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ABSTRACT Enhancing student engagement and comprehension is crucial for effective learning. However,
tracking and improving these dynamic states in real-time remains a significant challenge. This study
addresses this gap by integrating real-time engagement prediction from gaze data with an adaptive learning
system that utilizes ChatGPT-generated summaries to enhance student engagement and learning outcomes.
Our experiment with twenty two (N=22) university students demonstrates the effectiveness of gaze data
in predicting real-time engagement levels and the impact of adaptive interventions on student engagement,
objective and subjective comprehension, and cognitive load. To predict the self-reported engagement and
comprehension levels, two deep neural network models, InceptionTime and Transformers were employed.
The Transformers model achieved better outcomes, with an average accuracy of 68.15% in predicting
engagement levels across a 5-fold StratifiedGroupKFold cross-validation. The results revealed that the
experimental group, which received the AI-driven interventions, exhibited significantly better learning
outcomes, higher engagement, and better objective comprehension results compared to the control group.
Additionally, we observed strong correlations between gaze metrics, engagement levels, and learning
outcomes, suggesting that real-time adaptive interventions can dynamically enhance the educational
experience. This study advances the field of educational technology by demonstrating the benefits of
integrating gaze tracking and AI in learning environments, laying the foundation for dynamic learning
interfaces that adapt to individual engagement levels, potentially improving both comprehension and
involvement.

INDEX TERMS Adaptive learning, E-learning, ChatGPT API, eye-tracking, real-time engagement,
personalized interventions, comprehension enhancement.

I. INTRODUCTION
In the rapidly evolving domain of educational technol-
ogy, the objective of enhancing student engagement and
learning outcomes remains a fundamental priority [1], [2],
[3]. Engagement and comprehension are critical elements
in education, directly influencing a student’s ability to
absorb, retain, and apply knowledge effectively [4], [5].
The widespread adoption of online learning platforms has
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transformed the way students interact with educational
content, but it also presents several challenges, including the
lack of personalization, limited engagement, and inadequate
feedback [6], [7], [8]. To address these challenges, there is a
growing need for adaptive learning systems that can leverage
real-time data to provide personalized feedback and support.

Recent advancements in real-time data analytics and artifi-
cial intelligence offer promising solutions to these challenges,
with the potential to create more responsive and adaptive
learning environments [9], [10], [11]. For instance, frame-
works such as INSIGHT have demonstrated the effectiveness
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FIGURE 1. Architecture of the gaze-driven adaptive learning system, illustrating its key components.

of online reinforcement learning in training data-driven
pedagogical policies that optimize student learning in
narrative-centered learning environments [12]. Adaptive
e-learning refers to a personalized learning approach where
educational content is tailored to align with students’ indi-
vidual learning styles and preferences [13], [14], [15], [16].
Similarly, Wu et al. [17] proposed an intelligent tutorial-
generating system, Self-GT, which incorporates cognitive
computing and generative learning to generate personalized
tutorials tailored to individual learners’ learning preferences.
This approach has shown effectiveness in generating per-
sonalized tutorials and has been successfully applied to an
online self-aid learning system. However, current adaptive
learning systems often rely on static models of learner
behavior, which can fail to capture the dynamic and complex
nature of human learning [18]. Additionally, these systems
typically require extensive manual annotation and labeling
of learning materials, which can be time-consuming and
labor-intensive. Furthermore, current systems often lack the
ability to provide real-time feedback and support, which can
hinder their effectiveness in promoting learner engagement
and motivation [19], [20]. Engagement, however, is a
complex construct influenced by various factors, including
the learner’s emotional and cognitive states. The ability
to accurately and promptly monitor these states provides
invaluable insights into the learning process, allowing for
timely interventions that can re-engage and refocus learners.

Despite these advancements, implementing effective
real-time engagement monitoring and intervention systems
presents several critical challenges [21], [22]. The integration
of real-time analytics into existing educational frameworks
requires careful consideration of privacy implications, ethical
concerns, and the need for robust technological infrastructure.
Traditional methods often struggle with capturing and
responding to the immediate emotional and cognitive states of

learners, particularly during critical moments of disengage-
ment [23], [24]. While studies like Alshammari et al. [25]
have demonstrated that adapting e-learning materials based
on learning styles and knowledge levels can enhance
outcomes, the challenge lies in developing systems that can
provide truly personalized, real-time interventions. Current
adaptive systems, despite their sophistication, still face
limitations in accurately measuring and responding to the
dynamic nature of student engagement. As such, while the
potential for AI and data analytics in adaptive e-learning
is significant, addressing these fundamental challenges
in real-time engagement monitoring and intervention is
essential for realizing their full impact on enhancing learner
engagement and success.

To address these fundamental challenges in real-time
engagement monitoring and intervention, our research intro-
duces a novel gaze-driven adaptive learning system. While
previous attempts at engagement detection have relied on
delayed or indirect measures, our approach utilizes real-time
gaze tracking, a non-invasive and continuous method of
monitoring student engagement levels. The importance of
this research lies in its potential to overcome several critical
limitations of current adaptive learning systems: the lack
of real-time intervention capabilities, the inability to detect
subtle changes in engagement, and the challenge of providing
personalized, contextually relevant support.

The system we propose is designed to provide tailored
interventions through ChatGPT-generated summaries based
on real-time learner engagement levels, ultimately aiming
to optimize learning outcomes for students by delivering
relevant and timely information. The motivation for this
work stems from our previous research, where we evalu-
ated and compared various methods for detecting engage-
ment/interest [26], [27] and developed user applications to
visually represent changes in users’ affective responses [28],
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[29]. In that earlier study, we identified real-time prediction as
an area for future exploration, and this current research seeks
to address that gap.

The significance of our gaze-driven adaptive learning
system lies in its ability to integrate real-time data, allowing
it to respond dynamically to the unique needs of each learner.
By continuously analyzing gaze patterns, the system can
detect moments when a learner may be disengaging from
the material. In such instances, it can intervene promptly
with concise, contextually relevant information designed to
re-engage the learner and enhance their understanding of
the subject matter. This research addresses two fundamental
questions:

• RQ1: How effectively can real-time gaze data be used
to predict and monitor student engagement levels in
adaptive learning environments?

• RQ2: To what extent do AI-generated adaptive inter-
ventions, triggered by real-time engagement predictions,
improve student learning outcomes and comprehension?

Figure 1 depicts the system’s architecture, highlighting its
key components. The system includes a user interface that
visualizes eye movements and sends the fixation coordinates
and pupil diameter to the engagement predictor for detecting
the engagement levels on timely intervals. The predicted
engagement level is then displayed on a dashboard within
the user interface. The summary generator utilizes a Large
Language Model (LLM), specifically a ChatGPT-based API,
which processes the paragraph send from the user-interface
as a prompt and displays the summary on the user interface
only when the engagement level is low.

Building on these research questions, our study makes
significant contributions to the field of adaptive learning
through systematic evaluation of our proposed system. Our
controlled experimental study shows that participants in the
experimental group who received these adaptive interven-
tions achieved better learning outcomes compared to those in
the control group. Our findings reveal that the system not only
enhances learners’ objective comprehension through tailored
interventions but also maintains sustained engagement with
reduced visual strain. These results underscore the potential
of real-time adaptive interventions to dynamically enhance
the educational experience, setting the stage for future
improvements in adaptive e-learning technologies.

The contributions of this research are as follows:

• Development of a novel and innovative adaptive learning
system that integrates real-time gaze based engagement
prediction and AI-generated text summaries.

• A thorough and comparative validation of the system’s
effectiveness in improving student engagement and
comprehension from gaze and survey metrics.

• Insights into the relationship between cognitive process-
ing, visual effort, and adaptive learning interventions.

The structure of this paper is as follows: Section II reviews
the related work in the fields of gaze tracking, adaptive
learning systems, and AI-generated content. Section III

details the methodology, including the design of the adaptive
learning system, the experimental setup, and the data
collection process. Section IV presents the results of the
experiment, analyzing the effectiveness of real-time gaze
data in predicting engagement, the impact of adaptive
interventions on student outcomes, and the system’s effect
on cognitive load and visual effort. Section V discusses
the implications of the findings, potential applications, and
limitations of the study. Finally, Section VI concludes the
paper and suggests directions for future research.

II. BACKGROUND AND RELATED WORK
Recent years witnessed a significant advancement in the field
of e-learning mainly aimed at enhancing student engagement
and improving the learning outcomes. As the learning envi-
ronments become increasingly complex, understanding the
factors that influence student engagement and comprehension
has become important. Traditional learning systems often
struggle to adapt to the dynamic needs of learners, leading
to gaps in engagement and comprehension. This section
provides a comprehensive overview of the existing literature
related to engagement and comprehension in learning envi-
ronments, gaze tracking for engagement detection, adaptive
learning systems, and the role of artificial intelligence in
education. By examining these areas, we aim to highlight the
current gaps in research and practice, ultimately establishing
the foundation for our proposed system. This system seeks
to bridge these gaps by integrating real-time gaze based
engagement prediction and AI-generated summaries to create
a more responsive and personalized learning experience.

A. ENGAGEMENT AND COMPREHENSION IN DIGITAL
LEARNING
Engagement detection in digital learning focuses on estab-
lishing a learning environment that is adaptive, responsive,
and centered around the student [30], [31]. Understand-
ing this concept can be beneficial across multiple fields,
particularly in education, where customized strategies can
be designed to improve reading comprehension and enjoy-
ment [32], [33]. Recent advancements in digital learning
technologies have revolutionized how engagement and
comprehension are monitored and enhanced. Abedi and
Khan [34] advanced the state-of-the-art in engagement
detection by developing a hybrid ResNet-TCN architecture
that effectively captures both spatial and temporal aspects
of student engagement in online learning environments,
demonstrating superior performance compared to existing
methods. While significant progress has been made in online
learning environments, similar advances are being pursued in
physical classrooms. For instance, EduSense [35] represents a
breakthrough in classroom analytics, offering a comprehen-
sive sensing system that captures visual and audio features
correlated with effective instruction, demonstrating the
potential for automated, continuous feedback mechanisms
in traditional learning environments. Understanding these
developments across both online and physical learning spaces
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is crucial for developing effective learning interventions and
improving educational outcomes [36].

Recent research has revealed several key aspects of
engagement detection and measurement in digital learning
environments. Benabbes et al. [37] found a novel approach
that can effectively predict learner engagement in online
courses, revealing that most learners are observers and high-
lighting a nonlinear correlation between learner engagement
and success. Ishimaru et al. [38] found that the variations
in pupil diameter and nose temperature have high correla-
tion with the cognitive states of students, like interest in
learning materials in Physics. Wang [39] identified critical
patterns of attention decline during the learning process
and emphasized the importance of implementing effective
feedback mechanisms. The effectiveness of different digital
learning tools has been extensively studied. Bikowski and
Casal [40] investigated how non-native English speaking stu-
dents engage with interactive digital textbooks, while Hashim
and Vongkulluksn [41] examined the impact of e-readers
on reading comprehension, revealing that while these tools
aid self-regulation, they may inadvertently affect reading
enjoyment. Recent technological advances have introduced
new possibilities, with Hew et al. [42] demonstrating the
potential of chatbots in enhancing student goal setting
and social presence in online learning environments. The
relationship between engagement and performance has also
been established, with Krasodomska and Godawska [43]
finding significant correlations between student engagement
in blended learning environments and academic performance,
while noting demographic variations in these relationships.

Despite these advancements, several challenges remain in
the field. Current research emphasizes the need for more
effectivemethods of analyzing real-time data, balancing tech-
nology integration with human interaction, and addressing
privacy and ethical considerations in data collection [44],
[45]. Additionally, the requirement for robust technological
infrastructure and the need to ensure inclusive access to
digital learning resources continue to be significant concerns
in the field.

B. GAZE BASED ENGAGEMENT DETECTION
Gaze-based engagement detection has become a power-
ful tool for assessing attention and involvement during
learning interactions, providing valuable insights into user
engagement levels [46], [47], [48]. The analysis of gaze
patterns enables the identification of moments of high
engagement or distraction, facilitating more responsive and
adaptive user experiences [49], [50], [51]. The evolution
of gaze-based engagement detection has seen significant
advancement in recent years. Early work by Bidwell and
Fuchs [52] established the foundation by creating an auto-
mated gaze system to classify student engagement through
video data analysis and expert validation. Building on this,
Carolis et al. [53] demonstrated how student engagement
could be automatically measured through behavioral cues,

particularly gaze behavior, emphasizing these measures’
importance in the learning process.

Recent technological advances have led to more sophis-
ticated approaches in gaze-based engagement detection.
Chen et al. [54] developed a state-of-the-art multi-modal
deep neural network that predicts student engagement by
analyzing both gaze direction and facial expressions in
collaborative learning settings, revealing that students with
higher gaze ratios and positive expressions demonstrated bet-
ter test performance. Similarly, Sharma et al. [55] introduced
an innovative concentration index based on eye gaze and
emotion weights, providing a more comprehensive approach
to detecting student engagement during learning activities.
The latest developments in the field have focused on address-
ing real-world implementation challenges. Mathew et al. [56]
made significant contributions by introducing GESCAM,
a novel dataset and network capable of identifying gaze
fixations within complex classroom scenes, offering insights
into human attention across diverse educational contexts.
These advances build upon earlier work, such as Jacob et al.
[26], who demonstrated the effectiveness of eye-tracking
metrics in detecting user interest during reading tasks
and proposed methods for real-time interest prediction.
Current research emphasizes the need for more robust
methods that can handle varying environmental conditions,
different learning contexts, and diverse student populations.
Additionally, the integration of real-time gaze tracking with
adaptive learning systems, while promising, requires further
investigation to establish practical and scalable solutions
that can enhance the learning experience while maintaining
accuracy and reliability.

C. ADAPTIVE LEARNING SYSTEMS
Adaptive learning has evolved significantly, moving from
simple personalized content delivery to sophisticated
AI-driven systems that dynamically adjust to learner
needs [57], [58]. Modern adaptive learning systems use
advanced algorithms and artificial intelligence to modify
content, delivery, and pace of instruction based on real-time
learner performance and engagement [59], [60], [61], [62].

Recent developments have significantly enhanced adaptive
learning capabilities. Hussain et al. [63] demonstrated state-
of-the-art performance with their novel multi-layer topic
modeling approach, which integrates the Felder-Silverman
learning style model with fuzzy logic and sentiment analysis
to accurately detect and adapt to different learning styles.
Sayed et al. [64] introduced APPEAL, an advanced platform
that combines cognitive, behavioral, and affective learner
modeling with AI to provide comprehensive personalized
learning experiences, showing significant improvements in
learning effectiveness and student satisfaction. The integra-
tion of emotional and physiological data has emerged as a
crucial advancement in adaptive learning systems. Wei et al.
[65] initiated the use of eye-tracking technology to sense
learners’ interest and emotional states, while Tyng et al. [66]
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provided neuroimaging evidence for the critical role of
emotions in learning and memory. Sargazi et al. [67] devel-
oped an AI-based decision framework that identifies and
implements micro-brake activities based on learners’ emo-
tional states, demonstrating improved learning performance
through emotional regulation.

The latest developments in adaptive learning systems focus
on deep learning and neural network integration. Omar et al.
[68] shows how neural networks can enhance learning
management systems by creating personalized learning paths
and enabling real-time content adaptation based on learner
behavior. A comprehensive review by Essa et al. [69]
highlights the growing trend toward using machine learning
for intelligent, adaptive e-learning environments, while also
identifying the need for more comparative studies of deep
learning methods.

D. LARGE LANGUAGE MODELS (LLM) FOR DIGITAL
LEARNING
Digital learning is being revolutionized by Large Language
Models (LLMs), which are able to generate human-like text
and provide personalized educational experiences [70]. These
models show advanced capabilities in creating customized
learning materials, answering student queries, and offering
real-time explanations [71], [72], [73].
Recent advances in LLM applications for education

have shown promising results across various domains.
In programming education, Gabbay et al. [74] demonstrated
GPT-4’s superior performance in generating code assignment
feedback compared to traditional Automated Test-based
Feedback tools. Azaiz et al. [75] found that GPT-4 Turbo
providesmore structured and consistent feedback in program-
ming courses, though noting some limitations in consistency.
The impact of LLMs on writing and language learning has
been particularly significant. Meyer et al. [76] conducted a
large-scale study with 459 upper secondary students, reveal-
ing that GPT-3.5-turbo-generated feedback significantly
enhanced essay revision performance and student motivation.
In the domain of language learning, Xu et al. [77] advanced
the field by developing mHyER, a novel method utilizing
LLMs for zero-shot exercise retrieval, demonstrating superior
performance in personalizing language learning exercises.

However, the integration of LLMs in education presents
both opportunities and challenges. Arora et al. [78] identified
concerning trends of student over-reliance on LLMs in
advanced coursework, emphasizing the need for updated
curricula that incorporate effective prompting strategies.
To address accuracy concerns, Abu et al. [79] developed
an innovative approach using knowledge graphs to enhance
LLM prompts, significantly improving the precision and
reliability of generated educational content.

Even with these advances in LLM applications for
education, several significant challenges exist in their
effective implementation. A primary concern is ensuring
the accuracy and reliability of AI-generated educational

content, particularly as studies have shown limitations in
content validity and consistency [80]. The integration of
LLMs in education requires careful consideration of ethical
implications, including privacy concerns, fairness in access,
and potential impacts on critical thinking skills [81]. There is
a growing need to strike a balance between utilizing LLM
capabilities and preventing student over-reliance on these
tools, while simultaneously developing effective strategies
for integrating these technologies into existing educational
frameworks. Educational institutions also face the challenge
of maintaining high-quality learning experiences while utliz-
ing automated systems, with particular emphasis on ensuring
transparency and oversight in AI-generated content [82]. The
widespread adoption of LLMs in education raises important
considerations about equity and accessibility, as research
indicates that not all students have equal access to or benefit
equally from these technologies [83].

III. METHODOLOGY
This study employed a mixed-methods approach to design,
develop, and evaluate a gaze-driven adaptive learning system
with LLM generated summaries. The system was designed
to provide personalized learning experiences for learners by
adapting to their individual affective state. To achieve this,
we integrated eye tracking technology with a ChatGPT-based
summary generation system, which enabled the system
to provide real-time interventions and support to learners.
We utilized a Tobii 4C remote eye-tracker with pro license,
to capture the gaze coordinates and pupil diameters at a
robust sampling rate of 90 Hz. In this section, we describe
the methodology used to design and develop the system,
including the system architecture, engagement prediction
model, and ChatGPT API integration.

A. SYSTEM ARCHITECTURE
The adaptive learning system comprises of four main com-
ponents: a gaze tracking module, an engagement prediction
model, a ChatGPT API integration, and a user interface. The
system flow is as follows:

1) GAZE TRACKING MODULE
The module collects gaze tracking data from learners as
they interact with the system. This data includes the x and
y coordinates of the learner’s gaze point, as well as other
metadata such as timestamp and pupil diameter. The raw gaze
data is processed to extract fixation data, which consists of
the points where the learner’s gaze has stabilized for a certain
period, along with the corresponding pupil diameter values
at each fixation point. This processing involves filtering out
noise and artifacts from the raw data, and identifying the
fixation points based on the learner’s gaze behavior. The
fixation data, which includes both gaze coordinates and pupil
diameter values, is stored in an array, which is updated
in real-time as the learner interacts with the system. Our
system uses both gaze data and fixation data, but for different
purposes. The gaze data represents the raw, unprocessed data
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FIGURE 2. The system interface with real-time engagement prediction dashboard and ChatGPT based summary generation feature. The figure on the left
depicts the system with high detected engagement and the figure on the right depicts system with low detected engagement for a learning material.

collected from the eye tracker, which includes the x and
y coordinates of the learner’s gaze point and the fixation
data on the other hand, represents the processed data that
indicates where the learner’s gaze has stabilized for a certain
period, and includes both gaze coordinates and pupil diameter
values. The raw gaze data is used to create a real-time visual
representation of the user’s gaze, while the fixation data
is used to predict engagement levels, as it provides more
insight into learner behavior and attention. The fixation data
is transmitted at 5-second intervals, allowing the system to
make timely predictions about the user’s engagement level
and respond accordingly.

2) ENGAGEMENT PREDICTION MODEL
The engagement prediction model is a deep learning
algorithm that has been pre-trained on data from our
previous research [27], [29], which focused on interest and
engagement detection using various evaluation metrics. This
model takes a combination of fixation data and pupil diameter
information from the gaze tracking module and outputs a
predicted engagement score. Themodel is trained on a dataset
of labeled examples, where each example consists of a set of
fixation points, pupil diameter values, and a corresponding
engagement level. When a new set of fixation data and
pupil diameter values is received, the model processes the
data by normalizing the data, and making a prediction using
the trained deep learning model. The engagement score
is predicted as binary values with ’0’ representing low
engagement and ’1’ representing high engagement. The final
engagement score is then sent back to the user interface as
a response, where the engagement level is displayed as an
interactive dashboard to the learner.

3) CHATGPT BASED SUMMARY GENERATION
To generate the LLM-based summary of the learning
material, we utilized a ChatGPT-based API, which is
integrated into our system. In our summarization process,

we employed the gpt-3.5-turbo model from OpenAI, known
for its ability to generate high-quality text outputs efficiently.
This model is particularly well-suited for tasks that require
natural language understanding and generation, making it
an ideal choice for summarizing educational content. Based
on the learner reading behavior, when a request is made to
summarize a paragraph, the API is called with a prompt
that includes the paragraph text. The prompt used for
summarization is carefully structured to concentrate solely
on the provided content, minimizing the risk of irrelevant
information and enhancing the relevance of the generated
summary. We limited responses to 80 tokens to ensure our
summaries are concise and informative, capturing key points
effectively and not being too long which could distract the
user from original content. The temperature was set to 0.5,
striking a balance between creativity and coherence, which
enables the model to generate engaging and accurate outputs
that remain true to the original content. Upon receiving a
request, the ChatGPT API processes the input paragraph
using the specified prompt, generating a set of summaries
{S1, S2, . . . , Sn}. Each generated summary Si undergoes
a refinement process, which includes removing unwanted
elements, such as URLs, and ensuring that the summary
concludeswith a complete sentence. Finally, themost suitable
summary Sfinal is selected through the function Process(Si)
and returned as a response to the main user interface.

Sfinal = Process(Si) where Si ∈ {S1, S2, . . . , Sn} (1)

where:

• Sfinal is the final selected summary.
• Si is the i-th generated summary.
• {S1, S2, . . . , Sn} is the set of all generated summaries.
• Process(Si) is the function that includes the following
steps:

– Input Processing: The ChatGPT API processes the
input paragraph with the prompt.
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TABLE 1. Post-survey for experiment participants: questions 1-3 were administered to all participants, while Questions 4-6 were specific to the
experimental group.

– Summary Generation: The model generates
multiple summaries based on the input.

– Refinement: The generated summaries are pro-
cessed to remove unwanted parts (e.g., URLs) and
ensure they end with complete sentences.

– Selection: The final summary is selected based on
criteria such as coherence and relevance.

4) USER INTERFACE
The user interface, developed using React.js, provides a
seamless and user-friendly experience. The participants begin
by reading instructions, followed by a list of learning
materials to read. When a participant selects a material, the
system navigates to the corresponding content, where a toggle
button allows them to enable or disable eye-tracking. Once
eye-tracking is enabled, the system sends the participant’s
fixation data and pupil diameter to the engagement predictor
at five second intervals. The predictor then returns a value
indicating the participant’s level of engagement, which is
displayed in real-time on the dashboard integrated into the
interface. The dashboard displays this value as either ‘high’
or ‘low’ and if the engagement level is ‘low’, the system
responds by displaying a summary of the material adjacent
to the paragraph being read. This adaptive intervention is
designed to re-engage learners, helping to improve their
comprehension and overall engagement if they become
distracted or disinterested.

B. GAZE FEATURE METRICS
To gain a better understanding of the gaze behavior and
attention patterns of the participants, a range of features
were extracted from the raw gaze data. These features were
carefully selected to capture the differences of gaze behavior
and provide insights between the experimental and control
groups.

The extracted features included:

• Fixation metrics: mean fixation duration, standard
deviation of fixation duration, fixation count, and mean
pupil diameter. These metrics provide information about
the participant’s ability to focus and maintain attention
on specific areas of the learning material.

• Saccade metrics: mean saccade length, mean saccade
angle, mean saccade velocity, standard deviation of
saccade length, standard deviation of saccade angle,
and standard deviation of saccade velocity. These
metrics capture the participant’s eye movement patterns,
including the speed and direction of their gaze.

• Blinkmetrics: blink count and blink rate. These metrics
provide information about the participant’s level of
fatigue, distraction, or disengagement.

The extraction of these gaze metrics was motivated by the
need to understand the differences in gaze behavior between
the experimental and control groups. By analyzing these
features, we aimed to identify patterns and trends that could
inform the development of more effective adaptive learning
systems.

C. MODEL TRAINING AND EVALUATION
To predict the engagement and comprehension levels reported
by the participants, we employed two deep neural networks:
an InceptionTime network, and Transformer network, follow-
ing the architecture specifications detailed in our previous
work [29]. The selection of these models was based on their
demonstrated effectiveness in processing sequential data and
their ability to capture both local and global patterns in time
series data. These models were trained on raw gaze data,
including x and y coordinates and pupil diameter values,
to learn the complex patterns and relationships between gaze
behavior and the predicted variables.

The InceptionTime network architecture is designed to
capture diverse temporal patterns in time series data using a
multi-branch convolutional approach. It consists of multiple
inception modules, each with four parallel branches: a 1 ×

1 convolutional layer with 64 filters, a 3 × 3 convolutional
layer with 32 filters, and a 5 × 5 convolutional layer
with 64 filters, all followed by batch normalization and
an activation function. The fourth branch includes a max
pooling layer with a pool size of 3, followed by a 1 ×

1 convolutional layer with 32 filters, batch normalization, and
an activation function. These branches are concatenated to
integrate features at different scales, enhancing the model’s
ability to learn complex patterns. The model is constructed
by stacking these inception modules, followed by a global
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average pooling layer to reduce spatial dimensions and a
dropout layer with a rate of 0.3 to prevent overfitting. The
final output layer is a dense layer with a sigmoid activation
function, making it suitable for binary classification tasks.

The Transformer network utilizes a multi-head attention
mechanism to capture complex temporal dependencies.
The model begins with an input layer that processes data
sequences through a multi-head attention layer with two
heads and a key dimension of eight, incorporating dropout for
regularization. The output is normalized and combined with
the original input using a residual connection. A feed-forward
network is followed, consisting of a 1D convolutional layer
with 64 filters and ReLU activation, another convolutional
layer to restore input dimensions, and additional layer
normalization with a residual connection. The data is
then passed through dense layers with dropout to prevent
overfitting, ending in a final dense layer for predictions. This
architecture, using the Adam optimizer and binary cross-
entropy loss, is well-suited for binary classification tasks and
identifying complex patterns in time series data.

To evaluate the performance of our models, we used Strat-
ified Group K-Fold Cross-Validation with K=5, combining
the benefits of stratified cross-validation and GroupKFold.
This approach ensures that each fold maintains the proportion
of classes (low vs. high comprehension/engagement) while
also respecting the group structure (experimental vs. control).
By using Stratified Group K-Fold Cross-Validation, we can
ensure that our model is evaluated on a representative sample
of the data, with both groups and classes balanced in each
fold and want to ensure that our model is generalizable to
both groups.

IV. USER STUDY AND DATA COLLECTION
The user study and data collection was designed and con-
ducted to investigate the effectiveness of the adaptive learning
system in enhancing learners’ comprehension, engagement,
and self-confidence in a learning environment. The primary
objective of the study was to determine whether the adaptive
learning system, which utilizes gaze tracking and ChatGPT-
generated summaries, can improve learners’ understanding
and retention of learning material, increase their engagement
and motivation, and boost their confidence in their ability to
learn.

A. PARTICIPANTS
The study involved recruiting 22 university students, com-
prising 11 male and 11 female participants, with ages ranging
from 22 to 29 years (M = 25, SD = 2.5). The study
was approved by the DFKI Ethics Committee and was
conducted in accordance with the requirements mentioned
by the committee. To ensure that language proficiency
did not influence participants’ comprehension and overall
reading experience, we specifically recruited individuals who
exhibited advanced proficiency in English, as determined
by standardized language assessments and self-reported
language use. All participants joined the experiment after

providing informed consent, and they had the freedom to
withdraw from the study at any point if they chose to do so.

B. EXPERIMENTAL DESIGN
The experiment involved a carefully designed reading task
followed by a quiz and survey, aimed at investigating the
impact of adaptive learning on comprehension, engagement,
and self-confidence. To achieve this, we curated a collection
of ten documents, each selected to elicit distinct levels of
engagement and comprehension.

To capture the participants’ gaze patterns and eye move-
ments as they read the documents, we employed a Tobii 4C
eye tracker with a pro license with a sampling frequency
of 90 Hz, mounted to a display monitor. The study employed
a between-subjects design, where 22 participants were
randomly assigned to either an experimental group (n=11)
or a control group (n=11). The control group did not receive
any real-time engagement prediction or summary generation,
whereas the experimental group received both.

After reading each document, participants were presented
with a quiz comprising four comprehension-based questions
(objective comprehension). The post-survey included self-
reported ratings of their comprehension, engagement, and
self-confidence (in answering the quiz questions) and some
other questions using a 7-point Likert scale which can be
referred from Table 1. The scale ranged from 1 (indicating
the lowest level) to 7 (indicating the highest level), allowing
participants to reflect on their perceived understanding,
interest, and confidence in their responses. By combining
the objective comprehension scores from the quizzes with
the subjective self-reported ratings, we were able to obtain a
more accurate and comprehensive picture of the participants’
comprehension levels. This integrated approach helped to
reduce the potential for biases in self-reported ratings and
provided a more robust understanding of the differences in
comprehension levels between the experimental and control
groups.

V. RESULTS
The results of the study are presented in this section,
which provides an overview of the findings from the gaze
metrics analysis, survey response analysis, and predictive
modeling analysis. The study aimed to investigate the
effectiveness of the adaptive learning system in enhancing
learner engagement, comprehension, and self-confidence.
The results are presented in three subsections, each focusing
on a different aspect of the study.

A. GAZE METRICS ANALYSIS
The gaze metrics analysis is an important factor as it
provides a quantitative measure of the gaze behavior of
the participants belonging to the experimental and control
group. The gaze metrics could provide insights into the
cognitive processes underlying the gaze behavior and identify
potential differences between the experimental and control
groups. A range of features including mean fixation duration,
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FIGURE 3. Correlation matrices of eye-tracking metrics, comprehension, engagement, and confidence for experimental and control groups.

mean saccade length, mean saccade angle, mean saccade
velocity, standard deviation of fixation duration, standard
deviation of saccade length, standard deviation of saccade
angle, standard deviation of saccade velocity, mean pupil
diameter, fixation count, saccade count, blink count, and
blink rate were extracted from the raw gaze data to identify
the variations in the gaze pattern across both groups.

Figure 3 depicts the correlation matrices for the
gaze-metrics to the subjective comprehension, engagement,
and objective comprehension belonging to the control
and experimental groups. In the experimental group, the
gaze metrics show weaker correlations to engagement and
subjective comprehension levels which could suggest that the
intervention is modulating the typical relationship between
eye-movements and cognitive responses. In the control
group, longer fixation duration is associated with better
comprehension and engagement while it is reversed in
the experimental group, possibly due to the intervention
causing more strategic reading patterns. The saccade length
has a positive correlation with objective comprehension in
experimental group while a negative correlation in the control
group. This suggests that participants in experimental group
viewing the generated summary leading to higher saccade
length has a higher objective comprehension compared to the
control group. The experimental group shows weak negative
correlations between saccade length and cognitive outcomes,
while the control group shows high negative correlations with
engagement and subjective comprehension. For the pupil
diameter, the experimental group shows weak correlations
with the cognitive measures while the control group
shows stronger positive correlations with comprehension
and engagement. From the observations, the correlation
matrices reveal that the intervention in the experimental group
appears to be modifying the typical relationships between

the gaze-metrics and cognitive outcomes (comprehension
and engagement)suggesting that the real-time engagement
prediction and summary generation are indeed influencing
reading behavior and cognitive processing.

To gain a deeper understanding of the gaze-metrics for the
different levels of engagement and comprehension, figure 4
provides a comprehensive analysis of gaze-metrics across
varying levels of comprehension and engagement for both
control and experimental groups. In the control group, there
is a noticeable trend where mean fixation duration increases
with higher engagement and comprehension levels while
the saccade length decreases with higher engagement and
comprehension levels suggesting that participants in the
control group maintain consistent focus on the material,
reflecting a traditional reading pattern. On the other hand, the
experimental group, which received real-time engagement
predictions and summary interventions, shows more con-
trolled and stable metrics, such as a flatter fixation duration
and a less steep saccade lengths with higher engagement
and comprehension levels suggesting that the intervention
might be stabilizing these metrics possibly by keeping
participants more focused on relevant parts of the material.
The experimental group shows a notable increase in pupil
diameter for lower comprehension and engagement levels
compared to the control group. The increased pupil diameter
in the experimental group could indicate increased arousal
or a higher cognitive effort in the experimental group,
possibly due to the additional processing of summaries
and the more engaging nature of the adaptive reading
experience. The higher fixation count in the experimental
group especially at higher levels of comprehension and
engagement could suggest that participants are making more
fixations, likely because they are focusing more intensely
on the material, facilitated by the real-time predictions and
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FIGURE 4. Comparison of eye-tracking metrics between control and experimental groups across engagement and comprehension levels (1-7).

FIGURE 5. The transition of fixations between the actual text and
generated summary for a participant in experimental group detected with
low engagement.

summaries. These patterns suggest increased engagement and
focused reading for experimental group, potentially due to the
intervention and the similar trends in both comprehension and
engagement metrics imply the interventionmay enhance both
simultaneously. The intervention appears to help stabilize
some gaze metrics, reduce unnecessary eye movements,
and potentially increase cognitive engagement, which is
reflected in the metrics’ relationship with both engagement
and comprehension suggesting that real-time interventions
might be aiding participants in focusing better and processing
information more effectively.

Figure 5 illustrates the dynamic interaction between the
original text and the generated summaries. The visualization
shows a shift from the main text to the summary, triggered

by the low engagement levels and indicated by a cluster
of fixation points in the summary section. This concentra-
tion of fixations suggests higher attention to the concise,
relevant information provided. The figure also demonstrates
a subsequent transition back to the original content, with
renewed fixation patterns in the main text area. This pattern
implies that the summaries not only captured attention but
also effectively re-engaged participants with the original
material. The intervention appears to have served as a bridge,
helping participants refocus and return to the main content
with potentially enhanced understanding and engagement.
Our findings suggest that the summaries served two purposes:
they offered quick, relevant information and also encouraged
readers to dive back into the detailed content with renewed
interest. This approach seems to create a more dynamic and
engaging reading experience.

B. SURVEY RESPONSE ANALYSIS
The post-survey mainly aimed at collecting the responses
from the learners about their comprehension, engagement and
self-confidence levels for both the experimental and control
group. The experimental group had additional three questions
to get their impressions on the real-time engagement tracking
system and the summary response helpfulness.

Figure 6 illustrates the distribution of comprehension,
engagement and confidence responses by the two groups
(control vs. experimental). It can be inferred from the
plot that experimental group with the adaptive learning
system had a higher engagement and confidence levels
compared to the control group with some improvement in
subjective comprehension. To determine the significance of
these differences, we conducted t-tests for each of the three
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FIGURE 6. The distribution of subjective comprehension, engagement, and confidence levels by group (control vs. experimental).

FIGURE 7. Mean and standard deviation of comprehension, confidence,
and engagement by group.

subjective variables. The results showed that the experimental
group had significantly higher engagement (t-statistic= 3.12,
p-value = 0.0021) and confidence (t-statistic = 8.22, p-value
< 0.0001) levels compared to the control group. Additionally,
the experimental group showed a significant improvement
in comprehension (t-statistic = 3.17, p-value = 0.0018)
compared to the control group. Figure 7 provide insights into
the mean differences across the subjective ratings of the three
metrics between the control and experimental groups. The
experimental group’s access to the adaptive system likely
contributed to higher engagement and confidence levels,
with some improvement in comprehension. The variability in
responses suggests that while the tools were beneficial, their
effectiveness varied among individuals.

To test our main hypothesis that the adaptive learning
system improves objective comprehension and to minimize
potential bias from the subjective comprehension ratings,
an objective comprehension quiz was administered for each
document, consisting of four topic-specific questions. The
results of the objective questionnaire revealed promising
differences in performance between the control and experi-
mental groups, largely supporting our hypothesis. Figure 8a
depicts the count of total correct answers for the two

groups and figure 8b shows the overall distribution of
correct answers between the groups. The experimental group
had a higher proportion of participants achieving perfect
scores (4/4), indicating that the adaptive interventions were
effective in enhancing comprehension for a significant
portion of the group. While the experimental group showed
overall improvement, we observed that some participants
in this group still scored lower (1/4 or 2/4). This variation
suggests that the effectiveness of the adaptive interventions,
particularly the generated summaries, may not have been
uniform across all participants. Several factors could have
contributed to this varied effectiveness like individual
learning styles, prior knowledge of the topic, or varying
levels of engagement with the adaptive features which could
influence how participants benefited from the summaries.
Despite these variations, the higher proportion of perfect
scores in the experimental group supports our hypothesis that
the adaptive learning system generally improves objective
comprehension. These findings not only validate the potential
of our approach but also highlight areas for future refinement.

C. PREDICTIVE MODELING ANALYSIS
The engagement and comprehension ratings reported by the
participants were predicted using two deep neural networks:
an InceptionTime model and a Transformer network. The
raw gaze data were used to train the models for predicting
the engagement and comprehension responses from the
participants. It was formulated as a binary classification task,
where ratings (1)-4) were treated as ‘low’ and ratings (5-7) as
‘high’. To evaluate model performance, we employed a 5-fold
StratifiedGroupKFold cross-validation strategy, ensuring that
each fold contained a balanced representation of both
experimental and control groups, as well as high and low
engagement/comprehension ratings.

Based on the evaluation metrics presented in Table 2,
a comparative analysis reveals that the Transformers model
consistently outperformed the InceptionTime model. For
engagement prediction, the Transformers model achieved an
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FIGURE 8. Distribution of total correct answers (out of 4 questions) for objective comprehension across control and experimental groups.

accuracy of 68.15% and an F1-score of 65.82, compared to
InceptionTime’s accuracy of 62.71% and F1-score of 60.45.
Similarly, in comprehension prediction, the Transformers
model demonstrated superior performance with an accuracy
of 69.60% and an F1-score of 64.32, while the InceptionTime
model recorded an accuracy of 60.32% and an F1-score of
59.18.

TABLE 2. Summary of evaluation metrics for engagement and
comprehension.

To provide a more detailed view of model performance
across the 5-fold cross-validation, Figure 9 illustrates the
engagement accuracy of both models for each fold. The
Transformers network consistently outperformed the Incep-
tionTime model across all folds. The InceptionTime model’s
accuracy ranged from 61.5% to 64.1%, with an average of
62.71%. In contrast, the Transformers model demonstrated
higher and more stable performance, with accuracies ranging
from 66.9% to 69.3%, averaging 68.15%. The superior
performance of the Transformers model can be attributed to
its ability to capture long-range dependencies in sequential
data, which is particularly beneficial for analyzing gaze
patterns over time.

VI. DISCUSSION
In this section, we delve into the key contributions, out-
comes,and insights that have been achieved through this
study. This includes both the theoretical implications of the
research and the practical applications that might result from
it. This section considers the the novel real-time adaptive
system and it’s implications to the learning outcomes and the
relevance of the research question to ongoing discussions in

FIGURE 9. Model accuracy comparison across 5-fold cross-validation.

the field. This section also provides insights into the study by
critically examining its challenges and limitations.

A. GAZE BASED REAL-TIME ENGAGEMENT PREDICTION
The user interface of the system is designed to capture
the real-time gaze data recorded from the participants and
to display the predicted engagement levels in real-time.
An interactive dashboard was designed and displayed on
the user interface to visually depict the engagement levels
to the user based on the predicted engagement values. The
raw gaze data was pre-processed and extracted fixation data
along with the pupil diameter was send to the pre-trained
engagement prediction model for detecting the engagement
levels of the user with an interval of 5 seconds. To assess
the frequency with which the summary was displayed on
the interface, the count of summaries was recorded after
participants in the experimental group read each document.
This approach aimed to establish a direct correlation between
the summary counts and the engagement ratings provided
by the users, as well as to evaluate how the post-survey
responses corresponded with the generated summary counts.
In addition, participants in the experimental groupwere asked
to rate the gaze behavior predicted by the system in the
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FIGURE 10. Distribution of ratings provided by the participant reflecting
the effectiveness of the system in predicting the gaze behavior for
engagement prediction.

FIGURE 11. The average summary count corresponding to different levels
of engagement as rated by the participants.

post-survey, which served as an indicator of their interest or
engagement with the document.

Figure 10 illustrates the distribution of ratings provided
by the participants, reflecting the effectiveness of the system
in predicting the gaze behavior for real-time engagement
prediction, on a scale from 1 to 7, where ‘1’ indicates
‘strongly disagree’ and ‘7’ indicates ‘strongly agree.’ A
significant portion of participants, approximately 37% (rat-
ing: ‘6 - agree’), felt that the system effectively captured
gaze behavior and provided accurate real-time engagement
predictions. In addition, 19% rated the system as ‘strongly
agree,’ while 20% indicated ‘slightly agree.’ Conversely, only
2% and 3% of participants rated the system as ‘strongly
disagree’ and ‘disagree,’ respectively. These results suggest
that the majority of participants recognized the system’s
effectiveness in predicting real-time engagement levels.

The summary count from each document, from the
participants belonging to experimental group were tracked
to correlate with the subjective responses of the engagement
levels and it could be observed from the Figure 11 that
the highest average summary count is observed at the

lowest engagement level (1), indicating that participants
who reported low engagement accessed summaries more
frequently which aligns with the system’s design to display
summaries as a support mechanism during disengagement.
This suggests that the system effectively provides summaries
as a support mechanism when engagement is low. As engage-
ment levels increase from 1 to 7, the average summary count
decreases implying that participants who are more engaged
(higher ratings) tend to rely less on summaries, possibly
because they are better able to comprehend the material
without additional support. At the highest engagement levels
(6 and 7), the average summary count is significantly
lower, suggesting that participants are confident in their
understanding and do not require summaries. The plot
illustrates a clear inverse relationship between engagement
levels and the frequency of summary access, showing the
adaptive nature of the system in providing support based
on real-time engagement metrics. This finding highlights the
importance of monitoring engagement to tailor educational
interventions effectively to enhance learning outcomes.

Our system achieved 68.15% accuracy and a 65.82%
F1-score for engagement prediction using gaze data,
which is competitive with recent approaches in the field.
Chen et al. [54] integrated gaze directions and facial expres-
sions in a multi-modal deep neural network (MDNN) for
predicting student engagement, achieving high accuracy in
collaborative learning settings. Similarly, Sharma et al. [55]
devised a method combining eye and head movements with
facial emotional cues, creating an engagement index that
effectively categorized students into different engagement
levels. While Gupta et al. [84] achieved higher accuracies
using deep learning architectures like ResNet-50 for facial
emotion analysis, thesemethods often require complex setups
and are limited by strict front-facing requirements. Our
system addresses these limitations by relying solely on
gaze data, achieving 68.15% accuracy while maintaining
effectiveness regardless of head position or orientation, which
is particularly valuable in natural learning environments.

Our approach follows a comprehensive validation along
with real-time feedback mechanism. Unlike previous studies
that primarily focused on model accuracy metrics, our
system implements a dual validation approach combining
technical validation through model performance with user-
centric validation, where 76% of participants agreed with
the system’s predictions. Our system uses real-time visual-
ization via an interactive dashboard, providing continuous
engagement monitoring at 5-second intervals, compared to
longer intervals or post-hoc analysis in previous studies.
This real-time feedback mechanism, combined with the dual
validation approach and automated interventions, creates a
feedback loop where learners can verify and benefit from the
system’s predictions immediately. The high user agreement
rate with our system’s predictions, despite slightly lower
technical accuracy compared to multimodal approaches,
suggests that real-time feedback and immediate interventions
may be more valuable in practical learning scenarios than
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marginally higher prediction accuracies achieved through
more complex, multi-modal systems.

B. IMPACT OF THE SYSTEM IN LEARNING OUTCOMES
The system is designed to display summaries only when
real-time engagement levels are detected as low, effectively
providing targeted support to learners. The aim of the system
is to reengage the participants in case of disengagement
detected and to provide tailored summaries as interventions to
improve the engagement or attention and also the comprehen-
sion levels. While previous research on adaptive e-learning
environments [9] showed significant improvements in student
engagement through learning style-based personalization,
our system takes a different approach by implementing real-
time, engagement-based interventions through automated
summary generation. The summaries were generated using
a ChatGPT based API which takes the text as prompt and
provide the summary of that particular text.

The survey responses aimed to collect feedback from
learners regarding their comprehension, engagement, and
self-confidence levels for both the experimental and control
groups. The experimental group, which utilized the adaptive
learning system, reported higher levels of engagement and
confidence compared to the control group, along with
some improvement in subjective comprehension. Statistical
analysis through t-tests confirmed these findings, indicating
significantly higher engagement (t-statistic= 3.12, p-value=

0.0021) and confidence (t-statistic = 8.22, p-value < 0.0001)
levels in the experimental group, as well as a notable
improvement in comprehension (t-statistic = 3.17, p-value =

0.0018). These findings align with Liu et al. [85], who found
significant positive correlations between learning achieve-
ment and engagement, as well as between engagement and
learning attitude. Their study demonstrated that adaptive
feedback systems not only improved engagement but also
showed that students with greater positive engagement
demonstrated enhanced self-directed learning capabilities
in distance learning activities. However, the variability in
responses suggests that while the adaptive system was
beneficial for many participants, its effectiveness was not
uniform across all learner. Some learners found the sum-
maries particularly helpful, while others did not perceive
the same level of benefit. The objective comprehension
quiz results revealed that although the experimental group
had a higher number of participants achieving perfect
scores (4/4), there were also participants who scored lower
(1/4). This variability aligns with previous findings [85]
suggesting that effective learning outcomes are achieved
when students maintain positive engagement and attitudes
throughout the learning process, supporting our observation
that the summary generation system’s effectiveness varied
based on individual engagement levels. This indicates that
the summary generation may not have been equally effective
for all individuals, suggesting a need for further refinement
of the system to enhance its overall impact on learning

outcomes. The mixed results highlight the importance of
tailoring educational interventions to meet diverse learner
needs, ensuring that all students can benefit from adaptive
learning technologies.

The gaze metrics analysis was performed to get the
quantitative assessment of learners gaze behavior in both
the experimental and control groups. The participants in the
experimental group often relied on summaries provided as
interventions when their engagement levels were low, which
indicates that the summaries served to redirect their attention.
The pupil diameter and fixation durations in the experi-
mental group were notably higher at lower engagement and
comprehension levels compared to the control group. This
increase suggests that participants in the experimental group
experienced enhanced cognitive processing when interacting
with the generated summaries. The larger pupil diameter is
often associated with heightened cognitive load and arousal,
indicating that participants were actively engaging with the
material to improve their understanding. When engagement
levels are low, the introduction of summaries appears to allow
participants to focus more on the content, allowing them
to extract relevant information effectively. The increased
fixation duration reflects a higher engagement with the
summaries, as participants invest more time processing the
information to improve their comprehension. This cognitive
effort, driven by the summaries, serves as a valuable
intervention that helps re-engage learners and supports their
understanding of the material.

Figure 12 depicts the variation in mean pupil diameter
across a learning material for participant belonging to
control (P02) and experimental group (P18). In comparing
the data for participants P18 and P02, there are notable
differences that highlights the potential advantages of the
interventions provided to participant P18. Participant P18
consistently exhibits a higher mean pupil diameter compared
to P02, suggesting greater cognitive load or sustained
attention during tasks which could be due to the interventions
provided. This physiological indicator aligns with P18’s
better performance in both objective comprehension and
engagement ratings. The participant P18 achieved higher
objective comprehension scores, mostly 4s, and maintains
high engagement levels, with scores of 6 or 7 across all
documents. In contrast, participant P02 shows a lower
mean pupil diameter across all the documents compared to
P18. Participant P02’s objective comprehension scores vary
significantly, with several scores as low as ‘1’ or ‘2’, and
engagement levels fluctuate, indicating inconsistent involve-
ment. These differences highlight the potential benefits of
the interventions received by P18, which may contribute to
enhanced focus, understanding, and engagement.

Although the differences in gaze metrics between the
experimental and control groups were not statistically
significant, the observed trends still provide valuable insights
into participant behavior. The gazemetrics, including fixation
duration and pupil diameter, indicated that participants in the
experimental group engaged with the generated summaries,
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FIGURE 12. The variation in pupil diameter across control(P02) and experimental(P18) participants over the learning material with the
reported engagement and computed objective comprehension score.

FIGURE 13. The heatmap with fixation points and gaze transitions for control group participant and experimental group participant reading the same
learning material and with low reported engagement levels.

suggesting a potential for increased cognitive processing
even if the differences did not reach conventional levels of
significance. This lack of statistical significance may reflect
the variability in individual responses to the summaries,
highlighting that while the adaptive learning system may
not have uniformly impacted gaze behavior across all
participants, it still holds promise as a tool for enhancing
engagement and comprehension. Overall, these findings
highlight the beneficial role of adaptive learning interventions
in fostering deeper cognitive engagement and improving
learning outcomes, even in challenging contexts.

C. VISUAL EFFORT AND COGNITIVE OUTCOMES
To explore the the relationship between cognitive processing,
visual effort, and adaptive learning interventions, it is vital
to identify the key metrics that capture the nuances of
cognitive and visual engagement, such as fixations, saccade
patterns, and gaze transitions each offering unique insights
into the reader’s cognitive processes and visual strategies.
The research by Skaramagkas et.al [86] has established that
eye-tracking metrics such as fixations, saccades, and pupil
diameter serve as reliable biosignals for understanding visual
attention and cognitive workload. These metrics, along with
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gaze transitions, each offer unique insights into the reader’s
cognitive processes and visual strategies.

Our study design incorporates both control and experi-
mental groups, allowing for comparative analysis of read-
ing behaviors and task-solving approaches. While similar
control-experimental designs have been employed in recent
studies, our methodology differs in several key aspects.
Heyd-Metzuyanim et al. [87] combined eye-tracking with
discourse analysis to identify problem-solving ineffective-
ness in geometric tasks, and da Silva Soares et al. [88]
investigated physiological aspects of cognitive effort during
mental rotation tests in naturalistic educational environments.
Our approach extends beyond these studies by implementing
real-time engagement prediction and providing immediate
adaptive interventions based on gaze patterns, rather than
conducting post-hoc analysis of problem-solving strategies.
In our experiment, participants in the control group engage
with the content using their natural reading and problem-
solving strategies, providing a baseline for typical cognitive
and visual behaviors, while the experimental group receives
tailored interventions designed to optimize their learning
experience.

The adaptive interventions, exclusively implemented for
the experimental group, are expected to alter the partici-
pants’ interaction with the learning material. As a result,
we anticipate observing distinct differences in gaze tran-
sitions, fixation durations, and overall visual exploration
patterns between the two groups. The control group’s eye
movements are likely to reflect more traditional reading
patterns, while the experimental group may exhibit more
targeted and efficient visual strategies influenced by the
adaptive interventions.

Figure 13 illustrates the heatmap with fixation points
and gaze transitions for control group participant and
experimental group participant reading the same learning
material and with low reported engagement levels in the post-
survey. The presence of summary fixations (red dots) within
the green dashed lines for the experimental group, and their
absence in the control group, directly reflects the adaptive
intervention strategy. For the experimental participant, this
adaptive feature offers targeted support, providing a concise
overview of key information when engagement drops,
personalized learning pace, allowing participants to quickly
catch up for better content understanding and engagement
recovery. The summary fixations suggest participants are
utilizing this additional resource for potentiallymore efficient
comprehension and when their engagement level drops.
In contrast, the control group’s gaze patterns likely reflect a
more consistent, but potentially less responsive, interaction
with the content. This difference underscores the potential
of adaptive interventions to provide timely, targeted support
based on real-time engagement levels.

The visual effort and cognitive processing patterns differ
notably between the control and experimental group. The
control group participant (Figure13) exhibits more con-
centrated fixations and shorter gaze transitions, suggesting

a potentially lower visual effort but also a more linear,
traditional reading approach. This pattern may indicate a
consistent cognitive load throughout the task. In contrast,
experimental group participant (Figure13a) demonstrate a
wider distribution of fixations and longer gaze transitions
due to the interventions, pointing to potentially higher
visual effort as they explore more of the content. This
increased visual exploration likely corresponds to more
diverse cognitive strategies and varying levels of cognitive
load. The adaptive interventions provided to the experimental
group appear to encourage a more dynamic interaction
with the content, potentially leading to deeper cognitive
engagement. While the experimental group may exert more
visual effort, this increased activity could be indicative of
more thorough information processing and potentially more
effective learning. The relationship between visual effort
and cognitive processing in this context suggests that the
adaptive interventions may be promoting a more active and
comprehensive approach to learning, although with increased
visual demands.

D. POTENTIAL IMPACT ON EDUCATIONAL PRACTICE
The findings from this study have significant potential
implications for educational practice across various learning
environments. Our gaze-based adaptive learning system
aligns with recent developments in learning analytics,
where tools are developed to provide practical insights for
learners [50]. Similar to how VizChat addresses cognitive
overload concerns through AI-generated explanations [89],
our system provides contextually relevant interventions based
on real-time gaze data. While traditional adaptive learning
systems focus on learning styles and content delivery [9],
our system uniquely implements engagement detection and
immediate interventions. For instructors, this technology
offers a powerful tool to identify when students are struggling
with content, enabling timely adjustments in teaching pace
and methods.

The combination of eye-tracking technology and AI-
generated summaries enables scalable, personalized learning
support, particularly valuable in large classes where indi-
vidual teacher attention is limited. The system’s ability to
deliver customized support addresses diverse learning needs,
from providing additional help to offering more challenging
content. This approach shows particular promise in online
courses and self-paced programs, where maintaining student
engagement is crucial for successful learning outcomes. The
collected gaze patterns and engagement data enable curricu-
lum refinement by helping educators identify challenging
concepts that consistently cause disengagement. Teachers
can utilize the system’s analytics to develop more effective
teaching strategies and identify areas for professional growth,
while the real-time detection of engagement patterns provides
an early warning system for students at risk of falling behind.
The system’s ability to track engagement and comprehension
complements traditional assessment methods, providing
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insights into learning processes rather than just outcomes.
The system adapts to different learning needs, helping
students who may have attention challenges or who learn at
different speed.

E. LIMITATIONS AND FUTURE WORK
While the study on adaptive learning system using
eye-tracking technology offers valuable insights, several
limitations were identified, each presenting opportunities for
future research directions.

1) SAMPLE SIZE AND REPRESENTATION
One primary limitation of this study is the limited sample
size (N=22). This constraint could affect the generalizability
of our results to broader populations. The challenge lies
in ensuring a sufficiently large and diverse sample that
accurately represents various learning styles, backgrounds,
and cognitive abilities.

2) CONTENT AND REAL-TIME ENGAGEMENT DETECTION
The specific content or tasks used in the study might not
be equally engaging or challenging for all participants,
potentially skewing the results. The task of creating uni-
formly suitable content across different skill levels and
interests poses a considerable challenge. The accuracy and
responsiveness of the system in detecting low engagement in
real-time may be limited due to the utilization of just gaze
data but could have better accuracy by integratingmultimodal
data including facial cues and physiological data. To develop
algorithms that can reliably interpret eye movements as
indicators of engagement across different individuals remains
a complex task.

3) ADAPTIVE INTERVENTION STRATEGY AND LONG-TERM
EFFECTS
The effectiveness of summaries as the only form of inter-
vention for low engagement may be limited. The design of
interventions that are universally effective across different
learning styles and preferences is challenging. Moreover, the
study mainly focus on immediate effects without considering
long-term learning outcomes. The challenge lies in designing
longitudinal studies that can assess the lasting effects of these
interventions on knowledge retention and application, while
controlling for other variables that may influence learning
over time.

4) LLM BASED SUMMARIES
The use of ChatGPT for generating summaries presents its
own set of limitations. While AI-generated summaries can
be efficient, they may lack the nuanced understanding of
complex topics that a human expert would provide. There’s
a risk of oversimplification or occasional inaccuracies in
the summaries. The AI’s output is based on its training
data, which may not always include the most up-to-
date information or specialized knowledge relevant to the
study content. The challenge lies in ensuring the quality,

accuracy, and relevance of these AI-generated summaries,
possibly through a system of expert review or by combining
AI-generated content with human-curated information.

5) INDIVIDUAL DIFFERENCES AND PARTICIPANT
RESPONSES
A significant limitation of our study is the potential oversight
of individual differences in cognitive processing speeds and
styles. The participants may vary greatly in how they process
information, which could impact the effectiveness of the
adaptive interventions. The challenge is to develop a system
flexible enough to adapt to a wide range of individual
cognitive characteristics while still providing meaningful and
comparable data across the study population.

Future work should address several key areas to enhance
the robustness and applicability of this adaptive learning sys-
tem. The main focus would be on expanding the sample size
and diversity of participants to improve the generalizability of
findings across various learning styles and backgrounds. The
refinement of the real-time engagement detection algorithms
by incorporating multimodal data, including facial cues and
physiological signals alongside gaze data, could significantly
improve the accuracy and responsiveness of the system.
Additionally, implementing multimodal content adaptation
based on learner engagement levels including interactive
visualizations, audio explanations, and video demonstrations
would provide more engaging and effective learning expe-
riences. The development of personalized learning paths
that automatically adapt based on learner progress and
preferences would ensure optimal learning outcomes.

Furthermore, future studies should explore a wider range
of adaptive intervention strategies beyond text summaries,
tailoring them to individual learning preferences and styles.
Conducting longitudinal studies will be essential to assess the
long-term effects of these interventions on knowledge reten-
tion and application. Improving the quality and relevance
of AI-generated summaries through expert review or hybrid
AI-human curation systems will be crucial for ensuring the
effectiveness of the interventions. These improvements will
help create a better learning system that adapts in real-time
to learner needs, while ensuring high-quality educational
content that works for different types of learners.

VII. CONCLUSION
This study demonstrates the effectiveness of integrating
real-time gaze tracking with AI-driven adaptive learning
interventions to enhance student engagement and learning
outcomes. Through an experimental study with 22 uni-
versity students, we validated that AI-generated adaptive
interventions, triggered by detected low engagement, led to
significantly improved learning outcomes and engagement
levels. As additional validation of our approach, we imple-
mented two deep learning models - an InceptionTime
and a Transformer-based network - to predict post-reading
engagement and comprehension levels from gaze patterns.
The Transformer model demonstrated superior performance
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in predicting both engagement and comprehension levels
based on user survey responses. The effectiveness of our
adaptive system was further evidenced by significantly
higher objective comprehension scores in the experimental
group, who showed improved comprehension assessments
compared to those who did not receive adaptive interventions.
Our research makes three key contributions to educational
technology: (1) demonstrating the feasibility of using gaze
data for real-time engagement prediction, (2) validating
the effectiveness of AI-generated adaptive interventions in
improving learning outcomes, and (3) a framework for
integrating eye-tracking technology with adaptive learning
systems. These findings advance the field by providing
empirical evidence for the benefits of real-time adaptive
interventions and offering a practical approach to imple-
menting personalized learning experiences. The potential of
this system opens new possibilities for developing more
responsive and effective educational technologies that can
dynamically adapt to individual learner needs.
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