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Physical embodiment and
anthropomorphism of AI tutors and their
role in student enjoyment and
performance
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Rising interest in artificial intelligence in education reinforces the demand for evidence-based
implementation. This study investigates how tutor agents’ physical embodiment and
anthropomorphism (student-reported sociability, animacy, agency, and disturbance) relate to
affective (on-task enjoyment) and cognitive (task performance) learning within an intelligent tutoring
system (ITS). Data from56 students (M = 17.75 years, SD = 2.63 years; 30.4% female), workingwith an
emotionally-adaptive version of the ITS “Betty’s Brain”, were analyzed. The ITS’ agents were either
depicted as on-screen robots (condition A) or as both on-screen avatars and physical robots
(condition B). Physical presence of the tutor agent was not significantly related to task performance or
anthropomorphism, but to higher initial on-task enjoyment. Student-reported disturbance was
negatively related to initial on-task enjoyment, and student-reported sociability was negatively related
to task performance. While physical robots may increase initial on-task enjoyment, students’
perception of certain characteristics may hinder learning, providing implications for designing social
robots for education.

As technology continues to advance and applications of new technologies and
artificial intelligence (AI) in education are also developing further, they are
reshaping learning and instruction1. This transformation provides both
unprecedented opportunities and challenges for teachers, students, and
schools2,3. However, given the rapid advances in AI development, there is an
increasing need for comprehensive empirical research that thoroughly
investigates the strengths and challenges of its application1. Particularly in
education, evidence-based knowledge about these technologies and their
consequences is crucial to ensure informed decision-makingwhen discussing
their application in everyday school practice4 and thus provide suitable
learning opportunities for learners5. While some AI-based technologies for
education, such as intelligent tutoring systems6 or conversational chatbots7,
arewell establishedandhavebeen studied for several years, othershave gained
increasing attention only in recent years (e.g., generativeAI3, social robots8, or
holographic telepresence9). Consequently, research has provided evidence for

the effectiveuseof someAI-based technologies,while othershavenot yet been
sufficiently explored. Additionally, novel approaches that involve combining
multipleAI-based technologies to improve learningare under-researchedand
often suffer frommethodological limitations, such as relying on small sample
sizes, studying single cases, or predominantly including adults1,10,11. Therefore,
these approaches may not adequately inform researchers about student
learning in school contexts. The present study thus aims to address these
methodological issues by empirically investigating how implementing and
combining certainAI-based technologies in a real-world school setting relates
to learning. It focuses on school-aged students and the integration ofmultiple
AI-based technologies, contributing to the ongoing development of research
on how these technologies can be effectively combined and applied in real-
world educational settings to improve learning outcomes. In particular, the
study addresses the use of social robots in combination with on-screen
applications with school-aged populations in classroom environments.
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One of thewell-researched technologies utilizingAI in education is the
intelligent tutoring system (ITS)6. An ITS is a computer-based learning
environment providing AI-based, personalized learning opportunities by
modeling and adapting to, for example, psychological and cognitive states of
the learner12. As the use of ITSs allows multiple students to engage indivi-
dually with a task and receive personalized learning content and feedback, it
can be an effectivemeans of classroom instruction5. Studies have shown that
across various educational levels and a wide range of topics (e.g., physics,
language learning, reading comprehension), ITSs can effectively foster
student learning and improve students’ understanding of the subject12,13.
Although they may not surpass individualized human tutoring, research
indicates that ITSs canoutperformother traditionalmodes of teaching, such
as individual use of textbooks or teacher-led instruction in large groups12.
Therefore, especially in large classeswith a high diversity of learners, the use
of ITSs canbe aneffective approach toproviding suitable individual learning
opportunities and thus account for individual student needs5.

Typically, ITSs adapt to learners’ cognitive learning, such as their
aptitude and knowledge6. However, as Pekrun’s14 control-value theory
suggests and research has evidenced15,16, learning does not only occur on a
cognitive level. Rather, learning is specifically facilitated by the learning
context, prior domain knowledge, and emotional experiences14. In accor-
dance with control-value theory14, positive emotions in learning situations
are associated with better learning outcomes and enhanced persistence,
effort, and motivation to learn15, whereas negative emotions such as hope-
lessness, anxiety, or boredom can be associated with poorer learning out-
comes, task-irrelevant thinking, and lower motivation to learn16. Emerging
developments and research in AI-based learning and instruction
acknowledge this relevance of students’ emotions while learning and
increasingly incorporate affect-focused components with the aim of fos-
tering a more positive emotional experience during learning17–19. Conse-
quently, affective ITSs that can recognize and adjust to students’ emotional
states are gaining more attention as well20. For example, one emotionally-
adaptive ITS utilizing facial emotion recognition as well as text and speech
analysis to adapt to learners’ emotional states demonstrated the potential to
motivate learners and increase their satisfaction with the learning
technology21. However, as automated measures of emotions, like facial
recognition, lack predictive validity and have shown poor agreement rates
with self-reports22, other studies rely on the experience sampling method
(ESM),whichcollects longitudinal data by repeatedly surveyingparticipants
about their current emotions ormotivational states23. In educational science,
ESM is a reliable and validated approach for capturing students’ emotional
states via self-report23. Using self-assessment methods to collect ground-
truth data on students’ emotions has been highlighted as highly effective,
thereby enhancing the accuracy of emotionally-adaptive tutoring systems20.
For example, prior work used emotional information assessed through self-
reported experience sampling to adapt the hint delivery strategy in the ITS
“Betty’s Brain”24. Results showed that this emotionally-adaptive version
improved the learning experience of higher achievers by reducing their
boredom25. Thus, based on control-value theory14 and empirical findings,
emotionally-adaptive ITSs can be seen as promising tools providing AI-
based, well-tailored, and adaptive learning opportunities in educational
settings. The present study focuses on one such emotionally-adaptive ITS
and its consequences for learning outcomes.

Several modern educational technologies, including ITSs, incorporate
virtual pedagogical agents as central design aspects. These animated agents
can serve different roles and enable direct interaction with the learner26.
Animated tutor agents, for example, have the advantage of including a social
component into ITSs27 and keeping students from gaming the system27.
When virtual pedagogical agents were introduced as a transformative
learning paradigm around the turn of this century, they promised to sig-
nificantly improve student engagement and motivation by creating rich,
face-to-face learning interactions28. Nevertheless, researchers who synthe-
sized the effect of virtual pedagogical agents on learner motivation and
learning outcomes found no significant differences between agent and no-
agent groups in the majority of the studies they reviewed in 201129. On the

contrary, another more recent meta-analysis focusing on studies published
between 2012 and 2019 observed an overall small effect when comparing
task performance in multimedia environments of students learning with a
virtual agent versus those without an agent30. This, in contrast to earlier
findings, suggests an advantage and increased instructional effectiveness of
including pedagogical agents in digital learning environments like ITSs. As
the meta-analysis covered more recent studies, we interpret this develop-
ment as possibly reflecting technological advancements over the past dec-
ade, whichmay have contributed to the improved efficacy ofmodern virtual
pedagogical agents.

A different approach that has emerged in the last decade is the physical
embodiment of pedagogical agents, often realized through social robots31. At
a conceptual level, thephysical presenceof artificial tutor agents allows for the
inclusion of nonverbal cues and therefore greater immediacy of the agents,
which is relevant for learners’ motivation and emotion32,33. In addition,
physically present pedagogical agents may facilitate a more natural form of
interaction, as they enable learners to interact with their physical environ-
ment andencourage social interaction31. Therefore, theymaybe seenasmore
effective compared to most other technological approaches in AI-based
learning, like virtual agents or instructive virtual games10.Althoughanumber
of studies indeed suggest that physically embodied robots can enhance
learning outcomes31,34,35 and are associated with increased enjoyment of
learning36, other studies suggest that physical robots in education may not
offer significant benefits in comparison to virtual on-screen agents36,37.

Nonetheless, research has shown that physical robots are perceived as
more anthropomorphic, meaning human-like, than their virtual
representations38,39, which may positively impact learning. Anthro-
pomorphismcanbedefinedas the attribution of human-like characteristics,
motivations, intentions, or emotions tononhuman agents and can influence
the interaction between humans and technological agents40. Prior research
has shown that there are interpersonal variations in how humans perceive
and anthropomorphize robots that are designed to be human-like, and that
these variations are influenced by factors such as age, personality, and
thinking style41, which in turn shape trust and interaction dynamics42,43. For
instance, younger students tend to anthropomorphize robots more and
experience greater enjoyment in interactions44. Further, individual char-
acteristics such as loneliness or anxiety may increase anthropomorphism41.
Moreover, prior experience with robots relates to how learners perceive
robots. More precisely, students with less experiences with robots are more
likely to view robots as living, whereas those with more experiences better
distinguish them from living entities44. Therefore, based on individual
variations or prior expectations, anthropomorphism can impact learning in
both positive and negative ways45,46. On the one hand, anthropomorphism
of technology in education can improve its effectiveness44,47 and the per-
ception of positive human-like characteristics of an artificial tutor might
positively influence learning outcomes48. On the other hand, anthro-
pomorphism might hinder learning through inducing fear, creating a
rejection of the technology, or causing disappointment due to unmet
expectations49,50. For instance, when robots simultaneously appear human-
like and artificial, they can evoke fear or rejection45. These individual var-
iations suggest that the degree of anthropomorphism and its effects on
learning depends not only on a robot’s design but also on the characteristics
and experiences of the learner interacting with the robot.

Research suggests that anthropomorphism can shift over time,
depending on prior experience with robots44. Therefore, anthropomorph-
ismmight changewith repeated interactions. As studies on social robots are
often limited to a short duration, it is not yet clear how much of the results
regarding perceptions and learning outcomes are related to novelty effects51.
Although there is research on long-term interactions also discussing
novelty52, implementing long-term interactions between humans and
robots in research is often difficult and therefore few studies are available.
Long-term interactions are particularly relevant for understanding
anthropomorphism and the effectiveness of social interactions with robots.
Although recent research suggest that anthropomorphism may be stable
over shorter timescales compared to constructs like trust53,54, it is important
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to note that perceptions can still fluctuate rapidly in short interactions.
Novelty may still play an important role in short-time interactions, as
perceptions of robotic agents can change even within a few minutes in the
same interaction55,56. Further, critical capabilities like empathy, which are
relevant for strong connections and more natural interactions with robots,
are affected from time57. Still, most studies evaluating empathic virtual
agents or robots involve participants interactingwith these agents for a short
period or in a single session57. Since authors often do not disclose how their
results may have been impacted by the novelty effect or to what extent they
controlled for it, it is difficult to interpret whether changes in learning were
influenced by the initial excitement caused by the new technology10. Thus,
notable research gaps remain in thefield ofAI-basedpedagogical agents and
social robots as tutors in digital learning environments. In particular,
knowledge about motivational-affective processes when learning with
physically embodied pedagogical agents in addition to virtual ones remains
limited, while accounting for possible novelty effects.

The present study contributes to an understanding of these issues and
aims to advance the understanding of the impact of physically embodied
social robots on learningoutcomes. Specifically,we focusedondifferences in
students’ on-task enjoyment and task performance when learning with two
different adaptive systems: an AI-based ITS with virtual agents only or an
AI-based ITS with physically embodied robots in addition to the virtual
avatars. To investigate this, we conducted an experiment with a sample of
N = 56 students using an emotionally-adaptive version of the ITS “Betty’s
Brain”24. The students were divided into two conditions. In conditionA, the
robotic tutor agent was presented solely as a virtual on-screen avatar, while
in condition B it was additionally physically present along with the virtual
on-screen avatar (condition B). By comparing the two conditions, we aimed
to answer the following research questions:

First, how does the physical presence of the robotic tutor agent influ-
ence students’ on-task enjoyment, task performance, and student-reported
anthropomorphism of the agent (RQ1)? Second, how does anthro-
pomorphism, more concretely student-reported sociability, animacy,
agency, and disturbance of the robotic tutor agent, relate to both on-task
enjoyment and task performance (RQ2)?Wehypothesized that the physical
presence of the robotic tutor agents in combination with the virtual avatar
(condition B) would enhance students’ on-task enjoyment (H1a), anthro-
pomorphism (H1b), and task performance (H1c) more than the virtual
agents only (condition A). Additionally, we expected the positive anthro-
pomorphic characteristics of student-reported sociability, animacy, and
agency to be positively related – and the characteristic of disturbance to be
negatively related – to both on-task enjoyment (H2a) and task
performance (H2b).

Results
Descriptive statistics and correlations
Descriptive statistics are presented in Table 1 and bivariate correlations
between all study variables, using Pearson correlation coefficients, are
shown in Table 2. There was no significant correlation between the physical
presence of the robotic tutor (conditionA vs. condition B) and students’ on-
task enjoyment, student-reported anthropomorphic characteristics of the
robotic tutor agent, and task performance. However, on-task enjoyment
during the first half (novelty phase) and second half (working phase) of the
experimental session was significantly and negatively associated with the
student-reported perception of the anthropomorphic characteristic of dis-
turbance. Task performance and student-reported sociability of the robotic
tutor agent were significantly and negatively correlated. Further, students’
on-task enjoyment in the novelty phase was strongly positively correlated
with that in the working phase, but no significant correlation between on-
task enjoyment and task performance was found. Additionally, better
German grades were significantly associated with lower student-reported
perceptions of disturbance by the robotic tutor agent. Gender significantly
correlated with task performance, with male students performing better.

Physical presence of the robotic tutor agent
To test our hypotheses of group-related differences in on-task enjoyment
(H1a), anthropomorphism (H1b), and task performance (H1c), we specified
fourdifferentpathmodels, one for each subdimensionof anthropomorphism
of theHuman-Robot InteractionEvaluationScale (HRIES)46.Thecoefficients
of all four models are reported in Table 3 and visualized in Fig. 1. All path
models demonstrated goodmodel fit (Model 1Soc: χ²= 0.19, df = 1, p = 0.666,
CFI = 1.00, TLI = 1.00, RMSEA< 0.001, SRMR= 0.01; Model 2Anim:
χ² = 0.27, df = 1, p = 0.606, CFI = 1.00, TLI = 1.00, RMSEA< 0.001,
SRMR= 0.01;Model 3Agen: χ²= 0.21, df= 1,p = 0.650,CFI = 1.00, TLI = 1.00,
RMSEA< 0.001, SRMR= 0.01; Model 4Dist: χ²= 0.05, df = 1, p = 0.822,
CFI = 1.00, TLI = 1.00, RMSEA< 0.001, SRMR= 0.01). Although the corre-
lationsdidnot indicate a significant associationbetween thephysical presence
of the robotic tutor andon-task enjoyment, in twooutof fourpathmodels the
coefficient between the conditionandon-task enjoyment in thenoveltyphase
was significant, while the other two models showed not significant associa-
tions with p = 0.061 and p = 0.054 (H1a). In condition B, students reported
higher on-task enjoyment than in condition A. However, learning with or
without a physically present robot along with a virtual agent (condition A vs.
condition B) and on-task enjoyment during the working phase were not
significantly related across all models (H1a). Furthermore, the path models
did not reveal any significant associations between the robotic tutor agents’
physical presence and the student-reported perceptions of its sociability,

Table 1 | Descriptive statistics

Total Condition A Condition B dΔConditon A vs. B

M SD M SD M SD

Age 17.75 2.63 17.66 2.66 17.85 2.64 −0.07

German grade recoded
a 4.13 0.90 4.45 0.74 3.78 0.93 0.80

Student-reported sociability 4.36 1.27 4.34 1.30 4.39 1.26 −0.04

Student-reported animacy 3.01 1.31 2.95 1.40 3.07 1.22 −0.10

Student-reported agency 4.30 1.07 4.39 1.04 4.19 1.11 0.19

Student-reported disturbance 2.75 1.57 2.64 1.55 2.85 1.60 −0.13

Task performanceb 0.51 0.19 0.47 0.17 0.54 0.20 −0.37

On-task enjoyment novelty phase 1.91 0.93 1.76 0.92 2.06 0.93 −0.33

On-task enjoyment working phase 1.65 1.01 1.59 1.01 1.72 1.03 −0.13

Descriptive statistics for all study variables for the total sample and the two conditions. In condition A, students learned only with the virtual avatars; in condition B the robotic tutor was also physically
present.
dΔConditon A vs. B =Cohen’s d measuring the effect size of the difference between condition A and condition B. It is calculated as the difference in means (mean A - mean B) divided by the pooled standard
deviation.
aThe variable “German grade” was coded as follows: 1 = insufficient (worst grade) to 6 = very good (best grade).
bTask performance was measured as progress in “Betty’s Brain”.
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animacy, agency, or disturbance (H1b). Also, all path models consistently
showed no significant relation between the tutor’s physical presence and
students’ task performance (H1c).

Anthropomorphism of the robotic tutor agent
Using the same four models described above, we investigated the relation-
ships between anthropomorphism and both on-task enjoyment (H2a) and
task performance (H2b). Out of the four subdimensions of anthro-
pomorphism, only student-reported disturbance (seeModel 4Dist in Table 3
and Fig. 1) was significantly and negatively related to students’ on-task
enjoyment during the novelty phase, such that a higher perception of dis-
turbance was related to lower on-task enjoyment (H2a). None of the
student-reported anthropomorphic characteristics revealed a significant
association with on-task enjoyment in the working phase (H2a). Further,
student-reported animacy, agency, and disturbance of the robotic tutor did
not relate to students’ taskperformance (H2b).However, as shown inModel
1Soc (Table 3 and Fig. 1), student-reported sociability was significantly and
negatively associated with task performance (H2b).

Secondary findings
Across all four models, on-task enjoyment in the novelty phase was sig-
nificantly and positively associated with both on-task enjoyment in the
working phase and task performance. However, on-task enjoyment during
the working phase was not significantly related to task performance. Stu-
dents’Germangradeswere associatedwithneither on-task enjoyment in the
novelty phase nor their task performance. Nevertheless, the student-
reported perception of disturbance was significantly and negatively asso-
ciated with the German grade as the only one of the four anthropomorphic
characteristics (see Model 4Dist in Table 3 and Fig. 1). Thus, students with
better German grades perceived the robotic tutor agent as less disturbing.

Discussion
This study investigated the role of the physical embodiment of a pedagogical
tutor agent of anAI-based adaptive system in addition to its virtual avatar in
emotional and cognitive learning outcomes and students’perceptions of the
tutor agent’s anthropomorphic characteristics. In addition, the relevance of
anthropomorphic characteristics for students’ emotional and cognitive
learning was investigated. Key findings indicate that the physical (non-)
presenceof thepedagogical agentwasnot significantly associatedwith either
(1) student-reported anthropomorphism or (2) task performance. How-
ever, (3) when physically present, the robotic tutors were significantly
related to higher on-task enjoyment in the first half of the interaction
(novelty phase) in two of the four models (Model 1Soc and Model 2Anim).
Further, (4) a higher student-reported perception of sociability was asso-
ciated with lower task performance, and (5) a higher student-reported
perceptionofdisturbancewas related to loweron-task enjoymentduring the
novelty phase. In the following sections,we discuss thesefindings alongwith
our hypotheses and specify potential implications for the implementation of
social robots as AI-based tutors in learning and education, while acknowl-
edging the limitations of our study, including the small sample size and
specific experimental setup.

Contrary to our initial hypothesis, the physical presence of the robotic
tutor agent did not relate to either higher anthropomorphism of the robotic
agent (H1b) or task performance (H1c). Thus, the implementation of
physical robots alongside virtual avatars did not lead to the tutors being
perceived as more human-like, nor did it improve students’ progress on the
task better than virtual avatars only. Although we partly observed higher
initial on-task enjoyment among students working with the physical robot
(H1a), this association occurred only in the first half of the experiment
(noveltyphase)andwasnot evident in the secondhalf (workingphase).This
observation can be interpreted as a possible effect of initial novelty51. As
social robots are still rather uncommon in everyday life, participants likely
were interacting with a physical robot for the first time. The results indicate
that although the physical presence of the robotic tutors seems to have
evoked an initial excitement, this novelty factor vanished in the workingT
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phase. This could be attributed to the robot becoming a familiar presence
over time52, allowing students to redirect their focusmore to the actual task10.

It is important to note that, alternatively, the significant positive rela-
tion between the physical embodiment and on-task enjoyment in the
novelty phase could potentially also be explained by factors related to the
experimental setting. For example, students interacting with the physically
embodied robots might have experienced more technological errors, which
could have potentially increasednegative anddecreased positive emotions58,
possibly limiting the impact of physical embodiment beyond the novelty
phase. Additionally, the different modalities of interaction between the
conditions could have played a role in students’ emotional experiences. In
condition A, the virtual on-screen robotic tutor agent only provided text-
basedhints. In conditionB, thephysically embodied robot also incorporated
gestures, and verbal communication, potentially leading to more distrac-
tions or a different engagement level that may have impacted students’ on-
task enjoyment in the working phase compared to condition A. Moreover,
the emotionally-adaptive version of the ITS used in both conditions of this
studymighthave also influencedstudents’ emotional experiencesduring the
learning session in general. The tutor agent provided hints based on stu-
dents’ self-reported emotional states, which became more detailed when
emotions indicated task disengagement and less detailed when students felt
engaged or enjoyed the task. This responsive approach might have led to
students with high initial enjoyment receiving only vague hints, potentially
contributing to a decrease in their engagement and enjoyment over time.

However, these results need to be interpreted with caution, as the
relation between the physical presence of the robotic tutor and the on-task
enjoyment in the novelty phase was only significant in two of the four
models and not present in the bivariate correlations. This discrepancy may
be explainedbypossible third variables, as the pathmodels take into account
the effects of such factors as, for example, the HRIES subdimensions, while
the bivariate correlations are not taking into account the possible influence
of third variables. Thus, when the effect of anthropomorphism (HRIES) on
on-task enjoyment is simultaneously considered in the model, a significant
effect of the physical presence of the robotic tutor on on-task enjoyment in
the novelty phase can be shown. Nevertheless, the role of the robotic tutor’s

Table 3 | Results of the path models

ß SE 95%CI p

Model 1: Including HRIES subscale ‘sociability’

Student-reported sociability

Condition 0.08 0.14 [−0.20, 0.36] 0.590

German grade recoded 0.16 0.13 [−0.10, 0.42] 0.236

On-task enjoyment novelty phase

Student-reported sociability 0.20 0.12 [−0.03, 0.42] 0.087

Condition 0.24 0.12 [−0.01, 0.46] 0.042

German grade recoded 0.19 0.14 [−0.08, 0.46] 0.171

On-task enjoyment working phase

Student-reported sociability 0.13 0.10 [−0.06, 0.33] 0.185

Condition −0.03 0.10 [−0.23, 0.17] 0.776

On-task enjoyment novelty phase 0.60 0.11 [0.39, 0.80] 0.000

Task performance

Student-reported sociability −0.35 0.09 [−0.53, −0.17] 0.000

Condition 0.11 0.14 [−0.17, 0.40] 0.426

On-task enjoyment novelty phase 0.30 0.12 [0.07, 0.53] 0.010

On-task enjoyment working phase 0.04 0.13 [−0.22, 0.30] 0.766

German grade recoded −0.04 0.13 [−0.30, 0.22] 0.753

Model 2: Including HRIES subscale ‘animacy’

Student-reported animacy

Condition 0.10 0.15 [−0.20, 0.40] 0.518

German grade recoded 0.13 0.13 [−0.13, 0.39] 0.313

On-task enjoyment novelty phase

Student-reported animacy 0.23 0.13 [−0.03, 0.48] 0.080

Condition 0.23 0.12 [−0.01, 0.47] 0.061

German grade recoded 0.19 0.15 [−0.09, 0.48] 0.182

On-task enjoyment working phase

Student-reported animacy 0.05 0.10 [−0.14, 0.24] 0.613

Condition −0.03 0.11 [−0.24, 0.17] 0.757

On-task enjoyment novelty phase 0.62 0.11 [0.41, 0.82] 0.000

Task performance

Student-reported animacy −0.22 0.11 [−0.45, 0.00] 0.050

Condition 0.12 0.14 [−0.16, 0.39] 0.415

On-task enjoyment novelty phase 0.32 0.13 [0.07, 0.57] 0.013

On-task enjoyment working phase −0.02 0.14 [−0.29, 0.26] 0.895

German grade recoded −0.06 0.13 [−0.31, 0.19] 0.626

Model 3: Including HRIES subscale ‘agency’

Student-reported agency

Condition −0.01 0.14 [−0.28, 0.25] 0.938

German grade recoded 0.22 0.13 [−0.03, 0.46] 0.079

On-task enjoyment novelty phase

Student-reported agency 0.24 0.12 [0.00, 0.48] 0.050

Condition 0.25 0.12 [0.02, 0.48] 0.033

German grade recoded 0.17 0.15 [−0.12, 0.45] 0.256

On-task enjoyment working phase

Student-reported agency 0.11 0.12 [−0.13, 0.34] 0.375

Condition −0.02 0.11 [−0.23, 0.19] 0.852

On-task enjoyment novelty phase 0.60 0.12 [0.37, 0.82] 0.000

Task performance

Student-reported agency −0.10 0.15 [−0.39, 0.19] 0.506

Condition 0.11 0.15 [−0.19, 0.40] 0.475

Table 3 (continued) | Results of the path models

ß SE 95%CI p

On-task enjoyment novelty phase 0.29 0.13 [0.03, 0.54] 0.029

On-task enjoyment working phase −0.02 0.15 [−0.31, 0.28] 0.908

German grade recoded −0.06 0.14 [−0.32, 0.20] 0.659

Model 4: Including HRIES subscale ‘disturbance’

Student-reported disturbance

Condition −0.07 0.13 [−0.31, 0.19] 0.612

German grade recoded −0.34 0.11 [−0.55, −0.13] 0.001

On-task enjoyment novelty phase

Student-reported disturbance −0.28 0.12 [−0.52, −0.03] 0.026

Condition 0.23 0.12 [0.00, 0.47] 0.054

German grade recoded 0.13 0.14 [−0.15, 0.40] 0.361

On-task enjoyment working phase

Student-reported disturbance −0.17 0.09 [−0.34, 0.01] 0.071

Condition −0.01 0.10 [−0.21, 0.19] 0.903

On-task enjoyment novelty phase 0.57 0.11 [0.35, 0.79] 0.000

Task performance

Student-reported disturbance −0.09 0.13 [−0.34, 0.15] 0.452

Condition 0.12 0.15 [−0.17, 0.40] 0.425

On-task enjoyment novelty phase 0.26 0.13 [0.00, 0.51] 0.046

On-task enjoyment working phase −0.05 0.15 [−0.34, 0.23] 0.717

German grade recoded −0.10 0.14 [−0.37, 0.17] 0.474
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physical presence in motivational-affective learning outcomes remains
inconclusive and requires further research.

Thus, the strengths of physical robots in increasing student learning
outcomes and enjoyment found in prior research could not be replicated in
the present study. Additionally, no effects on the perception of anthro-
pomorphistic characteristics were observed. This finding contradicts pre-
vious research, which showed that text-based communication can lead to
dehumanization, while speech with naturalistic cues can foster
anthropomorphism59 as different communication styles or the quality of an
agent’s voice can influence anthropomorphic perceptions, trust and
performance43,60,61. However, this was not true for our study. Rather, the
results of this study do not show clear positive outcomes for students’
learning from implementing physically embodied robotic tutors. While we
did indeed partly observe a positive impact of physical robots on students’
on-task enjoyment, the presence of a novelty effect in the short 1 h
experimental interaction time suggests that the positive effect on enjoyment
may not persist in long-term settings. However, this study identified
potential benefits of physical robots in terms of students’ initial enjoyment
by acknowledging and accounting for possible novelty effects. While future
research could focus on normalizing for novelty effects in the experimental
setup, for example through warm-up periods where participants become
familiarwith the robots before the actual study begins, itmight also focus on
developing strategies for utilizing the novelty effect as a source of infor-
mationwhendesigning robots for educational purposes insteadof treating it
as a source of noise62,63.

Another key finding of this study, offering potential implications for
the development of robotic tutor agents for educational purposes, relates to
the consequences of anthropomorphism for students’ emotional and cog-
nitive learning. In line with our hypothesis, we observed associations
between the perceptions of anthropomorphic characteristics and students’
on-task enjoyment (H2a) and task performance (H2b). In each case, one
specific subdimension indicated significant relevance. While higher
student-reported disturbance was associated with lower on-task enjoyment
in the novelty phase, higher perceived sociability was linked with lower task
performance. Surprisingly and contrary to our initial assumptions, students’
progress on the taskwas lowerwhen the robotic tutor agentwas perceivedas

more sociable, irrespective of whether the robot was physically or virtually
present. This contradicts previous research, which has proposed that
human-like characteristics in robotic tutor agents have a beneficial effect on
student learning and should be facilitated in technology40. Instead, the
findings of this study suggest that if a robotic tutor is perceived as overly
sociable, it may distract students from the task at hand rather than assist
them in achieving better results. This coincides with the results of earlier
studies, which found a social robot to have distracting and negative effects
on participants’ performance37,64. This finding highlights the importance of
considering that the way students perceive social robots can influence the
degree towhich they benefit from them.Additionally, our findings illustrate
that certain human-like characteristics, such as perceived disturbance, can
lead to decreased on-task enjoyment. Although perceived disturbance is the
only dimension incorporating negative attributions, it remains a relevant
subdimension of anthropomorphism, considering human-like traits related
to the perception of danger and strangeness46. This finding aligns with the
theoretical perspective that human-like features, if perceived negatively, can
induce negative feelings and therefore detract students from learning.
Overall, our results suggest that high anthropomorphism – negative as well
as positive human-like traits – might not always be beneficial for learning
and should be evaluated with respect to different subdimensions. Given the
substantial interpersonal differences in how humans anthropomorphize,
whether influenced by characteristics like age and personality41 or shapedby
factors such as prior experience and unmet expectations44, it is crucial to
balance designing robotswithhuman-like traits andmitigating thepotential
negative effects of these perceptions. Our findings underscore the impor-
tance of more nuanced research when examining the relevance of anthro-
pomorphism of robots within educational environments to optimize their
effectiveness and support learning, while minimizing potential negative
effects resulting from strong perceptions of human-likeness.

Consequently, the present study highlights that possibly not all stu-
dents benefit equally from a robotic tutor, as their performance and
enjoyment could be influenced by whether they feel sympathy towards the
robot or find it intimidating. In addition to individual perception, the
relevance of students’ prerequisites has been indicated too. In our study, we
controlled for students’ self-reported, most recent term grade in German,

Fig. 1 | Results of the four path models. Each representing a subconstruct of the HRIES scale. Bold lines indicate statistically significant (p < 0.05) standardized coefficients
(*p < 0.05, **p < 0.01). Thin lines indicate included paths that are non-significant.
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which could be seen as a proxy for their German language proficiency. We
observed that betterGerman gradeswere significantly associatedwith lower
student-reported disturbance, suggesting that students with lower German
language proficiency may have perceived the robotic tutor agents as more
disturbing. Whereas prior research has proposed that social robots can be
particularly distracting for students with lower educational competencies64,
the present study further suggests potential differences in the perception of
such pedagogical agents. While working with the AI-based ITS “Betty’s
Brain”24, students with lower German language proficiency may have
already encountered difficulties with the learning task itself, which includes
extensive reading and therefore reading comprehension. The interfering
text-based hints of the robotic tutor, whether in written form from the
virtual robot or in acoustic form from the physical robot, might further
distract these students, increasing their difficulties while learning, and thus
be counterproductive for the overall learning process. In these cases, stu-
dents might benefit more from either a human tutor or a robotic tutor
capable of adapting not only the detail but also the number and timing of
hints to the students’ individual needs. Once more, these aspects are of
relevance when evaluating the implementation of robotic tutors in learning
and instruction as well as future research directions. However, it is impor-
tant to note that these findings are based on a specific sample and experi-
mental setup, and further researchwithdiverse participant groups is needed
to validate these results. Given that factors like age, personality, thinking
style, and prior experience with robots are known to influence
anthropomorphism41,44, future research should explore these individual
differences in more detail, as these factors could provide valuable insights
into whether our findings hold true for different participant groups.

It is important to acknowledge several limitations of the present study.
Firstly, the robotic tutor agents used in this study had a limited, purely
supportive role, providing hints according to a predefined matrix25.
Although the hints’ level of detail was adapted to the students’ performance
and emotional experience based on anAI algorithm, theywere scheduled to
be given every 10min. During these time intervals, the robotic tutor agents
remainedmainly passive and only interacted in subtleways,mostly (if at all)
through the ITS’s interface by choice of the student. This design could have
impacted the students’ perceptions of the robotic tutor agents’ anthro-
pomorphic characteristics, as the level of the robots’ interactive behavior can
influence anthropomorphism65. Secondly, it is worth noting that the
human-robot interactions in the present study were of relatively short
duration. The total interaction time of only 1 h is insufficient to assess long-
term and retention effects. Additionally, the short interaction time raises
questions about whether the positive impact of initial enjoyment in the
novelty phase on the enjoyment in the working phase, which aligns with
control-value theory14, can carry over for longer periods of time or whether
this association subsides shortly after the initial interactionwith the ITS and
the robotic agent. Thirdly, while our study focused primarily on the robotic
tutor agent, the robotic peer agent (Cozmo) did not play a significant
interactive role in both conditions. The Cozmo robot was a peer-agent
taught by each learner within the ITS. However, it did not engage in direct
interaction with the students. This might have limited the understanding of
the potential impact of peer-like social interactions on learning outcomes.
As prior findings suggest, social interaction with tutee agents and treating
them as partners can significantly enhance learning outcomes66. Future
research could benefit from exploring the interactive roles of both tutor and
peer agent in a more balanced manner, examining how direct interaction
with both types of agents influences students’ learning outcome and
experiences. Lastly, the sample size of only 56 students may, despite being a
comparatively large sample size in the context of human-robot interaction
studies, be considered relatively small for drawing overarching conclusions.
Therefore, further research conducted over an extended period of time,
including longer interaction periods and involving amore extensive sample,
is necessary to gain a more comprehensive understanding of the implica-
tions of the physical presence of robot tutors in the educational context.

In conclusion, the present study contributes valuable findings to the
current ambivalent state of research on physically embodied robotic tutors.

In this study, additionally employing physical robots was not beneficial over
on-screen avatars alone. The results also point to certain aspects of imple-
menting robotic tutors in general that should be approached with caution
and investigated further in more representative studies. More specifically,
the results suggest that – irrespective of physical embodiment – when stu-
dents perceive pedagogical agents as overly sociable, it may distract them
from the task, resulting in a lower task performance. Perceiving the robotic
agents as disturbing may reduce students’ on-task enjoyment. While these
findings indicate potential drawbacks of anthropomorphism for learning, it
is also possible that students who were already struggling with the task
perceived the agents as more sociable or disturbing, rather than these per-
ceptions directly causing the lower performance or enjoyment. Never-
theless, the initial improvement of on-task enjoyment observed with
physical robotic tutors suggests that physical embodiment of AI-based
pedagogical agents, in general, holds promise for students’ emotional
experiencewhile learning. In our view, a key challenge lies infindingways to
maximize this positive novelty effect to maintain the enjoyment of learning
with a physical robotic tutor over the long term. Future research should try
to generate effective long-term learning scenarios that go beyond thenovelty
effects, which this study could only account for to a limited extend. More-
over, it is important to consider students’ individual prerequisites when
designing AI-based robotic tutor agents for educational practice. Given the
interpersonal differences in how humans anthropomorphize, balancing the
design of robots with human-like traits and mitigating potential negative
effects is essential. Future research should explore these dimensions further,
focusing on how different subdimensions of anthropomorphism influence
learning outcomes and emotional experiences to avoid unintended
drawbacks.

Methods
Sample description
Originally, a total of 64 students from two secondary schools in Germany
participated in the experiment. Due to incomplete data, n = 6 participants
had to be excluded from analysis as they did not provide any data at the pre-
test measurement, and n = 2 had to be excluded due to extremely outlying
age values (≥25 years), resulting in a sample of N = 56 students
(Mage = 17.75, SDage = 2.63; 30.4% female, 69.6% male). Participants were
randomly assigned to one of the two experimental conditions. In condition
A, supported onlyby a virtual robotic tutor agent, 51.8%ofparticipantswere
included (ncon = 29 students: 41.4% female, 58.6% male). Meanwhile, con-
dition B, in which students were additionally supported by a physically
present robotic tutor agent, comprised 48.2% of participants
(nexp = 27 students: 18.5% female, 81.5% male). The majority of the parti-
cipants were native German speakers (78.6%). Prior to participation,
informed consent was obtained from all participants and, if required, their
parents or legal guardians. The study was performed in line with the prin-
ciples of the Declaration of Helsinki. It received approval from the Uni-
versity of Potsdam Ethics Committee (number 78/2021) as well as the
Ministry of Education, Youth and Sports of the Federal State of Branden-
burg (number 22/2022).

Procedure
As part of the participating schools’ science weeks, students participated in
the study over two 2 h sessions. During the first session, sociodemographic
data were assessed. Additionally, the students were verbally introduced to
the computer-based learning environment, namely the ITS “Betty’sBrain”24,
an open-ended learning platform designed to enhance students’ engage-
ment in science phenomena24. During the second session, students spent
60min on the individual learning task within the ITS, while the remaining
time was used for the post-test, organizational aspects and answering par-
ticipants’ questions (see Fig. 2 for a visualization of the procedure).

“Betty’s Brain” is a well-established ITS which follows a learning-by-
teaching paradigm67. Students learn about specific scientific phenomena by
reading a virtual science book and building a concept map to teach a virtual
peer agent, usually called Betty, with the support from a virtual tutor agent,
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typically called Mr. Davis. In our case, students learned about climate
change by teaching a virtual representation of a Cozmo robot instead of
Betty,while being supported by a representationof aPepper robot insteadof
Mr. Davis. The ITS usually follows a progressive hint delivery approach,
with the tutor agent gradually providing studentswithmoredetailedhints as
they experience consecutive failures. However, we used an emotionally-
adaptive version of the ITS instead, which had been developed and trans-
lated to German in prior work25,68. In this version, students received hints
based on their current self-reported emotional state. Every 10min students
selected the label that best represented their emotional state (“engaged
concentration”, “enjoyment”, “confusion”, “frustration”, or “boredom”).
These self-reports, together with the student’s performance, determined the
hint provided from four levels of support, ranging from vague (e.g., “I still
think you need to spendmore time reading the page called ‘Droughts and the
Water Cycle’. There’s a causal relationship on that page that you haven’t
taught Cozmo yet”) to detailed information (e.g., “You need to add the link
“droughts” to themap.This portion of the science book page calledwater cycle
explains the relationship. See if you can figure out which part of this passage
explains the relationship between precipitation and vegetation”). Specifically,
hints were increasingly more detailed when students’ emotions were closer
to task disengagement and the accuracy of their concept map for a chapter
was ≤ 50%25. At each 10-min interval, one hint was given subsequent to the
emotional assessment.

Thus, while working with the ITS, the students were prompted every
10min to report their emotional states and subsequently received feedback
from the robotic tutor agent (Pepper robot) to guide their learning process.
The robotic tutor agent provided a hint every 10min in both conditions but
remainedmostly passive in between these intervals. Students had the option
to seek help from the tutor agent at any time by clicking an “Ask Pepper”
button,which triggered responses togeneral questions like “Howdo I builda
concept map?”. However, the tutor agent did not respond spontaneously to
the learner outside of these pre-included questions, resulting in a primarily
one-way interaction. The robotic peer agent (Cozmo robot) did not directly
interact with the learner. Although it occasionally provided social com-
ments, such as “Thanks for teaching me about climate change!” or “Great! I
got most of these questions right. We’ll be done learning soon!” as text on
screen within the ITS interface, it primarily acted as the character being
taught by the learner. Cozmowas quizzed from time to time, reinforcing its
role as a peer rather than that of a tutor.

As this study aims to investigate the influence of the physical embo-
diment of an ITS’ virtual pedagogical agents on learning outcomes, two

conditions were compared. In condition A, both Pepper and Cozmo were
only present as virtual on-screen avatars, while in conditionB theywere also
physically present in the classroom (see Fig. 2 for an illustration).While the
physically embodied robots incorporated movements and gestures while
delivering hints (Pepper), moved while starting the task (Pepper and
Cozmo), and demonstrated facial expressions (Cozmo), the virtual avatars
were static representations of the respective robots. Another important
difference between the conditions was the modality of speech: In condition
B, the physical robotic tutor agent (Pepper) provided verbal hints by
speaking them aloud. Conversely, in condition A, the hints were only pre-
sented as text on the computer screen. The robotic peer agent (Cozmo)
communicated solely through text on the computer screen in both
conditions.

After working with the ITS, students completed a post-test ques-
tionnaire on the computer screen, where they self-reported how they per-
ceived the robotic agents’ anthropomorphic characteristics. Each agent was
evaluated separately and sequentially, with students viewing pictures of the
robotic agents presented in a randomized order.

Measures
Anthropomorphism of robotic agents. Students were asked to evaluate
the extent to which they attributed human-like qualities to the robots in
the post-test questionnaire following their interaction with the ITS and
the robotic agents. Students’perceptionswere assessed using theHuman-
Robot Interaction Evaluation Scale (HRIES), a questionnaire assessing
anthropomorphism using a multicomponent approach46. Specifically,
the HRIES incorporates multiple psychological dimensions based on
dehumanization theory and psychosocial theory, offering a more com-
prehensive assessment. It measures the anthropomorphism of a robot
using four dimensions: perceived sociability, animacy, agency, and dis-
turbance. It has repeatedly shown good psychometric reliability and
structural validity46. Each dimension is assessed on a subscale including
four itemswith each itembeing significantly associatedwith its respective
factor (p < 0.001)46. The sociability scale encompasses the items warmth,
trustworthy, likable, and friendly. Animacy involves the items human-
like, alive, natural, and real. Agency includes intelligent, rational, inten-
tional, and conscious. Lastly, disturbance includes the items scary, creepy,
uncanny, and weird46.

On-task enjoyment. Students emotional experience was assessed
through experience sampling (self-report) using an adapted, short

Fig. 2 | Visualization of procedure and experimental setup.The study consisted of
two 2 h sessions. Participants in condition (A) were learning with an ITSwith virtual
robotic agents. In the condition (B), participants were additionally accompanied by

physically present robotic agents. The experimental setup included a robotic peer
agent (Cozmo robot) and a robotic tutor agent (Pepper robot).
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version of the epistemically-related emotion scale69. Students were
prompted about their emotional states every 10 min in the ITS. Besides
selecting the label that best represented their state to fulfill the modalities
of the emotionally-adaptive ITS, students also rated how strongly they
were experiencing certain emotions (“How strongly are you experiencing
enjoyment right now? Please click on the button that best describes the
intensity”) on a 5-point Likert-type scale with possible responses ranging
from “not at all” to “very strongly”. Although a selection of emotions
represented in the epistemically-related emotion scale was assessed using
single items, the present study only examines on-task enjoyment because
it is the only positive activating achievement emotion with activity focus
according to control-value theory66. Therefore, higher on-task enjoyment
also reflects perceiving the task at hand asmore controllable and valuable
and is therefore associated with higher learning outcomes and perfor-
mance. For the analysis, the students’ reported on-task enjoyment was
split into a novelty phase and a working phase (30 min each) to account
for a possible novelty effect51. This division was based on an a priori
analysis, revealing significant changes in mean on-task enjoyment scores
after 30 min of interaction across both conditions (t(52) = 2.18,
p = 0.034). By distinguishing the two phases in our data analysis, we
aimed to account for the changes in emotional experiences due to the
novelty of the setup. The reported on-task enjoyment was averaged
within each phase for the analysis.

Task performance. Students’ task performance was assessed by means
of progress in the ITS “Betty’s Brain”24 and derived from the system’s
log. In “Betty’s Brain”, learners are asked to develop a concept map
representing their understanding of the topic, and their performance is
evaluated based on how accurately their conceptmaps align with a fixed
expert model24. The expert model used in this study has been developed
by the original research group behind “Betty’s Brain” and is described in
detail on page 202 of Kinnebrew and colleagues70. Task performance
represents the percentage of progress the learner has made on this
learning task, with 100% indicating the completion of the task, which
entails creating a fully correct concept map. This includes correctly
identifying causal relationships and representing them through accu-
rate links between constructs. The system continuously assesses task
performance and provides hints based on this measure during the

session. For our analysis, we measured how closely students’ final
concept maps, created at the end of the session, matched the
expert model.

Additional measures. Since the ITS “Betty’s Brain”24 mainly relies on
text and extensive reading, students’ self-reported, most recent German
grade, which can be seen as a proxy for their German language profi-
ciency, was assessed and included in the analysis as a control variable.
For this purpose, students were asked to self-report the German grade
they had received on their last school report (term level). Additionally,
during the first session of the experiment, sociodemographic data,
including age, gender, and the first language learned at home, were
collected through self-report. These sociodemographic variables were
not included, as they were not relevant to answering the research
question of the present study.

Statistical analysis
To test our hypotheses, we specified four separate pathmodels. To reduce
their complexity, we specified one model for each subdimension of the
HRIES. As this study concentrates on physically embodied virtual tutors,
only responses related to the robotic tutor agent (Pepper robot) were
considered. The general structure of all four path models was the same
and is illustrated in Fig. 3. In the models, the physical (non-)presence of
the robotic tutor agent (condition) was regressed on the respective
HRIES construct (sociability, animacy, agency, or disturbance), task
performance, and on-task enjoyment in both the novelty and working
phases (H1). Furthermore, each HRIES construct was regressed on on-
task enjoyment in both the novelty and working phases, as well as task
performance (H2). We controlled for the students’ German language
proficiency in the form of the final German grade received for the last
term, which was regressed on the respective HRIES construct, on-task
enjoyment in the novelty phase, and task performance. For easier
interpretation, the German grade was recoded so that higher values
indicated higher grades.We decided against including gender in our path
models, as it was not of theoretical interest and not expected to be rele-
vant to answer our research questions. However, we subsequently found
that there was a significant correlation between students’ gender and
their task performance. To investigate this unexpected relation further,

Fig. 3 |General pathmodel structure of all fourmodels.HRIES = human-Robot Interaction Evaluation Scale.Onemodel was conducted for each of the four subscales of the
HRIES (sociability, animacy, agency, and disturbance).
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we included gender as a covariate in a previous version of the path
models. Results of these specified path models indicated a relation
between gender and task performance but did not show relations
between gender and the independent variables, nor the dependent
variables other than task performance. Therefore, gender could be
considered irrelevant for answering our specific research questions.
Therefore, gender was not considered in subsequent steps of this study.
Analyses were conducted in Mplus 8.1071 using a maximum likelihood
estimator (MLR) for model estimation. Missing data, which accounted
for 2.2% of data across all included variables, were handled using full-
information maximum likelihood estimator (FIML). Little’s missing-
completely-at-random (MCAR) test indicated no systematic patterns of
missing values (χ² = 24.09, df = 45, p = 0.995).

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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