showcases
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both obstacles and data gaps. Subsequently, we compare
different metrics based on the resulting energy consumption in
each search area. Eventually, we investigate the total energy
consumption of the USV varying travel direction and start time
of the USV.

Fig. 4: Search areas investigated within the model area. Each
search area has a radius of 20 km. In the following, the
coordinates of the start positions are indicated. Search area 1:
7.0 °E, 54.72 °N. Search area 2: 7.6 °E, 54.5 °N. Search area
3: 8.2 °E, 54.1 °N.

A. Entropy-based exploration and path planning with energy
constraints: search area 3 as an example

Clustering the resulting uncertainty map of Alg. 1 leads to
local maxima depicted in Fig. 5. The local maxima are ranked
according to their entropy values.

After identifying the most informative measurement points,
we perform the SSC dependent RRT* planner for each local
maximum to further analyze the energy consumption of the
paths. Fig. 6 presents the final paths of an USV travelling with
a constant total speed of |vg| = 10 km

h starting on November 3,
2021, at 00:45 UTC, which is three hours after the acquisition
time when the NRT data are available. The cumulative sum of
the energy consumption of each path is highlighted in Fig. 7.

Path 3 reveals to be the most energy efficient path with a
straight trajectory and a total energy consumption of 87.8 kJ.
On the other hand, paths 1 and 2 make a curve towards the
Northwest. Fig. 8 displays the mean direction of the SSC in
search area 3 between 00:45 UTC and 23:45 UTC on Novem-
ber 3, 2021. The Northwest direction of path 3 corresponds
to the direction of the prevailing SSC at the start time with
321°. This indicates that the modified RRT* planner indeed
searches for a path that follows the SSC to minimize the cost.

Fig. 5: Search area 3: Clustering the uncertainty map. The
clusters are indicated in green, resulting in three local maxima.
The local maxima are ranked according to their entropy value
in a descending order and the labels denote the ranking.
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Fig. 6: Search area 3: Final paths towards the first (blue line),
second (yellow line), and third (green line) local maximum.
The USV travels with a constant total speed of 10 km

h starting
on November 3, 2021, at 00:45 UTC.

Put differently, the USV exhibits a preferred travel direction
associated with the prevailing SSC. Furthermore, comparing
path 2 and 3 demonstrates that the heuristic distance between
the start and the goal position is inadequate for defining the
cost since it does not account the dynamic environment of the
ocean.
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Fig. 7: Search area 3: Cumulative sum of the energy consump-
tion [kJ] as a function of travel distance and time.

Fig. 8: Search area 3: Mean direction of the SSC between
00:45 UTC and 23:45 UTC on November 3, 2021.

B. Assessment of the new metrics on the energy consumption

Balancing out both informativeness and costs in our
decision-making process, we examine the newly introduced
information metrics explained in Sec. III-C. Fig. 9 shows the
information metrics in each search area and the total energy
consumption of the respective paths.

In search area 1, the most informative point coincides with
the highest energy consumption of 277.5 kJ. Both the en-
tropy/distance and entropy/energy information metrics lead to

Fig. 9: Comparison between the metrics in each search area.
Number above the bar indicates the total energy consumption.
In all search areas, the entropy/energy metric stands out to be
the most energy-efficient strategy, trading out informativeness
and energy consumption.

Fig. 10: Search area 1: The dependency of the total energy
consumption [kJ] on the start time of the USV with a constant
total speed of 10 km

h . Four goals are simulated directed to the
north (blue), east (yellow), south (green), and west (red).

the same test point selection, indicating that this specific path
represents the shortest and most energy-efficient trajectory. In
search area 2, the entropy/distance metric reveals the selection
of a path that consumes the highest amount of energy, followed
by the entropy metric. The entropy/energy metric showcases
the lowest energy consumption. In search area 3, the entropy
metric results in the highest energy consumption, followed
by the entropy/distance metric. The entropy/energy metric
exhibits the lowest energy consumption of 87.8 kJ.

C. Time-dependent energy consumption

In Sec. IV-B, the USV showcases a preferred travel direction
associated with the prevailing SSC. Since the SSC is not only
variable in spatial dimension, but also in temporal dimension,
the operating time of the USV plays an important role when
assessing the energy consumption. Depending on the direction
of the USV towards its goal position and the prevailing SSC,
distinct paths resulting from the modified RRT* planner and
energy consumption arise. It is therefore worthwhile to analyze
the total energy consumption as a function of start time of the
USV and the distinct travel directions. To neglect obstacles
in this analysis, we show the time dependency of the total
energy consumption in search area 1 as an example (Fig. 10,
simulating an USV travelling towards the north, east, south,
and west.

The energy consumption of the east and west paths follow a
periodic behaviour with a periodicity of about 12 to 12.5 h and
a phase difference of half a period to each other, corresponding
to the semi-diurnal tidal waves dominating the North Sea [27].
The north and south paths display an almost steady energy
consumption.

To further analyze the energy consumption of different start
times, we compute the energy savings ΔE of two consecutive
local extremes as follows:

ΔE[%] =
maxlocal(E)− minlocal(E)

maxlocal(E)
(11)

where minlocal(E) denotes a local minimum of the total
energy consumption E and maxlocal(E) the local maximum.
Computing the energy savings ΔE for the east path, we get
a value of 88.1%.
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V. DISCUSSION AND FUTURE WORK

The energy assessment in Sec. IV-B highlights the limitation
of relying solely on heuristic distance as cost metric, as it does
not necessarily guarantee the most energy-efficient path due
to the dynamics of the SSC. Our introduced entropy/energy
information metric stands out to be the most suitable metric,
trading out informativeness and energy consumption. There-
fore, we recommend utilizing the entropy/energy metric in the
decision-making process for optimal path selection in marine
environments.

analyzing the time-dependent energy consumption in Sec.
IV-C demonstrates the significant potential for energy savings
and underscore the importance of scheduling USV start times
based on tidal currents. By leveraging the natural flow of the
tides, we improve the energy efficiency of the USV. A related
work to these findings is the concept of active current selection
for langrangian profilers introduced by [28]. This concept is
inspired by the Tidal-Stream Transport observed in marine
animals [29] to achieve energy-efficient navigation.

When constructing the model area, we only consider static
obstacles such as land cover and offshore installations. To en-
sure safe autonomous navigation, our work should be extended
by considering the dynamic nature of the North Sea and human
influence with increasing volume of ship traffic. As the North
Sea is dominated by semi-diurnal tidal waves, the water depth
is a crucial parameter for safe navigation and feasibility of the
USV’s path. For a more realistic setup, the RRT* algorithm
should include the spatiotemporal variability of low tide areas
by incorporating the bathymetry of the model area. Apart
from the environmental conditions in the North Sea, future
work should incorporate dynamic obstacle avoidance strategies
based on Automatic Identifications System (AIS) data.

To generate the uncertainty map introduced in Sec. III-A2,
we compute the differential entropy [13] from the model
variance σ∗ of the GPR prediction. The differential entropy
serves as an information metric for quantifying the absolute
amount of information that each potential measurement point
holds. However, it does not take into account the reduction
of uncertainty after the measurement is taken [30]. To ad-
dress this limitation, mutual information (MI) [31] serves
as a preobservation indicator of the potential usefulness of
acquiring information through a specific measurement [30]
by taking into account the cross-correlations of the potential
measurement points [32]. For future work, we recommend to
use MI as it is the state-of-the-art metric to exploit information
for GP-based models [12], [33]. The focus of our work is
primarily on introducing a general concept of integrating
USVs into operational oceanography using informative path
planning methods. Therefore, we use differential entropy as
the most basic information metric.

When identifying local maxima in the uncertainty map, we
set the number of clusters k fixed to three which we choose
based on the data gaps in search area 3. As each search area
encompasses different data gaps, k should not be set fixed.
Instead, finding the optimal value of k for each search area

automatically can be accomplished by performing the elbow
curve method [34].

Another crucial aspect currently not considered in our
path planning is the constraint posed by energy consumption.
Whether the USV is fuel-, solar- or wind-powered, there are
limitations on the available resources. To address this, energy
constraints should be employed in the cost function within path
optimization. One approach is to control the relative velocity
vu of the USV. Since the energy consumption according to
[14] is assumed to be linearly dependent on v3

u, vu can emerge
to infinity, which is technically not realistic. In a more realistic
setup, the relationship between the energy consumption and vu

is non-linear.

Linked to the energy consumption model proposed by [14],
we compute the cost of the USV based solely on the SSC. To
develop a more realistic path planning approach and achieve
more accurate trajectories, future works should incorporate
winds into the energy consumption model, e.g. by [19]. By
considering the influence of winds in the cost function of
the RRT* planner, the model can capture a broader range of
environmental factors that affect the energy consumption.

Furthermore, we simplify the USV to be a frictionless
mass point. When operating in complex marine environments,
the motion of the USV can become highly uncertain due to
factors such as hydrodynamic forces and moments, and marine
environmental interference forces [35]. Several works have
addressed the stochastic motion of an USV such as [36] who
proposed a stochastic optimal control.

Our approach focuses exclusively on employing a single
USV for exploration tasks. To cover the entire North Sea
and reduce the variance in satellite data to the minimum, em-
ploying multi-agent systems by using multiple USVs should
be further investigated. Examples of such research are the
works by [37]–[39]. While [37] developed a search algorithm
based on particle swarm optimization and inertia Levy-flight
for submarine exploration, [38] and [39] proposed an entropy-
driven swarm exploration under sparsity constraints, evaluating
various coordination strategies for a network of interconnected
mobile agents.

The goal of our work is to find the most energy-efficient
path towards an informative single measurement point. Going
beyond, the next question is how many points could be
measured on average until the next satellite acquisition under
energy constraints. Rather than solely looking at a single
measurement point, a broader sight is to consider the entire
set of informative points, i.e. finding the most-energy efficient
path that covers high-information locations along a path. A
key aspect that needs to be addressed is the time dependency
of the costs, which arises from the spatiotemporal dynamics
of the SSC. This problem can be treated as a variation
of the travelling salesman problem. Various algorithms have
been developed to tackle the travelling salesman problem,
such as ant colony optimization algorithms, particle swarm
optimization algorithms, and genetic algorithms [40].
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VI. CONCLUSION

This paper demonstrates the potential of USVs for gap
imputation in satellite oceanographic data by combining en-
ergy consumption assessment and entropy-driven exploration.
L2 SST data of SENTINEL-3A in the North Sea serve as
training dataset in the GPR model to accurately estimate the
SST revealing locations of high uncertainty. The differential
entropy as information metric enables the identification of
measurement points with high informativeness. Subsequently,
we perform the modified RRT* planner, which is extended
by the energy consumption model as cost function, to search
for feasible and optimal paths considering the prevailing SSC,
ensuring save and energy-efficient navigation of the USV in
complex marine environments.

Simulation results reveal that the USV exhibits a preferred
travel direction, and choosing this direction leads to the
most energy-efficient path. The preferred travel direction is
influenced by both space and time since it is based on the
spatiotemporal variation of the SSC driven by the tidal currents
that dominate the North Sea. Scheduling the start time of
the USV according to the tidal currents can lead to energy
savings up to 88%. Furthermore, applying information-driven
exploration highlights the complexity of the decision-making
process for the USV in selecting measurement points. The
trade-off between informativeness and energy consumption
poses a significant challenge. To address this, we recommend
utilizing the entropy/energy metric as a means of achieving
optimal path selection in marine environments.
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