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ABSTRACT
Biodiversity loss is a major challenge for humanity, which has
increased the rate of species extinction by a factor of 100-1000 com-
pared to pre-industrial times. XPRIZE Rainforest is a competition
focused on developing a pipeline for real-time biodiversity mea-
surement: teams have 24 hours to collect data and another 48 hours
to produce a list of species present in the data. Passive acoustic
monitoring (PAM) is a scalable technology for data acquisition in
wildlife monitoring. However, analyzing large PAM datasets poses
a significant challenge. This paper presents a tool used by the Brazil-
ian team during the XPRIZE Rainforest finals. Using a combination
of audio separation, weakly supervised learning, transfer learning,
active learning, multiple-instance learning, and novel class detec-
tion, samples are carefully selected and presented to the user for
annotation.
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1 INTRODUCTION
Biodiversity. ‘The variability among living organisms from all

sources including, inter alia, terrestrial, marine, and other aquatic
ecosystems and the ecological complexes of which they are part; this
includes diversity within species, between species, and of ecosys-
tems’ is the definition of biodiversity from the Convention on Bio-
logical Diversity (CBD) [25]. Biodiversity, in simplest terms, refers
to the variety of life. The loss of biodiversity is among the most
serious issues of our days [1]. Human activities have accelerated the
extinction rate to 100-1000 times higher than pre-industrial levels
[3, 15], necessitating transformative change to achieve international
conservation goals [6].

XPRIZE Rainforest. The urgency of biodiversity loss has led to
incentives to automate scalable biodiversity measurement. XPRIZE
Rainforest ‘is a global 5-year, $10 million competition that convenes
innovators and experts across disciplines [...] and challenges them
to use novel technologies to expedite the monitoring of tropical
biodiversity’1. After a 24-hour survey of 100 hectares of tropical
rainforest, the data is analyzed within 48 hours to generate a list of
species present. Methods are needed that maximize species identi-
fication in an unlabelled dataset while minimizing the number of
samples examined, as formally stated in [9].

Passive acoustic monitoring (PAM). Monitoring the impacts
of human activities requires scalable methods for effective biodi-
versity measurement. PAM is a scalable, non-invasive technology
designed for wildlife monitoring, enabling the collection of exten-
sive data with minimal habitat disturbance [19, 20]. PAM systems
can be used to provide continuous sound recordings across different

1https://www.xprize.org/prizes/rainforest
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Figure 1: Layout of the user interface. (left) The selected sample is presented with the file name, spectrogram, and playback
option. (right) Annotation column featuring selection panels for the sampling strategy, competence class, and species list.

biomes, providing valuable insights into animal behaviour, species
richness and ecosystem health. They are used for ecosystem man-
agement, rapid biodiversity assessments [18] and basic research
[16]. While data acquisition for wildlife monitoring is straight-
forward and cost-effective, evaluating large-scale audio datasets
presents significant challenges. Machine learning is increasingly
employed to address this challenge, but existing tools still lag behind
state-of-the-art artificial intelligence research [5, 23].

PAM annotation tools. Predominant annotation tools for PAM
data rely on a laborious and time-consuming manual process: do-
main experts select files, listen to the audio, review graphical sound
representations (e.g., amplitude envelope or spectrogram), and an-
notate events within these representations [2, 14, 21]. As this ap-
proach is not scalable, current research is focused on automating
the annotation process. Seadash [4] uses data programming tech-
niques but lacks evaluation on real-world datasets. DetEdit [17]
accelerates annotation by enabling simultaneous detection of event
bouts, but it operates on a proprietary platform and has only been
evaluated on odontocete echolocation click datasets. Scikit-maad
[24] and BamScape [13] are designed for large-scale PAM data anal-
ysis through spectrogram segmentation and clustering. However,
as command-line tools, they lack accessibility and interactivity. An
interactive clustering-based annotation tool is presented in [8], but
it has not been evaluated on real data. BirdNET-Annotator [12] uses
BirdNet [7], a neural model trained on vocal bird recordings, to
annotate samples with likely contained bird species. Using BirdNet
as embedding model and applying active learning methods for sam-
ple selection achieves superior results across various PAM datasets
[11] and extends BirdNET-Annotator to non-avian species, with
promising outcomes demonstrated in an initial user study [10].

Contribution. This paper presents an annotation tool used by
the Brazilian team in the final of the XPRIZE Rainforest competi-
tion. Using audio separation, weakly supervised learning, transfer
learning, active learning, multiple-instance learning and novel class

detection methods, audio samples are carefully selected and pre-
sented within our user interface for annotation2.

2 SYSTEM DESCRIPTION
As a pre-processing step, all incoming audio is resampled to 48 kHz
and split into 3 s chunks before a sound separation model, pre-
trained on Amazonian recordings, is used to create 8 channels from
each chunk.

2.1 Sampling strategies
The sampling strategies ‘refine’ and ‘discover’ input sample embed-
dings generated by a variational autoencoder. Themultiple-instance
learning models trained for these strategies use all annotated nor-
malized samples and their corresponding sound separations.

validate. A model, pre-trained in a weakly supervised manner
on large sound collections [22] such as Xeno-Canto3 for all relevant
and present species, is applied to the normalized audio and the
separations. For each sample, the model outputs the likelihood
of each species being present. Samples with a high likelihood of
containing a species that is not yet annotated at least 5 times are
selected for user validation.

refine. A model is trained to predict the probability of each
species being present in a given sample. After applying the model
to the unlabelled data, the active learning uncertainty sampling
strategy ’ratio’ with the best-performing score aggregation method
‘max’ [11] selects samples to refine the model.

discover. One model is trained to predict the probability of each
species being present in a given sample, and another to predict
whether any species is present in a given sample. To discover new
species, samples likely to contain any species but unlikely to contain
a species already found are selected.
2https://youtu.be/2dNYQvxn7cE
3https://xeno-canto.org/
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random. Samples are randomly selected.

2.2 User interface
Figure 1 shows the user interface, a two-column web application.

The left column displays the selected sample. At the top, the file
name indicating the day of the year and time of day is displayed.
In the center, a spectrogram visualizes the selected audio file, and
the mouse can zoom in on regions of interest. The ‘Demix’ switch
changes the display to show the concatenation of the original sam-
ple and the 8 channels generated by the sound separation model.
The ‘Greyscale’ switch changes the colourmap to greyscale. The
bottom of the column displays the auditory representation, aligned
with the visible spectrogram. Zooming into the spectrogram filters
the audio in time and frequency, and activating the ‘Demix’ switch
changes the audio to the concatenation of the original sample and
the 8 channels generated by the sound separation model.

The right column displays all the features required for the anno-
tation process. At the very top, the user selects a sampling strategy
(see section 2.1). Below that, the user selects their competence
class(es) based on their expertise. This selection filters all avail-
able species to include only those from the selected classes, listed
below. In addition, the selected sampling strategy will only con-
sider species from the selected classes. The annotator indicates the
presence of a species by checking the corresponding box in the
list. Using the ‘Search for species’ input, the list is filtered by the
search string to accelerate annotation. When using the ‘validate’
sampling strategy, model suggestions are displayed for the species
most likely present in the sample, along with their corresponding
probabilities. New species can be added and assigned to a sample
using the respective input field and ‘ADD’ button. When using
‘validate’ or ‘refine’ as sampling strategy, it is possible to select
specific species from a dropdown menu. While for ‘validate’ the
selected species are ignored during the sample selection process,
’refine’ will only take into account the selected species, if any, and
otherwise use all species from the selected competence classes. The
‘SUBMIT’ button saves the annotations, the ‘SKIP’ button discards
them.
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