
EURO Journal on Computational Optimization 11 (2023) 100058
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

journal homepage: www.elsevier.com/locate/ejco

Hierarchical distributed optimization of
constraint-coupled convex and mixed-integer

programs using approximations of the dual function

Vassilios Yfantis a,∗, Simon Wenzel b,c, Achim Wagner d,
Martin Ruskowski a,d, Sebastian Engell c

a Chair of Machine Tools and Control Systems, Department of Mechanical and
Process Engineering, TU Kaiserslautern, Gottlieb-Daimler-Straße 42, 67663
Kaiserslautern, Germany
b Evonik Operations GmbH, Paul-Baumann-Str. 1, 45772 Marl, Germany
c Process Dynamics and Operations Group, Department of Biochemical and
Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227
Dortmund, Germany
d Innovative Factory Systems, German Research Center for Artificial Intelligence,
Trippstadter Str. 122, 67663 Kaiserslautern, Germany

a r t i c l e i n f o a b s t r a c t

Keywords:
Distributed optimization
Dual decomposition
Nonsmooth optimization
Subgradient method
Bundle method
ADMM
Quadratic approximation
Quasi-Newton

In this paper, two new algorithms for dual decomposition-
based distributed optimization are presented. Both algorithms
rely on the quadratic approximation of the dual function of the
primal optimization problem. The dual variables are updated
in each iteration through a maximization of the approximated
dual function. The first algorithm approximates the dual func-
tion by solving a regression problem, based on the values of the
dual function collected from previous iterations. The second
algorithm updates the parameters of the quadratic approxi-
mation via a quasi-Newton scheme. Both algorithms employ
step size constraints for the update of the dual variables.
Furthermore, the subgradients from previous iterations are
stored in order to construct cutting planes, similar to bun-
dle methods for nonsmooth optimization. However, instead of
using the cutting planes to formulate a piece-wise linear over-
approximation of the dual function, they are used to construct

* Corresponding author.
E-mail address: vassilios.yfantis@mv.uni-kl.de (V. Yfantis).
https://doi.org/10.1016/j.ejco.2023.100058
2192-4406/© 2023 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.ejco.2023.100058
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2023.100058&domain=pdf
mailto:vassilios.yfantis@mv.uni-kl.de
https://doi.org/10.1016/j.ejco.2023.100058
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
valid inequalities for the update step. In order to demonstrate
the efficiency of the algorithms, they are evaluated on a large
set of constrained quadratic, convex and mixed-integer bench-
mark problems and compared to the subgradient method,
the bundle trust method, the alternating direction method
of multipliers and the quadratic approximation coordination
algorithm. The results show that the proposed algorithms per-
form better than the compared algorithms both in terms of
the required number of iterations and in the number of solved
benchmark problems in most cases.
© 2023 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Many industrial applications of optimization require the solution of a system-wide
problem over a network of agents [48]. Solving a system-wide optimization problem in a
centralized fashion in such a setting can become computationally intractable if a large
number of agents are involved. Furthermore, in production systems there has been a trend
towards increased modularity and autonomy of subsystems in recent years [56]. This gives
rise to distributed decision structures where the involved subsystems have a certain
autonomy and pursue individual goals while only having access to local information
[72]. In these cases the exchange of information between the subsystems or between the
subsystems and a coordinating unit is often restricted as the subsystems do not want
to share private information, e.g., their objective functions, local constraints, production
parameters, etc. [30,41]. This is often the case in industrial complexes where production
systems are coupled through interconnected networks of materials and energy [68]. The
involved subsystems may not be willing or able to exchange the information required
for the centralized solution of a system-wide optimization problems, e.g. because they
belong to different business units or to different companies. Another area necessitating
the solution of large-scale optimization problems is machine learning [24,58]. In addition
to the size of the underlying optimization problems, data sovereignty plays an important
role in many machine learning applications [39]. Training data may be distributed over
multiple nodes of a network. Sharing this data between different nodes or between the
nodes and a coordinator can be prohibitive due to bandwidth limitations or due to
privacy concerns [35].

Distributed optimization methods offer a way to circumvent the aforementioned issues
by splitting the aggregated optimization problem into smaller subproblems, solving the
subproblems locally and coordinating these solutions by suitable mechanisms such that
the coordinated solutions for the subproblems converge to the system-wide solution and
system-wide constraints are met. The design of distributed optimization algorithms in-
volves the choice of the decomposition method and of the synchronization mechanism and

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 3
depends on the possible communication of data between subproblems and the coordinat-
ing instance. Examples of decomposition approaches include game theoretic approaches
[71], population-based approaches [3], primal decomposition [53] and dual decomposition
[20]. This paper focuses on dual decomposition where system-wide constraints that cou-
ple the subproblems are relaxed by introducing additional variables into the subproblems,
solving the modified subproblems in a distributed fashion and coordinating the solution
process by iteratively adapting the additional variables. This makes it possible to realize
a high degree of privacy, as no or little sensitive information has to be shared between the
subproblems. The coordination of the subproblems can be performed by a central coor-
dination algorithm which exchanges information with the subproblems (hierarchically),
by directly exchanging information between the subproblems (networked optimization)
or by solving the subproblems in a completely decentralized manner (non-cooperative
games) [71]). In this work, hierarchical algorithms are considered which coordinate the
solutions of the subproblems by iteratively adapting and broadcasting the additional
variables, here the dual variables that result from the relaxation of the system-wide cou-
pling constraints. On the one hand, the hierarchical structure ensures that no sensitive
information has to be shared between subproblems, as communication is only estab-
lished between the coordinator and the subproblems. On the other hand, the presence
of the central coordinator enables to converge to the system-wide optimum of the ag-
gregated problem which is usually not possible through a fully decentralized approach if
system-wide coupling constraints must be satisfied.

The type and the amount of information shared between the subproblems and the co-
ordinator influence the efficiency of distributed optimization algorithms. The exchanged
information may include the contributions of the subsystems to the system-wide con-
straint functions [44] or the residual of the system-wide constraints [69], the optimal
objective function values of the subsystems in each iteration, gradients of the subsys-
tems’ objective functions and constraints, and the Hessians of the Lagrangians of the
subsystems [33]. The first two choices lead to a high degree of privacy of the subsys-
tems whereas algorithms that exchange the full information on the subsystem solutions
are motivated by reducing the memory demand or computation time compared to the
system-wide solution rather than assuring privacy. In the iterations of a hierarchical
distributed optimization algorithm all subproblems are solved in parallel and return
information to the coordinator, i.e., they are optimized in a synchronous manner. In con-
trast, asynchronous algorithms only require the solution of a subset of the subproblems
in each iteration, leading to a trade off between collected information and computational
efficiency [11]. Usually less iterations are required if all subproblems are solved in each
iteration.

Dual decomposition-based algorithms generally exhibit a slow rate of convergence.
This issue was addressed by, e.g., Maxeiner and Engell [44] and Wenzel et al. [69] where
efficient use of information from previous iterations was made. In this paper a new
algorithm is proposed that uses some of the elements of the quadratic approximation
coordination (QAC) algorithm proposed by Wenzel et al. [69]. In contrast to the QAC

4 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
algorithm, the new algorithm, quadratically approximated dual ascent (QADA), ap-
proximates the dual function of the system-wide optimization problem by a quadratic
function in each iteration. This requires to exchange the values of the Lagrangians of the
subproblems at each iteration but still maintains privacy of the local constraints and of
the contributions to the system-wide constraints. As will be shown below, this improves
the rate of convergence for convex problems with real-valued decision variables and in
particular leads to an efficient distributed solution of mixed-integer programs.

A regression-based approximation of the dual function requires an initialization phase
where the necessary number of initial data points are collected. This is avoided by an
algorithm that approximates the dual function based on quasi-Newton updates, which is
referred to as the quasi-Newton dual ascent (QNDA) algorithm. The algorithm was first
introduced in [73] and is discussed in detail and compared for the benchmark problems
in this paper.

The remainder of this paper is organized as follows: Section 2 presents the main
mathematical notation. In Section 3 the concepts of duality and dual decomposition
for constraint-coupled optimization problems are introduced. Several distributed opti-
mization algorithms which will serve as references for the new proposed approaches
are discussed in Section 4. The discussion focuses on algorithms that employ a hierar-
chical coordination structure where only first-order information is shared between the
subproblems and the coordinator. Other related algorithms which employ different com-
munication structures, exchanged information and synchronization strategies, are also
discussed briefly. Section 5 discusses algorithms that update the dual variables based
on an optimization of a smooth surrogate function. This includes the QAC algorithm
introduced in [69] as well as the new proposed algorithms, QADA and QNDA, which
compute a quadratic surrogate function of the dual function. The convergence properties
of these algorithms are discussed at the end of this section for different classes of prob-
lems in a semi-formal manner, based on known results for the same type of problems and
similar algorithms. The performance of the new algorithms, in comparison to known ap-
proaches is evaluated for a large set of benchmark problems for different problem classes
in Section 6. The paper concludes with a summary and an outlook on future research in
Section 7.

2. Notation

We use boldfaced upper-case letters to denote matrices (X) and boldfaced lower-case
letters to denote vectors (x). The notation [x]l denotes the l-th element of a vector x.
Similarly, [X]l,j denotes the (l, j)-th element of a matrix X. The vector containing only
ones is denoted by 1 while the vector containing only zeros is denoted by 0. I denotes
the identity matrix of appropriate dimensions. The iteration index of the distributed
optimization algorithms is denoted by t. The value of a variable x in iteration t is denoted
by x(t) while xi indicates that a variable belongs to subproblem i. The Euclidean norm
is denoted by ‖x‖2 =

√
xTx while ‖X‖F =

√∑n
l=1

∑n
k=1 |[X]l,k|2 denotes the Frobenius

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 5
norm of a matrix. SRn×n denotes symmetric matrices with n rows/columns The relative
interior of a set X is denoted by relint(X). The notation x∗ indicates the optimum of an
optimization problem.

3. Duality and dual decomposition

In this work we consider optimization problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (1a)

s. t.
∑
i∈I

Aixi ≤ b, (1b)

xi ∈ Xi, ∀i ∈ I. (1c)

(1) describes an optimization problem consisting of Ns subproblems i ∈ I = {1, . . . , Ns}.
Each subproblem has its own set of decision variables xi ∈ Knxi and an objective function
fi : Knxi → K. In this paper we consider K ∈ {R, R ×Z}, i.e., continuous or mixed-integer
optimization problems. The subsystems are coupled through the system-wide constraints
(1b), also referred to as coupling, complicating or network constraints. The terms Aixi,
with Ai ∈ Rnb×nxi can be interpreted as the utilization of shared limited resources
depending on the decision variables xi, while b ∈ Rnb represents the availability of
these resources. In addition to the system-wide constraints, each subproblem i contains
individual constraints xi ∈ Xi ⊂ Knxi , where Xi is a non-empty compact set. We assume
that the system-wide objective function is additive in the subsystem objective function
values. The goal is to minimize the sum of the objective functions of all subproblems (1a),
also called a social welfare objective [57], while satisfying the system-wide constraints
(1b) as well as the individual constraints (1c).

Problem (1) is obviously separable in its objective function and the subproblems are
only coupled through constraints. This class of problems is referred to as constraint-
coupled optimization problems. Therefore the system-wide or central problem can be
decomposed by introducing dual variables λ ∈ Rnb , also referred to as Lagrange multi-
pliers, for the coupling constraints. With the dual variables, the Lagrange function can
be formulated,

L(x,λ) :=
∑
i∈I

fi(xi) + λT
∑
i∈I

Aixi − λTb, (2)

where x = [xT
1 , . . . , xT

Ns
]T . Based on the Lagrange functions, the dual function

d(λ) := inf
xi∈Xi,∀i∈I

L(x,λ) (3)

can be defined. The dual function is a function of the dual variables λ. The domain of
the dual variables is λ ≥ 0, stemming from the Karush-Kuhn-Tucker conditions and

6 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
from the fact that the system-wide constraints (1b) are inequalities [51]. Generally, the
domain of the dual variables λ consists of all values for which the Lagrange function (2)
is bounded from below, i.e., all values for which d(λ) > −∞.

An important property of the dual function (3) is that its values always pro-
vide a lower bound for the objective value of the system-wide problem (1) (cf.
[9]).

Since the dual function provides a lower bound for the objective values of the system-
wide problem, it also does so in the case of the optimal solution x∗. Naturally, one would
be interested in the best attainable lower bound, corresponding to the maximum of the
dual function. Finding this maximum is referred to as the dual problem,

max
λ∈Rnb

d(λ), (4a)

s. t. λ ≥ 0. (4b)

In contrast, the system-wide problem (1) is called the primal problem. We denote by λ∗

the optimal solution of the dual problem (4). Due to the lower bound property of the
dual function the relation ∑

i∈I
fi(x∗

i) ≥ d(λ∗) (5)

holds between the primal and dual optimal solutions. Inequality (5) is referred to as
weak duality. The difference between the objective values of a feasible primal and corre-
sponding feasible dual solution is called duality gap,

DG =
∑
i∈I

fi(xi) − d(λ). (6)

If the primal problem, i.e., the system wide problem (1) is convex and a constraint
qualification condition is satisfied, the optimal duality gap is zero. This implies,
that ∑

i∈I
fi(x∗

i) = d(λ∗). (7)

This condition is referred to as strong duality. A commonly used constraint qualification
condition is Slater’s condition, which is satisfied if a strictly feasible solution of problem
(1) exists [9],

∃ x ∈ relint (X) ∩ {x ∈ Rnx |, Aixi < b}, (8)

with

X :=
{
x =

(
xT

1 , . . . ,xT
N

)T | xi ∈ Xi, ∀i ∈ I
}
. (9)
s

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 7
Another important property of the dual problem (4) is that the dual function is always
concave, regardless whether or not the primal problem is convex (cf. Theorem 12.10,
[51]). Since the dual problem (4) is a maximization of a concave function over a convex
feasible set, it is a convex optimization problem.

Dual decomposition-based distributed optimization algorithms rely on the solution
of the dual problem (4). The solution of the dual problem is amendable to distributed
computations, since the Lagrange function (2) is separable due to the relaxation of the
system-wide constraints (1b). This means that the dual function can be evaluated by
solving the individual optimization problems

min
xi∈Rnxi

Li(xi,λ), (10a)

s. t. xi ∈ Xi (10b)

in a distributed manner for a given value of the dual variables λ. Satisfaction of the cou-
pling constraints is only achieved upon convergence, contrary to primal decomposition-
based methods, where in each iteration a feasible primal solution is computed by impos-
ing (1b) [53,71]. In the case of nonconvex primal problems strong duality (7) does not
hold. After convergence a feasible primal solution is usually recovered through the use
of problem specific heuristics [11] or by modifying the primal problem a priori [60]. Note
that we assume that the lower bound of problem (10)) is attainable, therefore replacing
the infimum with the minimum.

Example. Consider the following optimization problem:

min
x1,x2

0.5x2
1 + 0.5(x2 − 1)2, (11a)

s. t. x1 + x2 = 0, (11b)

x1 ≤ 1, (11c)

x1, x2 ∈ R. (11d)

The Lagrange function of problem (11) is

L(x1, x2, λ) = 0.5x2
1 + 0.5(x2 − 1)2 + λ(x1 + x2) (12)

and the dual function

d(λ) = min
x1,x2

0.5x2
1 + 0.5(x2 − 1)2 + λ(x1 + x2), (13a)

s. t. x1 ≤ 1, (13b)

x1, x2 ∈ R. (13c)

8 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Note that since the coupling constraint (11b) is an equality, the domain of the dual
variable is λ ∈ R. The value of the dual function now depends on whether or not the
individual constraint (11c) is active. Two cases can be distinguished:
Case 1: x1 < 1 (inactive constraint)

For a fixed λ the value of the dual function (13) can be computed by setting the
gradient of the Lagrange function (12) to zero:

∇L(x1, x2, λ) =
(

x1 + λ
x2 − 1 + λ

)
= 0 ⇒ x1 = −λ, x2 = 1 − λ. (14)

Substituting the values of x1 and x2 in (12) gives

d(λ) = −λ2 + λ, ∀λ > −1. (15)

Case 2: x1 = 1 (active constraint)
Setting the gradient of the reduced Lagrange function to zero gives

∇L(1, x2, λ) = x2 − 1 + λ = 0 ⇒ x2 = 1 − λ. (16)

Again, substituting the values for x1 and x2 into (12) gives

d(λ) = −λ2 + 1.5λ + 0.5, ∀λ ≤ −1. (17)

The dual function for problem (11) is given by

d(λ) =
{
−λ2 + λ, ∀λ > −1,
−λ2 + 1.5λ + 0.5, ∀λ ≤ −1.

(18)

It is easy to see that the dual function is continuous, as

lim
λ→−1+

d(λ) = lim
λ→−1−

d(λ) = −2. (19)

However, the dual function does not have continuous derivatives,

lim
λ→−1+

∇d(λ) = lim
λ→−1+

−2λ + 1 = 3, (20a)

lim
λ→−1−

∇d(λ) = lim
λ→−1−

−2λ + 1.5 = 4.5, (20b)

which means that it is not smooth. Hence, as the dual function is always concave, the
dual problem

max d(λ) (21)

λ∈R

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 9
is a convex, but nonsmooth optimization problem. The nonsmoothness is caused by a
changing set of active individual constraints. This nonsmoothness is typical for dual
optimization problems. Algorithms that aim to solve the nonsmooth dual problem are
reviewed in the following section in the context of dual decomposition-based distributed
optimization.

4. Review of dual decomposition-based distributed optimization

The general idea of dual decomposition was introduced by Everett [20]. Dual de-
composition can be regarded as a hierarchical scheme where a coordination algorithm
computes values of the dual variables, which are communicated to the subproblems. The
subproblems solve their individual optimization problems for the received values of the
dual variables and communicate their results back to the coordinator. What information
is communicated to the coordinator depends on the specific dual decomposition-based
algorithm. Dual decomposition-based distributed optimization can be interpreted as a
market mechanism where an auctioneer sets prices for shared resources and the subprob-
lems compute their optimal resource utilization according to these prices [62,69]. In this
context the dual variables are called prices or shadow prices [28].

In this section, those dual decomposition-based distributed optimization algorithms
which are used as a reference for comparison of the proposed algorithms are discussed.
This includes the subgradient method, the bundle trust method (BTM) and the alternat-
ing direction method of multipliers (ADMM). Other related dual-decomposition based
algorithms are also briefly reviewed.

4.1. Subgradient method

The simplest distributed optimization algorithm that is based on dual decomposition
is the subgradient method. In this algorithm, the dual variables are updated along a
subgradient direction of the dual function.

A vector ξ ∈ Rnχ is a subgradient of a concave function φ : Rnχ → R at the point
χ0 ∈ Rnχ , if

φ(χ) ≤ ξT (χ− χ0) + φ(χ0) (22)

holds for all χ ∈ dom φ. The set of all subgradients comprises the subdifferential ∂φ(χ0)
of the function φ(χ) at the point χ0 [2]. The subgradient is a generalization of the
gradient for nonsmooth (non-differentiable) convex functions. Note that (22) techni-
cally defines a supergradient of a concave function. However, the term subgradient is
commonly used in the literature for both convex and concave functions. Geometrically
the subgradient/supergradient is a normal vector to a supporting hyperplane of a con-
vex/concave function. Fig. 1 illustrates different subgradients both for differentiable (χ0)
and non-differentiable (χ′

0) points. In the subgradient method for distributed optimiza-

10 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Fig. 1. Geometric interpretation of subgradients for differentiable (χ0) and non-differentiable (χ′
0) points.

tion, the primal variables xi and the dual variables λ are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ
(t)) (23a)

λ(t+1) =
[
λ(t) + α(t)g(λ(t))

]+
(23b)

in each iteration t, where g(λ(t)) is a subgradient of the dual function at λ(t) and [·]+
denotes the projection onto the positive orthant. Note that the update of the primal
variables (23a) can be performed in a distributed fashion by solving the local optimization
problems for the given values of the dual variables. A subgradient of the dual function can
be computed by evaluating the system-wide constraints for the primal variables x(t+1)

[71], i.e.,

g(λ(t)) :=
(∑

i∈I
Aix(t+1)

i − b
)

∈ ∂d(λ(t)). (24)

The update step (23b) updates the dual variables in the direction of the subgradient of
the dual. The step size parameter α(t) plays an important role in the convergence of the
algorithm. If it is chosen too large, the algorithm might diverge. If it is chosen too small,
no substantial progress is made. The optimal step size can be defined by means of the
Lipschitz constant of the gradient of the dual function [49]. However, this information
is usually not available in a distributed optimization setting. For practical applications,
the step size is adapted over the course of the iterations [4].

In this paper, we use as the termination criterion that both the Euclidean norm (2-
norm) of the primal residual ‖w(t)

p ‖2 and of the dual residual ‖w(t)
d ‖2 lie below pre-defined

thresholds or that the maximum number of iterations is reached, i.e.(
‖w(t)

p ‖2 ≤ εp ∧ ‖w(t)
d ‖2 ≤ εd

)
∨ (t ≥ tmax). (25)

The primal residual indicates feasibility of the system-wide constraints. If these con-
straints (1b) are posed as inequalities, the primal residual is defined as

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 11
[w(t)
p]l := max

{[∑
i∈I

Aix(t)
i − b

]
l

, 0
}
, l = 1, . . . , nb. (26)

If they are posed as equalities it is defined as

w(t)
p :=

∑
i∈I

Aix(t)
i − b, (27)

i.e., equal to the subgradient. We also use the norm of the primal residual to compute
the step size parameter, as proposed by [69],

α(t) = α(0)

max{‖w(0)
p ‖2, . . . , ‖w(t)

p ‖2}
. (28)

The dual residual indicates convergence of the dual variables to a stationary value and
is defined as

w(t)
d := λ(t+1) − λ(t). (29)

Algorithm 1 summarizes the subgradient method (SG). Note that the steps 5–8 can be
performed in a distributed manner, while steps 9–23 are performed by the coordinator.

Algorithm 1 Subgradient Method (SG).
Require: λ(0), α(0), εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i to the coordinator

8: end for
9: g(λ(t)) ← ∑

i∈I Aix(t+1)
i − b

10: if Constraints (1b) are inequalities then
11: for all l = 1, . . . , nb do
12: [w(t)

p]l ← max
{[

g(λ(t))
]
l
, 0

}
13: end for
14: else if Constraints (1b) are equalities then
15: w(t)

p ← g(λ(t))
16: end if
17: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

18: if Constraints (1b) are inequalities then
19: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
20: else if Constraints (1b) are equalities then
21: λ(t+1) ← λ(t) + α(t)g(λ(t))
22: end if
23: w(t)

d ← λ(t+1) − λ(t)

24: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
25: return λ(t)

12 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
4.2. Bundle trust method

The subgradient method descibed in Sec. 4.1 only employs the subgradient of the
previous iteration in order to update the dual variables. However, in contrast to the
gradient, a subgradient does not necessarily provide an ascent direction for the dual
function. This often leads to a slow rate of convergence. A generally more efficient class
of algorithms are bundle methods [43]. Bundle methods are among the most efficient
algorithms for nonsmooth optimization [2]. As such they have been employed in the
context of dual decomposition-based distributed optimization to solve the nonsmooth
dual problem, e.g., for distributed model predictive control [55] or for the coordination
of energy networks [75]. Furthermore, bundle methods are also widely used in other
areas where nonsmooth problems have to be solved, such as machine learning, where
nonsmoothness is often encountered due to regularization terms [37]. In the following,
the bundle trust method (BTM) according to [2], as described in [73], is presented.

The idea of bundle methods is to employ subgradient information collected from
multiple previous iterations in order to construct a piece-wise linear over-approximator,
a so called cutting plane model, of the nonsmooth concave dual function d(λ). To this
end, the data

B(t) = {(λ(j), d(λ(j)),g(λ(j))) ∈ Rnb ×R×Rnb | 1 ≤ j ≤ t} (30)

is stored in each iteration. B is referred to as a bundle. As shown in the previous section,
the hyperplane defined by the subgradient is an over-approximator of its corresponding
function. The cutting plane model d̂(t)(λ) of the dual function in iteration t is defined as

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}, (31)

where J (t) ⊆ {1, . . . , t} denotes the subset of the used data points. As storing the dual
variables, dual values and subgradients for all past iterations might require a significant
storage memory, we only store the bundle information up to a certain iteration age
τ ,

J (t) := {max{1, t− τ + 1}, . . . , t}. (32)

Fig. 2 illustrates the cutting plane model for a nonsmooth dual function. The approxi-
mation can be written in an equivalent form as

d̂(t)(λ) = min
j∈J (t)

{d(λ(t)) + gT (λ(j))(λ− λ(t)) − β(j,t)}, (33)

with the linearization error

β(j,t) = d(λ(t)) − d(λ(j)) − gT (λ(j))(λ(t) − λ(j)), ∀j ∈ J (t). (34)

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 13
Fig. 2. Illustration of the cutting plane model.

The bundle trust method computes a search direction s(t) in each iteration, by solving
the direction finding problem

max
s∈Rnb

d̂(t)(λ(t) + s), (35a)

s. t. ‖s‖2
2 ≤ α(t), (35b)

λ(t) + s ≥ 0. (35c)

The constraint (35b) represents a trust region, preventing too aggressive update steps.
For the radius of the trust region we use Eq. (28). The constraint (35c) ensures feasibility
of the updated dual variables and can be omitted if the system-wide constraints (1b)
are equalities. It replaces the projection onto the feasible set used in (23b). Problem
(35) is still nonsmooth and can be rewritten as a smooth quadratic direction finding
problem

max
v∈R, s∈Rnb

v, (36a)

s. t. ‖s‖2
2 ≤ α(t), (36b)

gT (λ(j))s − β(j,t) ≥ v, ∀j ∈ J (t), (36c)

14 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
λ(t) + s ≥ 0. (36d)

To summarize, the bundle trust method (BTM) updates the primal and dual variables
in each iteration according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ
(t)), (37a)

s(t) = arg max
v∈R, s∈Rnb

v, (37b)

s. t. (36b)-(36d),

λ(t+1) = λ(t) + s(t). (37c)

Bundle methods often employ a null step, i.e., λ(t+1) = λ(t), in order to compute a
new subgradient at the current iterate and to improve the approximation. In the case
of dual decomposition-based distributed optimization the same subgradient would be
obtained after a null step. The dual variables are therefore updated according to (37c)
in each iteration. Note that in the case of BTM in addition to the contributions to the
subgradient gi(λ(t)) the subproblems have to also communicate their contribution to
the dual function

di(λ(t)) = fi(x(t+1)
i) + λ(t),Tgi(λ(t)) = Li(x(t+1)

i ,λ(t)) (38)

to the coordinator. The termination criteria are identical to the subgradient method. In
this paper an aggregated bundle method is considered, i.e., the coordinator aggregates
the contributions of all subsystems to the dual function and the subgradient. Algorithm 2
summarizes the bundle trust method. Again note that steps 6–10 are performed in par-
allel for the different subproblems, while steps 11–29 are performed by the coordinator.

4.3. Alternating direction method of multipliers

Another approach to solve the nonsmooth dual problem is to smoothen the problem
by further convexifying the Lagrange function. This is used in augmented Lagrangian
methods [1]. The issue with augmented Lagrangian methods is that separability is lost.
The alternating direction method of multipliers (ADMM) is an extension of the aug-
mented Lagrangian methods, whereby separability is maintained. It was first introduced
in [23] and [22] where it was applied to find the solution of differential equations. It has
gained significant attention in recent years since it was popularized by Boyd et al. [8].
In its standard form the ADMM algorithm solves problems of the form

min
x1∈Rnx1 ,x2∈Rnx2

f1(x1) + f1(x2) (39a)

s. t. A1x1 + A2x2 = b, (39b)

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 15
Algorithm 2 Bundle Trust Method (BTM).
Require: λ(0), α(0), τ , εp, εd, tmax
1: t ← 0
2: B(0) ← {}
3: repeat
4: t ← t + 1
5: Send λ(t) to all subproblems
6: for all i = 1, . . . , Ns do
7: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

8: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
9: coordinator

10: end for
11: g(λ(t)) ← ∑

i∈I Aix(t+1)
i − b

12: d(λ(t)) ← ∑
i∈I Li(x(t+1)

i , λ(t)) − λ(t),Tb
13: B(t) ← B(t) ∪ {(λ(t), d(λ(t)), g(λ(t)))}
14: if Constraints (1b) are inequalities then
15: for all l = 1, . . . , nb do
16: [w(t)

p]l ← max
{[

g(λ(t))
]
l
, 0

}
17: end for
18: else if Constraints (1b) are equalities then
19: w(t)

p ← g(λ(t))
20: end if
21: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

22: J (t) ← {max{1, t − τ + 1}, . . . , t}
23: if Constraints (1b) are inequalities then
24: s(t) ← arg max

v∈R, s∈Rnb
v, s. t. (36b)-(36d)

25: else if Constraints (1b) are equalities then
26: s(t) ← arg max

v∈R, s∈Rnb
v, s. t. (36b), (36c)

27: end if
28: λ(t+1) ← λ(t) + s(t)
29: w(t)

d ← λ(t+1) − λ(t)

30: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
31: return λ(t)

by defining an augmented Lagrange function

L̂ρ(x1,x2,λ) := f1(x1) + f1(x2) + λT (A1x1 + A2x2 − b)

+ ρ

2‖A1x1 + A2x2 − b‖2. (40)

The primal variables are then updated in an alternating manner according to

x(t+1)
1 = arg min

x1∈Rnx1
L̂ρ(x1,x(t)

2 ,λ(t)), (41a)

x(t+1)
2 = arg min

x2∈Rnx2
L̂ρ(x(t+1)

1 ,x2,λ
(t)), (41b)

λ(t+1) = λ(t) + ρ(A1x(t+1)
1 + A2x(t+1)

2 − b). (41c)

The update of the primal variables (41a) and (41b) cannot be performed in parallel.
In this paper we consider problems were multiple subsystems are connected through
shared limited resources (1). This case suits the use of the optimal exchange version of

16 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
ADMM, as described in [8] (Sec. 7.3.2) and [64] (Sec. 3.5.4). This formulation relies on
the introduction of auxiliary variables zi ∈ Rnb , which can be interpreted as a feasible
resource utilization for subproblem i. Using the auxiliary variables, problem (1) can be
reformulated,

min
x1,...,xNs

∑
i∈I

fi(xi), (42a)

s. t. Aixi ≤ zi, ∀i ∈ I, (42b)∑
i∈I

zi = b, (42c)

xi ∈ Xi, ∀i ∈ I. (42d)

The individual augmented Lagrange functions for problem (42) are defined as,

L̂i,ρ(xi,λ, zi) := fi(xi) + λT (Aixi − zi) + ρ

2 ‖Aixi − zi‖2
2 . (43)

In each iteration t, the primal, auxiliary and dual variables are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

L̂i,ρ(xi,λ
(t), z(t)

i) (44a)

∀i ∈ I, z(t+1)
i = Aix(t+1)

i − ave(Ax(t+1) − b) (44b)

λ(t+1) = [λ(t) + ρ(t)ave(Ax(t+1) − b)]+ (44c)

where

ave(Ax(t+1) − b) : 1
Ns

∑
i∈I

(
Aix(t+1)

i − b
)

(45)

denotes the average of the system-wide constraints. Note that the update of the pri-
mal variables (44a) can now be performed in parallel. The update step of the auxiliary
variables (44b) ensures the satisfaction of (42c) [64],∑

i∈I
z(t+1)
i =

∑
i∈I

Aix(t+1)
i −

∑
i∈I

ave(Ax(t+1) − b) (46a)

=
∑
i∈I

Aix(t+1)
i −Nsave(Ax(t+1) − b) (46b)

=
∑
i∈I

Aix(t+1)
i −

(∑
i∈I

Aix(t+1)
i − b

)
(46c)

= b. (46d)

ADMM can be interpreted as a proximal algorithm. The (scaled) proximal operator is
defined as [54]

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 17
x = proxρ,f (χ) := arg min
y

f(y) + 1
2ρ‖y − χ‖2

2. (47)

For a better interpretation of ADMM, Wenzel [64] defined a modified scaled proximal
operator as

x = prox′
ρ,f (χ) := arg min

y
f(y) + 1

2ρ‖L(y) − χ‖2
2, (48)

which differs only in the first term of the regularization term, where a linear mapping
L(y) is used. Using the definition (48) and omitting the constant term −λ(t),T zi the
update of the primal variables (44a) can be rewritten as

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

f(xi) + λ(t),TAixi (49a)

+ ρ

2‖Aixi − z(t)
i ‖2

2

= arg min
xi∈Xi

Li(xi,λ
(t)) + ρ

2‖Aixi − z(t)
i ‖2

2 (49b)

= prox′
1/ρ,L(z(t)

i). (49c)

Using eq. (49) the update step of ADMM can be interpreted as a proximal mapping onto
a feasible resource utilization.

Note that while the dual variables λ are still common among the subsystems, the
auxiliary variables zi are formulated for each subproblem individually. The update of
the auxiliary variables is performed on the coordinator level.

ADMM is an efficient algorithm for dual decomposition-based distributed optimiza-
tion and it outperforms other algorithms for a variety of benchmark problems [36]. It
converges under milder assumptions than the subgradient method for convex primal
problems [8]. While convergence can be proven for constant values of the regularization
parameter ρ, a variation of the parameter over the course of the iterations works well in
practice. In this work, the adaptation strategy reported in [31] and [63] is employed:

ρ(t+1) =

⎧⎪⎪⎨
⎪⎪⎩
τ incrρ(t), if ‖w(t)

p ‖2 > μ‖w(t)
d ‖2

ρ(t)/τdecr, if ‖w(t)
d ‖2 > μ‖w(t)

p ‖2

ρ(t), otherwise.
(50)

The parameters μ, τ incr, τdecr > 1 are tuning parameters. In contrast to the subgradient
method and the bundle trust method, the dual residual in ADMM is defined as

w(t)
d := z(t+1) − z(t), (51)

where z = [zT1 , . . . , zTN]T ∈ Rnb·Ns denotes the collection of the auxiliary variables.

s

18 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
ADMM leads to a slightly increased communication overhead between the subprob-
lems and the coordinator, as the auxiliary variables have to be communicated to each
subproblem as well. Furthermore, the coordinator has to know the contribution to the
coupling constraints of each subproblem in order to update the auxiliary variables (44b),
whereas the subgradient method and BTM only require the knowledge of the aggregated
value of the coupling constraints. In the context of distributed optimization of interacting
autonomous units, a drawback is also that the structure of the subproblems is altered
due to the addition of the regularization term, which makes the objective functions lose
their original meaning as, e.g., the local profit. The ADMM algorithm is summarized in
Algorithm 3. Steps 5–8 are performed in parallel by the subproblems while steps 9–25
are performed by the coordinator.

Algorithm 3 Alternating Direction Method of Multipliers (ADMM).
Require: λ(0), z(0), ρ(0), μ, τincr, τdecr, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t), z(t)

i and ρ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← prox′
1/ρ,L(z(t)

i)
7: Send Aix(t+1)

i to the coordinator
8: end for
9: for all i = 1, . . . , Ns do

10: z(t+1)
i ← Aix(t+1)

i − ave(Ax(t+1) − b)
11: end for
12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p]l ← max
{[∑

i∈I Aix(t+1)
i − b

]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ←
∑

i∈I Aix(t+1)
i − b

18: end if
19: if Constraints (1b) are inequalities then
20: λ(t+1) ← [λ(t) + ρ(t)ave(Ax(t+1) − b)]+
21: else if Constraints (1b) are equalities then
22: λ(t+1) ← λ(t) + ρ(t)ave(Ax(t+1) − b)]
23: end if
24: w(t)

d ← z(t+1) − z(t)

25: ρ(t+1) ← Update(50)
26: until (‖w(t)

p ‖2 ≤ εp ∧ ‖w(t)
d ‖2 ≤ εd) ∨ (t ≥ tmax)

27: return λ(t)

4.4. Other related dual decomposition-based methods

Several algorithms have been proposed that aim at improving the performance of the
subgradient method. The only parameter that can be tuned in the subgradient method
is the step size. Nedić and Bertsekas [47] provide several dynamic step size adjustment
strategies. In contrast to the gradient, the subgradient does not always provide an as-
cent direction for the dual variables [43]. Bragin et al. [11] address this via the surrogate

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 19
Lagrangian relaxation (SLR) method, also providing convergence proofs. Instead of up-
dating the dual variables in the direction of the subgradient, a surrogate subgradient
direction which forms an acute angle towards the optimal dual values is used. The al-
gorithm was extended in [10] by introducing an additional absolute value penalty in the
objective function of the primal problem (surrogate absolute value Lagrangian relax-
ation, SAVLR) and in [40] by employing ordinal optimization. These methods were used
to solve mixed-integer linear programming (MILP) problems with the main concern be-
ing the computational scalability. However, the recovery of a primal feasible solution is
not explicitly addressed. The algorithms based on SLR do not require the solution of each
subproblem in each iteration. This generally results in a larger number of iterations, each
of which on the other hand require less computation time. Therefore these algorithms are
suitable for problems where the solution of the subproblems poses the main bottleneck.
A common approach to improve the rate of convergence for gradient-based algorithms
is to use acceleration methods. Uribe et al. [59] adapt the fast gradient method (FGM)
proposed by Nesterov [50] and apply it to distributed optimization over networks. They
study different problem classes for the subproblems, where the degree of convexity and
smoothness is varied. However, the system-wide problem is a consensus problem, where
no individual or system-wide constraints are considered. Similar consensus problems are
considered in [18], where consensus constraints are introduced and subsequently relaxed
through dual decomposition. The authors propose a quasi-Newton method which relies
on decentralized computations to update the approximated Hessians locally. The same
algorithm is further studied in [19], where it is directly applied to the primal problem
without introducing dual variables. Nevertheless, no constraints are considered, except
for consensus constraints, and direct neighbor communication with an exchange of gra-
dients is necessary in each iteration. Zargham et al. [74] locally approximate the inverse
of the Hessian matrices by allowing direct communication between the subproblems. No-
tarnicola and Notarstefano [52] allow communication of auxiliary variables between the
subproblems and employ a relaxation and successive distributed decomposition (RSDD)
approach. Direct communication between the subproblems is also not intended in this
work. The aim of dual decomposition-based distributed optimization algorithms usually
is to find a set of primal-dual variables that satisfy the Karush-Kuhn-Tucker (KKT)
conditions. The Lagrange multiplier method and the KKT conditions are generalized in
[38] to a wider class of functions that still satisfy the strong duality condition. These
generalizations are subsequently applied to distributed optimization.

Goldstein et al. [27] extended ADMM to improve its rate of convergence by employing
a predictor-corrector–type acceleration step. However, this step is only stable for strongly
convex problems. In order to improve the rate of convergence second-order information
can be exploited. Houska at al. [33] extended ADMM into the augmented Lagrangian-
based alternating direction inexact Newton method (ALADIN). In this approach, the
Hessians of the Lagrangians of the subproblems are approximated, which requires the
communication of the constraint Jacobian matrices. This kind of second-order informa-
tion is assumed to be inaccessible in this paper. Chatzipanagiotis et al. [13] introduce an

20 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
acceleration step into the augmented Lagrangian method and propose the accelerated
distributed augmented Lagrangian method (ADAL), which is used to solve distributed
convex problems. The convergence of ADAL for nonconvex problems is further stud-
ied in [14]. ADMM is also generalized to nonconvex problems in [39], where nonconvex
equality constraints are considered. As discussed in Sec. 4.3, ADMM belongs to the class
of proximal algorithms. Other proximal algorithms can also be applied to distributed
optimization, e.g., the Douglas-Rachford splitting method [32]. These methods rely on
the addition of a penalty term to the objective function. A similar idea forms the basis of
interior point methods, where a barrier term is added to the objective function in order
to handle constraints [61]. Necoara and Suykens [46] combine dual decomposition with
interior point methods by adding self-concordant barrier terms to the Lagrange function.

Maxeiner and Engell [44] propose an approximation of the dual function by performing
subgradient update steps with a constant step size and then using the collected data to
extrapolate the update steps towards the optimal dual variables. This extrapolation is
based on the analytic solution of the dual problem for unconstrained quadratic programs
and requires adjustments if individual constraints are added or if other problem classes
are considered.

5. Algorithms based on smooth approximations

This section presents three different algorithms that rely on the computation of a
smooth surrogate function ψ(t)(λ). The parameters of the surrogate function are obtained
by minimizing a loss function depending on previously collected information B(t),

ψ(t)(λ) := arg min
ψ : Rnb→R

∑
j∈J (t)

L(ψ(λ(j)),B(t)). (52)

Once the surrogate function is obtained, the dual variables are updated by solving an
optimization problem, subject to constraints on the dual variables,

λ(t+1) = arg min
λ∈M

ψ(t)(λ). (53)

First, two algorithms based on the solution of a regression problem are presented. These
are the quadratic approximation coordination (QAC) algorithm presented in [69] and
the new quadratically approximated dual ascent (QADA) algorithm. The algorithms
share some components, in particular, the strategy to select regression data and the
constraints on the step size. After the introduction of these components, the QAC and
QADA algorithms are presented. In the QAC algorithm the squared Euclidean norm
of the primal residual ‖w(t)

p (λ)‖2
2 is approximated by a quadratic function. The QADA

algorithm is based on approximations of the dual function d(λ) which is advantageous
for several reasons, as explained below. Furthermore, bundle information and cutting
planes are used to handle the nonsmoothness of the dual function.

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 21
In addition to the regression-based approximation of the dual function, an algorithm
based on quasi-Newton updates is presented. The quasi-Newton dual ascent (QNDA)
algorithm, first presented in [73], also approximates the dual function as a quadratic
function. However, the approximation of the Hessian is based on Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updates.

A discussion of the convergence of the proposed algorithms is provided at the end of
the section.

5.1. Regression-based approximations

This section presents the algorithms in which the surrogate function is obtained as the
solution of a regression problem. First, the underlying regression problem is introduced,
followed by a description of the regression data selection strategy. As the quadratic ap-
proximations are only valid locally, a trust region constraint based on the used regression
data is presented, which prevents the dual variables from moving too far away from the
range of validity of the surrogate function. Afterwards, the QAC algorithm is summarized
briefly and the QADA algorithm is presented.

5.1.1. Fitting the parameters of a quadratic model
The regression-based algorithms follow the basic idea of derivative-free optimization

according to Conn et al. [16], where locally a surrogate, in this case quadratic, model is
fitted to previously collected data. To this end, a set of data points,

D(t) = {(λ(j), ψ̂(λ(j)))| 1 ≤ j ≤ t} (54)

collected from previous iterations is chosen, where λ(j) is a value of the dual variables and
ψ̂(λ(j)) the corresponding observed value of the approximated function. The surrogate
function considered in this paper is a quadratic function of the form

ψ(t)(λ) := 1
2λ

TQ(t)λ + q(t),Tλ + q
(t)
0 ,

Q(t) ∈ SRnb×nb ,q(t) ∈ Rnb , q
(t)
0 ∈ R. (55)

The parameters of the quadratic model (55) can be computed as the solution of the
regression problem

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

‖ψ(t)(λ(j)) − ψ̂(λ(j))‖2
2. (56)

In order to obtain the solution (56) in a closed form, eq. (55) can be rewritten as

ψ(t)(λ) =
nb∑ nb∑

[Q(t)]l,j [λ]l[λ]j +
nb∑

[q(t)]l[λ]l + q
(t)
0 . (57)
l=1 j=1 l=1

22 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
The parameters of the surrogate function can be summarized in a vector p(t),

p(t),T := ([Q(t)]1,1, . . . , [Q(t)]1,n(t)
b
, [Q(t)]2,2, . . . , [Q(t)]nb,nb

,

[q(t)]1, . . . , [q(t)]nb
, q

(t)
0). (58)

Let n(t)
j := |J (t)| be the number of used regression points in iteration t and

ψ̂
(t)

:= (ψ̂(λ(1)), . . . , ψ̂(λ(n(t)
j)))T (59)

the vector of observed values of the approximated function. Then, by defining the
Vandermonde-matrix [64]

M(t) :=
(
l◦21 , l1 ◦ l2, . . . , l1 ◦ lnb

, l◦22 , . . . , l◦2nb
, l1 . . . , lnb

,1
)
, (60)

with ll := ([λ(1)]l, . . . , [λ(n(t)
j)]l)T and the element-wise vector multiplication ◦, the pa-

rameters of the surrogate function can be obtained as

p(t) =
(
M(t),TM(t)

)−1
M(t)ψ̂

(t)
. (61)

Note that λ(1) in equations (59) and (60) denotes the first dual variables in the regression
set (54), not the dual variables in the first iteration of the dual decomposition-based
algorithm.

In order to perform a quadratic approximation at least

nreg,min := (nb + 1)(nb + 2)/2 (62)

data points are necessary, i.e., n(t)
j ≥ nreg,min, since p(t) ∈ Rnreg,min [16,64]. This shows

that the regression-based approximations cannot be used in the first iterations of
regression-based algorithms. Instead, an initial sampling phase is required, e.g., using the
subgradient method, until at least nreg,min data points have been collected. Furthermore,
the choice of the data used in the regression problem, i.e., J (t) ⊆ {1, . . . , t}, plays an
important role in the performance of the algorithms and is discussed in the next section.

5.1.2. Regression data selection strategy
The selection of suitable points for the quadratic approximation has been studied

extensively in the context of derivative-free optimization [16]. The following criteria are
usually considered [26,69]:

• spread,
• distance,
• number of points,
• age.

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 23
Fig. 3. Illustration of the regression data selection using the nearest axis point separation algorithm.

The points should be spread in different directions to provide enough information on
the approximated function. For a good local approximation, the majority of the data
points should not lie too far away from the current iterate in order to keep the ap-
proximation local. A minimum number of points (62) has to be used for the quadratic
approximation, but too many points might result in a poor quality of the approximation
if the approximated function is not quadratic and the points that are considered are
far away from the current iterate, e.g., in the case of a changing set of active individ-
ual constraints of the subproblems. Finally, only recent points should be used for the
approximation. This is essential if the parameters of the optimization problems change
over time, e.g., in the context of modifier adaptation in real-time optimization [26,66].

Different algorithms have been proposed for data selection in the context of quadratic
approximation. Two different algorithms from Wenzel et al. [66] and Gao et al. [26] were
compared in [70]. Throughout this work the nearest axis point separation (NAPS) algo-
rithm from [66] is used as it yields comparable results to the selection algorithm proposed
in [26] at a lower computational cost. The NAPS algorithm was developed in the context
of modifier adaptation for real-time optimization with quadratic approximation, and
later also applied to distributed optimization [64,65,69]. The algorithm aims at selecting
recent points that lie close to the current iterate λ(t) as well as evenly spread points
lying further away in order to stabilize the approximation. The algorithm is illustrated
in Fig. 3 for a two dimensional example and its steps are summarized in Algorithm 4.
First, all data points that are too old are excluded from the data set, depending on a
user defined age parameter τ . The matrix containing all previously stored points is de-
noted by Λ := (λ(0), . . . , λ(t)). These points are divided into inner points ΛI and outer
point ΛO. A point is classified as an inner point if it lies within a distance Δλ of the
current iterate. All inner points are added to the set of regression points Λ(t). The space
of dual variables Rnb is then divided into segments according to their sign configuration

24 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
(in reference to λ(t)) and their nearest axis. For instance, in Fig. 3 the segment S(+,+)
1

contains all points λ where [λ]1, [λ]2 > 0 lying closest to the [λ]1 axis. The algorithm
then cycles through all segments, always selecting the point closest to the current iterate
λ(t). The cycling process is repeated until at least nreg,min points have been added to the
regression set Λ. Finally, the values of the approximated function ψ̂(λ) corresponding
to the selected dual variables are selected. The regression data used for the subsequent
quadratic approximation is

D(t) = {(λ(j), ψ̂(λ(j)))| j ∈ J (t)}, (63)

where J (t) contains the indices of the selected data points. The NAPS algorithm is
summarized in Algorithm 4.

Algorithm 4 Nearest Axis Point Separation (NAPS, adapted from [69]).
Require: λ(t), Λ, Ψ̂, τ , Δλ, nreg,min

1: Λ(t) ← ∅, J (t) ← ∅
2: Λ ← Λ\{λ(j)| j < t − τ} 	 Remove old points.
3: ΛI ← {λ(j)| ‖λ(j) − λ(t)‖2 ≤ Δλ} 	 Inner points.
4: J (t) ← J (t) ∪ {j ∈ {1, . . . , t}| λ(j) ∈ ΛI} 	 Select all indices of inner points.
5: Λ(t) ← Λ(t) ∪ ΛI 	 Select all inner points.
6: ΛO ← Λ\ΛI 	 Outer points.
7: while |Λ(t)| < nreg,min do
8: for S(.)

l ∈ {S(.)
1 , . . . , S(.)

nb
} do 	 Go through all segments

9: j ← arg min
j∈{j| λ(j)∈S(.)

l ∩ΛO}
‖λ(j) − λ(t)‖2

10: J (t) ← J (t) ∪ {j}
11: Λ(t) ← Λ(t) ∪ {λ(j)}
12: S(.)

l ← S(.)
l \{λ(j)}

13: ΛO ← ΛO\{λ(j)}
14: end for
15: end while
16: ψ̂

(t) ← {ψ̂(λ(j)) ∈ Ψ̂| j ∈ J (t)} 	 Match observations to selected points
17: return Λ(t), ψ̂(t), J (t)

5.1.3. Covariance-based step size constraint
Wenzel and Engell [65] proposed a covariance-based step size constraint for the update

of the dual variables. The constraint prevents too aggressive steps and leads to updates
that are in the region where the local approximation is valid.

First, the covariance matrix of the approximation data is computed,

C(t) = cov(Λ(t)). (64)

The orientation of the ellipsoid is determined by the eigenvectors of the covariance matrix
while the corresponding eigenvalues are related to the lengths of its axes. Wenzel and
Engell [65] proposed to bound the axes of the ellipsoid, so that the search space does
not become too small, hindering the progression of the algorithm, or too big, possibly
leading to a numerically unbounded problem. This scaling of the axes is performed using

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 25
a singular value decomposition, which preserves the original orientation. The singular
value decomposition is performed for the covariance matrix,

C(t) = U(t)Σ(t)V(t),T , Σ(t) = diag(σ(t)
l), (65)

where σ(t)
l , l = 1, . . . , nb denote the singular values. Subsequently, the singular values

are scaled according to

σ̂
(t)
l := max{sl,min{σ(t)

l , sl}}, (66)

where sl and sl are user defined element-wise lower and upper bounds. Note that in
this way each axis can be scaled independently, even though using the same lower and
upper bounds is usually more convenient in practice. Using the scaled singular values,
the scaled covariance matrix can be computed,

Ĉ(t) = U(t)Σ̂(t)V(t),T , Σ̂(t) = diag(σ̂(t)
l). (67)

The updated dual variables λ(t+1) are then constrained to lie within an ellipsoid which
is defined by the scaled covariance matrix,

E(Λ(t)) := {λ ∈ Rnb |(λ− λ(t))T Ĉ(t),−1(λ− λ(t)) ≤ (γ(t))2}. (68)

Wenzel et al. [69] propose to update γ(t) according to

γ(t) = max{log ‖wp(λ(t))‖2, γ}, (69)

where γ is a user defined lower bound to prevent the ellipsoid from collapsing to a single
point. This choice of γ(t) allows bigger steps when the current point is far away from the
optimum and reduces the step size if the point is near the optimum.

5.1.4. The QAC algorithm
The quadratic approximation coordination (QAC) algorithm was first proposed in

[67]. It was motivated by the distributed optimization of quadratic programs (QPs)
without local constraints

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (70a)

s. t.
∑
i∈I

Aixi = b, (70b)

with symmetric positive definite matrices Hi ∈ SRnxi
×nxi , ci ∈ Rnxi , Ai ∈ Rnb×nxi

and b ∈ Rnb . This problem can be summarized as

26 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
min
x

1
2xTHx + cTx (71a)

s. t. Ax = b (71b)

where H := diag(H1, . . . ,HNs
), cT := (cT1 , . . . , cTNs

), A = (A1, . . . ,ANs
). It is easy to

show that the squared Euclidean norm of the primal residual ‖wp‖2
2 = ‖Ax − b‖2

2 is a
quadratic function of the dual variables. The Lagrange function of problem (71) is

L(x,λ) = 1
2xTHx + cTx + λT (Ax − b) . (72)

Since the matrices Hi are symmetric and positive definite, i.e., problem (71) is convex,
the optimal primal solution x∗ can be computed as a function of the dual variables by
applying the Karush-Kuhn-Tucker conditions [9]:

∇xL(x,λ) != 0 ⇒ x∗(λ) = −H−1(c + ATλ). (73)

Thus the primal residual wp can be formulated as a function of the dual variables,

wp(λ) = Ax∗(λ) − b = −AH−1(c + ATλ) − b. (74)

Computing the squared Euclidean norm of the primal residual leads to

‖wp(λ)‖2
2 = 1

2λ
T 2AH−1ATAH−1AT︸ ︷︷ ︸

=:Q̂

λ+ (75)

2(cTH−1AT + bT)AH−1AT︸ ︷︷ ︸
=:q̂T

λ+

(cTH−1AT + bT)(AH−1c + b)︸ ︷︷ ︸
=:q̂0

.

Thus the squared Euclidean norm of the primal residual is a quadratic function of the
dual variables [69]

‖wp(λ)‖2
2 = 1

2λ
T Q̂λ + q̂Tλ + q̂0. (76)

The QAC algorithm is based on local quadratic approximations of the squared Euclidean
norm of the primal residual, i.e., of

ψ̂(λ) = ‖wp(λ)‖2
2 =

∥∥∥∥∥∑
i∈I

Aixi(λ) − b

∥∥∥∥∥
2

2

. (77)

The surrogate function is a quadratic function

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 27
r(t)(λ) = 1
2λ

TQ(t)λ + q(t),Tλ + q
(t)
0 (78)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

∥∥∥r(t)(λ(j)) − ‖wp(λ(j))‖2
2

∥∥∥2

2
. (79)

The regression data

D(t) = {(λ(j), ‖wp(λ(j)))‖2
2| j ∈ J (t)}, (80)

is selected using the NAPS algorithm. After obtaining the surrogate function, the dual
variables are updated through a minimization problem, subject to the covariance-based
step size constraint

λ(t+1) = arg min
λ∈Rnb

r(t)(λ), (81a)

s. t. λ ∈ E(Λ(t)), (81b)

λ ≥ 0. (81c)

The QAC algorithm is summarized in Algorithm 5. Again, steps 5–8 are performed by
the subproblems in parallel, while steps 9–34 are performed by the coordinator.

A key feature of the QAC algorithm is that it only requires the communication of the
contribution to the system-wide constraints from the individual subproblems. Therefore,
no sensitive information has to be shared, preserving privacy of the subsystems. This
is essential, e.g., in the case of coupled production systems which might share limited
resources while belonging to different companies. Through the quadratic approximation
the QAC algorithm is able to infer second order information of the dual problem, thereby
improving the rate of convergence compared to the subgradient method, which has access
to the same information.

Nevertheless, the QAC algorithm also faces some drawbacks. First, the squared Eu-
clidean norm of the primal residual, which will also be referred to as primal residual in
the following for the sake of brevity, is only quadratic for the special case of distributed
QPs without individual constraints (70). Wenzel et al. [69] showed that the primal resid-
ual is a piece-wise quadratic function of the dual variables for distributed QPs with
individual constraints. The quadratic approximation in this case depends on the set of
active individual constraints. If the set of active individual constraints changes, the pri-
mal residual is not smooth [69]. It was shown in the example in Section 3 that this is
also the case for the dual function d(λ). However, while the dual function always retains
concavity, the same does not hold for the convexity of the primal residual. Thus, in a
more general distributed optimization setting the QAC algorithm tries to approximate a
nonsmooth and nonconvex function as a smooth quadratic function, which might reduce

28 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Algorithm 5 Quadratic Approximation Coordination (QAC).
Require: λ(0), α(0), τ , Δλ, si, si, γ, nreg,start, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subsystems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i to the coordinator

8: end for
9: g(λ(t)) ← ∑

∀i∈I Aix(t+1)
i − b

10: if Constraints (1b) are inequalities then
11: for all l = 1, . . . , nb do
12: [w(t)

p]l ← max
{[

g(λ(t))
]
l
, 0

}
13: end for
14: else if Constraints (1b) are equalities then
15: w(t)

p ← g(λ(t))
16: end if
17: if j < nreg,start then 	 Perform SG updates until enough points are collected
18: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

19: if Constraints (1b) are inequalities then
20: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
21: else if Constraints (1b) are equalities then
22: λ(t+1) ← λ(t) + α(t)g(λ(t))
23: end if
24: else 	 Perform QAC Updates
25: D(t) ← NAPS(Λ, ‖wp(Λ)‖2

2, τ, Δλ)
26: E(Λ(t)) ← ComputeEllipsoid(Λ(t), si, si, γ)
27: r(t)(λ) ← Regression(D(t))
28: if Constraints (1b) are inequalities then
29: λ(t+1) ← arg minλ∈E(Λ(t)) r

(t)(λ), s.t. λ ≥ 0
30: else if Constraints (1b) are equalities then
31: λ(t+1) ← arg minλ∈E(Λ(t)) r

(t)(λ)
32: end if
33: end if
34: w(t)

d ← λ(t+1) − λ(t)

35: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
36: return λ(t)

its efficiency. The issue of the changing sets of active constraints was addressed in [69]
by employing a fallback strategy, if an insensitivity of the primal residual was detected.
However, the numerical experiments described in Section 6 showed that the QAC algo-
rithm actually performed better without the fallback strategy. Therefore its discussion
is omitted at this point.

5.1.5. Quadratically approximated dual ascent
As discussed in the previous section, approximating the primal residual as a quadratic

function suffers from a number of drawbacks, mainly the loss of convexity and nons-
moothness. The problem of nonconvexity of the primal residual can be circumvented by
approximating the dual function, i.e.,

ψ̂(λ) = d(λ) = min
xi∈Xi, ∀i∈I

∑
Li(xi,λ) − λTb, (82)
i∈I

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 29
which is always concave. For the special case of distributed QPs (70) it is also easy to
show that the dual function is quadratic. By inserting the optimal values of the primal
variables x∗(λ) (73) into the Lagrange function (72) the dual function computes to

d(λ) = 1
2λ

T (−AH−1AT)︸ ︷︷ ︸
=:Q̃

λ+ (83)

(−cTH−1AT − bT)︸ ︷︷ ︸
=:q̃T

λ+

(−1
2cTH−1c)︸ ︷︷ ︸

q̃0

.

While the primal residual can become nonconvex, even for convex primal problems,
the dual function is always concave, regardless whether or not the primal problem is
convex. In the new proposed algorithm, the dual function is approximated by a quadratic
function,

d
(t)
Q (λ) = 1

2λ
TQ(t)λ + q(t),Tλ + q

(t)
0 (84)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

‖d(t)
Q (λ(j)) − d(λ(j))‖2

2. (85)

The regression data

D(t) = {(λ(j), d(λ(j)))| j ∈ J (t)}, (86)

is selected using the NAPS algorithm. Once the quadratic approximation has been
performed, the dual variables can be updated by maximizing the approximated dual
function. The update step of the dual variables can be interpreted as an ascent step for
the dual function using a quadratic approximation. Therefore the algorithm is referred
to as Quadratically Approximated Dual Ascent (QADA).

A difference between the QAC and QADA algorithms is the amount of information
collected from the subproblems in each iteration. While the QAC algorithm only requires
the information about the violation of the system-wide constraints, the QADA algorithm
additionally requires the information about the contributions of the subproblems to the
dual function,

di(λ) = min Li(xi, λ). (87)

xi∈Xi

30 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Fig. 4. Illustration of the effect of bundle cuts.

This essentially means that the QADA algorithm collects the same information as bundle
methods (30), consisting of the dual variables, the corresponding values of the dual
function and the subgradients. This bundle information can be used to better handle the
nonsmoothness of the dual function.

5.1.6. Bundle cuts
The core idea of the QADA algorithm is that a quadratic surrogate model of the dual

function is computed and optimized in order to update the dual variables. However, a
quadratic function can exhibit a significant approximation error, especially if the opti-
mum is at or near a point of nondifferentiability. This situation is illustrated in Fig. 4a.
The available points (blue circles) are used to compute the quadratic approximation of
the dual function dQ(λ). The maximum of the quadratic approximation (green cross) is
far from the actual optimum of the dual function. Updating the dual variables based on
this approximation results in a deterioration of the objective value. To alleviate this is-

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 31
sue, the collected subgradients can be used to formulate cutting planes. According to the
definition of the subgradient (22) the following relation holds between the dual function
d(λ) and a subgradient g(λ(j)) at a point λ(j):

d(λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)). (88)

This implies that a quadratic approximation of the dual function is not valid, if it does
not satisfy condition (88). Therefore, the collected subgradients are used to formulate
additional constraints on the updated dual variables λ(t+1), referred to as bundle cuts
in the following:

d
(t)
Q (λ(t+1)) ≤ d(λ(j)) + gT (λ(j))(λ(t+1) − λ(j)), ∀j ∈ {t− τ + 1, . . . , t}. (89)

The bundle cuts are formulated by using the data points that are not older than the age
parameter τ . Fig. 4b illustrates the effect of the bundle cuts on the QADA update step.
Constraining the quadratic approximation of the dual function to have a value lying
below the cutting planes results in an update that is closer to the optimum of the actual
dual function. (89) constitutes a quadratic inequality constraint on the update of the dual
variables, similar to the covariance-based step size constraint. Note that no additional
parameters have to be defined by the user for these constraints. In the following, the
bundle cuts are summarized as

BC(t) = {λ ∈ Rnb |d(t)
Q (λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)),

∀j ∈ {t− τ + 1, . . . , t}}. (90)

The dual variables are updated in each iteration of the QADA algorithm by maximizing
the approximated dual function, subject to the covariance-based step size constraints
and the bundle cuts,

λ(t+1) = arg max
λ∈Rnb

d
(t)
Q (λ), (91a)

s. t. λ ∈ E(Λ(t)) ∩ BC(t), (91b)

λ ≥ 0. (91c)

The QADA algorithm is summarized in Algorithm 6. Note that the initial sampling
steps in Algorithm 6 are performed using the subgradient method, similar to the QAC
algorithm (Algorithm 5). However, since the QADA algorithm also uses the bundle in-
formation, BTM could also be used for the initial sampling. Steps 5–9 are performed
in parallel by the subproblems while steps 10–37 are performed by the coordina-
tor.

32 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Algorithm 6 Quadratically Approximated Dual Ascent (QADA).
Require: λ(0), α(0), τ , Δλ, si, si, γ, nreg,start, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
8: coordinator
9: end for

10: g(λ(t)) ← ∑
∀i∈I Aix(t+1)

i − b
11: d(λ(t)) ← ∑

∀i∈I Li(x(t+1)
i , λ(t)) − λ(t),Tb

12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p]l ← max
{[

g(λ(t))
]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ← g(λ(t))
18: end if
19: if j < nreg,start then 	 Perform SG updates until enough points are collected
20: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

21: if Constraints (1b) are inequalities then
22: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
23: else if Constraints (1b) are equalities then
24: λ(t+1) ← λ(t) + α(t)g(λ(t))
25: end if
26: else 	 Perform QADA Updates
27: D(t) ← NAPS(Λ, d(Λ), τ, Δλ)
28: E(Λ(t)) ← ComputeEllipsoid(Λ(t), si, si, γ)
29: d

(t)
Q (λ) ← Regression(D(t))

30: F(t) ← E(Λ(t)) ∩ BC(t)

31: if Constraints (1b) are inequalities then
32: λ(t+1) ← argmaxλ∈F(t)d

(t)
Q (λ), s. t. λ ≥ 0

33: else if Constraints (1b) are equalities then
34: λ(t+1) ← argmaxλ∈F(t)d

(t)
Q (λ)

35: end if
36: end if
37: w(t)

d ← λ(t+1) − λ(t)

38: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
39: return λ(t)

5.1.7. Summary of regression-based algorithms
Fig. 5 shows a flowchart of the regression based algorithms (QAC and QADA). The

algorithm is initialized with the dual variables λ(0). In each iteration, the subproblems
are solved for the current values of the dual variables and the subgradient and, in the
case of the QADA algorithm, the dual value is communicated to the coordinator. If
not enough iterations have been performed, the dual variables are updated using the
subgradient method (23b). Otherwise the data for the approximation is selected and the
regression problem is solved. After updating the covariance-based step size constraint
and, in the case of QADA, the bundle cuts constraints, the dual variables are updated
by optimizing the surrogate function.

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 33
Fig. 5. Flowchart of the regression-based coordination algorithms (adapted from [69]).

5.2. Quasi-Newton dual ascent

Quasi-Newton methods have proven to be very efficient for smooth convex optimiza-
tion problems. The idea is to approximate the Hessian of the objective function by only
using first order information, i.e., objective values and gradients. In this paper the same
principle is applied to the dual optimization problem (4). If no individual constraints
(1c) are considered, the dual function is smooth and the subgradient is equal to the gra-
dient. In the case of individually constrained subproblems, nondifferentiabilities of the
dual function occur at the points where the set of active constraints changes. However,
quasi-Newton update steps can still be employed to compute a search direction of the
dual function. The proposed quasi-Newton dual ascent (QNDA) algorithm is described
in the following. A decentralized quasi-Newton algorithm was presented in [18] and [19].
There the subproblems use the curvature of their own objective function and estimate
that of their neighbors. The proposed decentralized Broyded-Fletcher-Goldfarb-Shanno
(D-BFGS) method relies on local communication between the subproblems without ag-
gregating information through a central coordinator. However, this network topology
requires the exchange of objective gradients, which is not considered in this paper.
Furthermore, no individual constraints are considered, which would result in a nons-
moothness of the dual problem. In contrast, the algorithm presented in this section
estimates the curvature of the dual function, while taking the nonsmoothness into ac-
count through the previously discussed bundle cuts.

The idea of Newton methods is to approximate the objective function d(λ) by a
quadratic function around the current iterate λ(t) through its Taylor series,

34 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
d(λ) ≈ 1
2(λ− λ(t))T∇2d(λ(t))(λ− λ(t)) + ∇T d(λ(t))(λ− λ(t)) + d(λ(t)). (92)

As the dual function is nonsmooth, i.e., ∇d(λ) and ∇2d(λ) do not exist for every value
of λ, if the set of active constraints changes, the quadratic approximation (92) cannot be
used in practice. Even for distributed problems without local constraints, i.e., for smooth
dual functions, the Hessian ∇2d(λ) is usually not readily available in a distributed set-
ting. Therefore, instead of using the analytical gradient and Hessian, approximations are
used, resulting in the following approximation of the dual function:

d
(t)
B (λ) = 1

2(λ− λ(t))TB(t)(λ− λ(t)) + gT (λ(k))(λ− λ(t)) + d(λ(t)), (93)

where the gradient is replaced by a subgradient g(λ(t)) and the Hessian is approximated
in each iteration by the matrix B(t), leading to a quasi-Newton method. The update of
the approximated Hessian B(t) can also be interpreted as the solution of an optimization
problem based on previous data. Thus, the surrogate function dB(λ) is obtained through
the solution of an optimization problem (52). However, unlike in the case of the QAC or
QADA algorithms no regression is performed. To compute an update of the approximated
Hessian the variations of the dual variables,

s(t) := λ(t) − λ(t−1) (94)

and of the subgradients

y(t) = g(λ(t)) − g(λ(t−1)) (95)

are defined. The approximated Hessian is then updated according to [51],

B(t) = arg min
B∈SRnb×nb

‖B − B(t−1)‖F (96a)

s. t. B(−1)y(t) = s(t), (96b)

were ‖ · ‖F denotes the (weighted) Frobenius norm. The approximated Hessian has to
be symmetric, since the actual Hessian is also always symmetric. Constraint (96b) is
called the secant condition and captures the local curvature of the objective function.
The solution of (96) can be written in a closed form as [51]

B(t) = B(t−1) + y(t)y(t),T

y(t),T s(t) − B(t−1)s(t)s(t),TB(t−1),T

s(t),TB(t−1)s(t) . (97)

Eq. (97) is the well-known BFGS-update scheme. The surrogate function d(t)
B (λ) is a

smooth approximation of the dual function. In order to perform the approximation of
the dual function the same amount of information as in the BTM and QADA algorithms
is collected. Therefore the bundle cut constraints can be employed to address the non-
smoothness of the actual dual function. However, the approximation is not based on

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 35
multiple regression points, as in the case of the QADA algorithm. Thus, the covariance-
based step size constraint should not be employed, as it is not representative of the range
of validity of the approximation. Instead the same trust region as in BTM can be used.
The dual variables are updated in each iteration by solving the optimization problem

λ(t+1) = arg max
λ∈Rnb

d
(t)
B (λ), (98a)

s. t. ‖λ− λ(t)‖2
2 ≤ α(t), (98b)

λ ∈ BC(t), (98c)

λ ≥ 0. (98d)

The proposed algorithm performs an ascent step of the dual function using a quasi-
Newton method. Hence it is referred to as Quasi-Newton Dual Ascent (QNDA). The
algorithm is summarized in Algorithm 7. Steps 5–9 are performed in parallel by the
subproblems while steps 10–36 are performed by the coordinator.

5.3. Discussion of the convergence properties of the QADA and QNDA algorithms

In this section, we provide a preliminary analysis of the convergence properties of
the QADA and QNDA algorithms for different cases, distributed quadratic and general
convex problems without constraints, distributed quadratic and general convex problems
with individual constraints and distributed mixed-integer quadratic programs. The argu-
ments, as usual, resort to applying sufficiently small step sizes which assures convergence
but is not advantageous for the performance of the algorithms, which is demonstrated in
the next section. In the real implementation and parameterization, the algorithms include
heuristic components which can only be validated by tests for well-designed benchmark
problems.

First, we consider the case of distributed quadratic programs without individual con-
straints,

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (70a)

s. t.
∑
i∈I

Aixi = b. (70b)

As was shown in Section 5.1.5, the dual function of Problem (70) is

d(λ) = 1
2λ

T (−AH−1AT)λ + (−cTH−1AT − bT)λ +
(
−1

2cTH−1c
)
, (83)

where the matrices and vectors H, c and A contain the parameters of the subproblems.
In a dual decomposition-based distributed optimization algorithm a subgradient of the
dual function in iteration t can be computed as

g(λ(t)) = Ax(t+1) − b, (100)

36 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Algorithm 7 Quasi-Newton Dual Ascent (QNDA).
Require: λ(0), B(0), α(0), τ , εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
8: coordinator
9: end for

10: g(λ(t)) ← ∑
∀i∈I Aix(t+1)

i − b
11: d(λ(t)) ← ∑

∀i∈I Li(x(t+1)
i , λ(t)) − λ(t),Tb

12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p]l ← max
{[

g(λ(t))
]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ← g(λ(t))
18: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

19: if j = 1 then 	 Perform SG update in first iteration.
20: if Constraints (1b) are inequalities then
21: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
22: else if Constraints (1b) are equalities then
23: λ(t+1) ← λ(t) + α(t)g(λ(t))
24: end if
25: else 	 Perform QNDA Updates
26: y(t) ← g(λ(t)) − g(λ(t−1))
27: B(t) ← BFGS(B(t−1), y(t), s(t))
28: F(t) ← {λ ∈ RnB | ‖λ − λt‖2

2 ≤ α(t)} ∩ BC(t)

29: if Constraints (1b) are inequalities then
30: λ(t+1) ← argminλ∈F(t)d

(t)
B (λ), s. t. λ ≥ 0

31: else if Constraints (1b) are equalities then
32: λ(t+1) ← argminλ∈F(t) d̃

(t)
B (λ)

33: end if
34: end if
35: s(t+1) ← λ(t+1) − λ(t)

36: w(t)
d ← s(t+1)

37: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
38: return λ(t)

with

x(t+1) = arg min
x∈Rnx

1
2xTHx + cTx + λ(t),T (Ax − b) (101)

= −H−1(c + ATλ(t)). (73)

Inserting (73) into (100) yields

g(λ(t)) = −AH−1(c + ATλ) + b = ∇d(λ(t)), (102)

which shows that in the case of distributed QPs without individual constraints the sub-
gradient is equal to the gradient of the dual function. This implies that the corresponding
dual problem is an unconstrained smooth convex problem.

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 37
In this special case the subgradient method is equivalent to a steepest ascent method
with a step size α(t) and a search direction s(t) = ∇d(λ(t)),

λ(t) = λ(t) + α(t)s(t). (103)

Quasi-Newton methods generally provide better search directions, by accounting for the
curvature of the objective function. The search direction for the BFGS method is given by

s(t) = B(t),−1∇d(λ(t)), (104)

where B(t) denotes the approximation of the Hessian computed by (97). Using this
search direction is equivalent to the QNDA algorithm, if bundle cuts are omitted and a
line search is used instead of a trust region. Note that since the dual problem is smooth
for this special case, the bundle cuts are not required. Convergence in this case can be
proven by a suitable selection of the step size, e.g., by requiring the satisfaction of the
Wolfe conditions [51],

d(λ(t) + α(t)s(t)) ≥ d(λ(t)) + β1α
(t)∇T d(λ(t))s(t), (105a)

∇T d(λ(t) + α(t)s(t))s(t) ≥ β2∇T d(λ(t))s(t), (105b)

β1 ∈ (0, 1), β2 ∈ (β1, 1). (105c)

However, the problem with finding a suitable step size through conditions (105) is that
the closed form of the objective function d(λ) is not known to the coordinator. Thus, the
step size has to be adjusted heuristically. The same issue arises when using a trust region
approach, as a certain degree of centralized information is necessary to compute optimal
hyper-parameters. The same convergence properties can be transferred for distributed
general convex problems without local constraints, as the subgradient is equal to the
gradient of the dual function.

In the case of the QADA algorithm, a quadratic surrogate function is computed by
solving a regression problem. In the special case of distributed QPs without individual
constraints (70) the dual function is quadratic, but unknown to the coordinator. For
enough data points, assuming a well-conditioned Vandermonde matrix M(t) (60) and
except for numerical errors, the surrogate function will be equal to the actual dual
function. This means that the update of the dual variables in the QADA algorithm
computes the solution to the dual problem. However, the employed trust region will
usually prevent convergence within a single iteration.

The situation is more complicated if individual constraints of the subproblems are
considered. In the case of distributed QPs without individual constrains Wenzel et al.
[69] showed that the primal residual for QAC is piecewise quadratic, depending on the
set of active constraints. The same holds for the dual function. The arguments made
above for the case without individual constraints can then be made locally once a point
sufficiently close to the optimum has been reached, employing a suitable (small) step

38 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
size. As long as the step size is small, the dual function can be approximated locally by
a quadratic function. If the set of active constraints changes, the quadratic form of the
dual function also changes. Again, assuming a small update steps, a good approximation
can be obtained after a few steps. Note that since the dual function is (globally) concave,
moving towards the optima of the piece-wise quadratic regions of the dual function will
eventually guide the search towards the global optimum of the dual function.

Similar arguments can be made for more general problems, as e.g. distributed convex
problems. Many convex optimization algorithms with provable convergence employ a
quadratic approximation of the objective function, e.g., sequential quadratic program-
ming (SQP) methods, Newton methods or quasi-Newton methods. As the dual problem
is a convex optimization problem, the same principles can be applied locally. In a re-
gion where the active constraints do not change, the arguments made for distributed
problems without individual constraints hold, as the subgradient is equal to the gradi-
ent. The main difference to more general convex optimization problems is that the dual
function exhibits nonsmoothness when the set of active individual constraints changes.
Therefore, the QADA and QNDA algorithms combine smooth convex optimization with
bundle methods for nonsmooth optimization. As described above, a cutting plane model
is defined,

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}. (31)

It has been shown that the cutting plane model will exactly match the concave nons-
mooth dual function, as t goes to ∞ [7], i.e.,

lim
t→∞

d̂(t)(λ) = d(λ), (106)

if all previously collected points are kept in the bundle. This is the basis of the proof of
the (theoretical) convergence of bundle methods. In the QADA and QNDA algorithms
the cutting plane model is used as an upper bound of the new objective value. For
instance, the QNDA update (98) can be reformulated as

λ(t+1) = arg max
λ∈Rnb

d
(t)
B (λ), (107a)

s. t. ‖λ− λ(t)‖2
2 ≤ α(t), (107b)

d
(t)
B (λ) ≤ d̂(t)(λ), (107c)

λ ≥ 0. (107d)

As t tends to ∞, the constraints (107c) prevent the algorithm from moving in a wrong
direction, eventually leading to convergence. The same holds for the QADA algorithm.

From a practical point of view, it is not desirable to store all previously collected
information in the bundle, as this would necessitate a possibly infinite storage capacity.
Therefore only recent data is stored in the bundle, both for BTM and the two proposed

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 39
algorithms, with the age parameter τ being an important hyper-parameter. If sufficient
data is kept in the bundle good performance can be observed in practice.

In this paper distributed mixed-integer quadratic programs are also considered. In this
case, the dual problem essentially does not differ from the case of distributed general
convex problems. However, the convergence arguments made above apply only to the
dual function, i.e., convergence of the dual variables. For convex problems, the optimal
primal solution can be obtained at the dual optimum, since strong duality holds. This
is however not the case for integer problems. It can generally not be guaranteed that a
feasible primal solution will be obtained, even at the dual optimum. Vujanic et al. [60]
propose a tightening the right-hand side of the system-wide constraints and prove that
a feasible solution of the original primal problem is obtained at the dual optimum of
the modified problem, additionally providing some performance guarantees. The same
tightening is applied in this paper and discussed in more detail in Section 6.2. Feasibility
is proven for mixed-integer linear programming problems. The transfer of these results
to mixed-integer quadratic programming problems is an open research question. From
a practical point of view a key issue when considering distributed integer problems (or
nonconvex problems in general) in a dual decomposition-based distributed optimization
setting is that all subproblems have to be solved to global optimality. Recall that the
dual function is actually defined as the infimum of the Lagrange function for a value of
the dual variables (3). Global optimality of mixed-integer programming problems with
convex relaxations can be assessed through the obtained integrality gap. Prematurely
terminating the optimization of the subproblems at a suboptimal solution, or converging
to a local minimum of the subproblems for continuous nonconvex problems can lead
to the loss of convexity of the sampled response surface of the dual function or the
computation of wrong subgradients. Applying the proposed algorithms to nonconvex
problems where global optimality of the subproblems cannot be guaranteed is also an
open research question.

Note that all discussions on convergence consider the case that the dual optimum is
found for t → ∞. This however does not guarantee the efficiency of the algorithms. For
instance, the general ADMM algorithm for problem (39) provably converges to the dual
optimum under certain convexity assumptions. The application of ADMM in practice
shows that it converges fast to a solution with modest accuracy (in terms of the primal
residual) near the optimum, but that finding a high accuracy solution can be very time
consuming [8]. The practical efficiency of the new proposed algorithms in comparison to
the benchmark algorithms, both in terms of number of required iterations and solution
accuracy, is demonstrated in the next section.

6. Computational results

In this section, the performance of the proposed new QADA and QNDA algorithms
is compared to the subgradient method, BTM, ADMM and to the QAC algorithm for
different benchmark problems. Three different problem classes are considered, distributed

40 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
quadratic programs (QP), distributed mixed-integer quadratic programs (MIQP) and
distributed convex programs (Conv).

All algorithms and subproblems were implemented in the programming language Julia
[5] using the optimization toolbox JuMP [17]. All affine, QP and MIQP subproblems
were solved using the commercial solver Gurobi [29], while general convex problems
were solved using the interior-point solver IPOPT [61]. The update problem of BTM is
guaranteed to be a linear program with affine and convex quadratic constraints, therefore
it was solved using Gurobi. The update problems of QAC, QADA and QNDA were solved
using IPOPT. All computations were performed on a standard Laptop PC (Intel(R)
Core(TM) i5-6200U CPU @ 2.30 GHz, 8 GB RAM).

In order to assess the efficiency of the different algorithms the computation time
required for the solution of a distributed optimization problem is computed as [55]

Tcomp = Niter · Tcomm +
Niter∑
t=1

(T (t)
update + max

i∈I
T

(t)
sub,i), (108)

where Niter is the number of required iterations, Tcomm is the required communication
time between the coordinator and the subproblems, which is assumed to be constant,
T

(t)
update is the time required by the coordinator to update the dual variables in iteration

t and T (t)
sub,i is the solution time of subproblem i in iteration t. In a distributed optimiza-

tion setting the subproblems can be solved in parallel. Since the coordinator needs to
collect the responses of all subproblems, the time for updating the primal variables in
each iteration is dictated by the slowest subproblem. The communication time is set to
Tcomm = 800 ms in the following.

All algorithms are terminated if the Euclidean norms of the primal and dual residuals
lie below a threshold εp and εd respectively, or when the maximum number of iterations
tmax is reached.

6.1. Distributed QPs

A large number of distributed QP benchmark problems were defined in [65] and [69]
with the following structure:

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (109a)

s. t.
∑
i∈I

Aixi = 0, (109b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (109c)

with xi ∈ Rnxi . The system-wide constraints (109b) can be interpreted as a resource
network balance, were Ns subsystems share resources. The goal is to optimize the overall
system in a distributed manner while ensuring that the network is balanced, i.e., that
the resource production and consumption matches.

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 41
The matrices Hi were generated randomly as symmetric positive definite matrices,

Hi = MT
i Mi, Mi ∈ Rnxi

×nxi , (110)

where the elements of Mi were drawn from a normal distribution [Mi]l,j ∈ N (μ = 0, σ =
1). The elements of the vectors ci were drawn from the same normal distribution. The
elements of the matrices of the coupling constraints Ai were first drawn from a uniform
continuous distribution Uc(1, 2). Afterwards, they were altered such that their sign is
flipped or they are set to zero through the uniform discrete distribution Ud[−1, 0, 1],

Ai = Bi ◦ Ci ∈ Rnb×nxi , [Bi]l,j ∈ Uc(1, 2), [Ci]l,j ∈ Ud[−1, 0, 1], (111)

where ◦ denotes element-wise multiplication. If a row in Ai only contained zeros, a
correction step was performed that creates at least one nonzero entry. Box constraints
(109c) were used as individual constraints for each subproblem. In all cases [xLB

i]l = −10
and [xUB

i]l = 10.
The number and size of the subproblems were varied as follows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},

Number of variables: nxi
∈ {2, 3, . . . , 10}, Ns ≥ nxi

.

All subproblems contain the same number of primal variables (nxi
= nx, ∀i ∈ I)

and the number of coupling constraints was set equal to the number of variables, i.e.,
nb = nx. Fifty problem instances were generated for each pair of number of subsystems
and number of coupling constraints/variables (Ns, nb). In the following, the notation
QP(R)

(Ns,nb) is used, where R indicates the number of the problem instance. For example,
QP(7)

(256,2) refers to the seventh problem instance containing 256 constrained quadratic
programs, each with 2 variables, connected through 2 coupling constraints. In [65] and
[69] nxi

∈ {2, . . . , 5} was considered, resulting in total of 1400 problem instances. By
increasing the number of primal variables/system-wide constraints an additional 1400
problems were generated, resulting in a total of 2800 distributed QPs. It should be noted
that all benchmark problems are strongly convex and satisfy Slater’s constraint qualifi-
cation, since xi = 0, ∀i ∈ I is a strictly feasible solution. Therefore, strong duality holds
and solving the dual problem is equivalent to solving the primal problem. Furthermore,
since the system-wide constraints are equalities, no nonnegativity constraints have to be
imposed on the dual variables.

42 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
6.1.1. Parameter settings for distributed QPs
For the subgradient method (SG) the initial step size parameters was set to α(0) =

2 × 10−3 and then varied according to (28). The same parameter was used for the trust
region of BTM. Furthermore, for BTM only recent points were used to construct the
cutting plane model, with an age parameter τ = 2 × nreg,min. For ADMM the initial
regularization parameter was set to ρ(0) = 1/Ns and varied according to (50) with
τdecr = 1.25, τincr = 1.5 and μ = 10. The parameters for the regression-based algorithms
were mostly chosen as in [69]. The age parameter of NAPS was set to τ = 2 × nreg,min,
similar to the BTM algorithm, while the radius of the inner sphere was set to Δλ =
5 × 10−5. The lower and upper bounds for the covariance-based step size constraints
were set to sl = nb × 10−6 and sl = nb × 10−3 respectively. The parameter γ(t) was
updated according to (69), with γ = 1. The regression data was selected using the
NAPS algorithm. However, all recent points according to the age parameter τ were used
to construct the bundle cuts in the case of the QADA algorithm. The same age parameter
was used for the bundle cuts of the QNDA algorithm, while the trust region was defined
in the same way as for the BTM algorithm. The approximated Hessian was initialized
with the negative identity matrix B(0) = −I. The bundle cuts usually lead to more
conservative update steps, especially during the initial iterations. This issue can slow
down the convergence of the QADA and QNDA algorithms. Therefore, the bundle cuts
were only enforced within a certain distance to the optimum, i.e., when

‖wp(λ(t))‖2 ≤ εb · ‖wp(λ(0))‖2. (112)

The corresponding parameter was set to εb = 0.6. The dual variables, and the auxiliary
variables in the case of ADMM, were initialized with λ(0) = 0 and z(0)

i = 0, ∀i ∈ I. The
maximum number of iterations was set to tmax = 500 and the convergence tolerances
to εp = εd = 10−2. All parameters were set by trial and error, in order to find the
parameters that result in the most converged benchmark problems. All parameters are
summarized in Table A.5 in the appendix.

6.1.2. Results for distributed QPs
The 2800 benchmark problems were solved using the subgradient method (SG), BTM,

ADMM, QAC, QADA and QNDA. The QADA algorithm requires an initial sampling
phase until enough data points are available for a regression. These initial steps were
performed by the SG (QADA-SG), BTM (QADA-BTM) and QNDA (QADA-QNDA)
algorithms. In principle the same algorithms could be used to initialize the QAC algo-
rithm. However, a main feature of the algorithm is that it only requires subgradients
from previous iterations. Therefore, the QAC algorithm was only initialized using SG
updates.

A summary of the results is given in Table 1 and in Fig. 6. A more extensive summary
is given in Table D.7 in the appendix. The results show that the subgradient method
performs poorly for the considered benchmarks. Only a small fraction of the problems

Fig. 6. Mean values of the primal residuals upon convergence for the distributed quadratic programs. Each
data point represents the mean values of the converged problem instances for a pair Ns and nb (cf. Ta-
ble D.7).

Table 1
Summary of the results for the distributed optimization of QPs (mean values of the converged instances
only), t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in
s), ‖wp‖2: mean primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp ‖wp‖2 %c

SG 384.74 308.36 9.88 16.83
BTM 196.95 160.07 7.47 95.11
ADMM 179.55 145.54 6.81 82.3
QAC 199.24 167.73 2.15 57.32
QADA-SG 133.49 139.5 3.31 96.46
QADA-BTM 128.10 135.22 3.26 96.96
QADA-QNDA 127.23 135.47 3.29 96.57
QNDA 134.31 126.4 3.94 98.50

is solved within the allowed number of iterations. Additionally, the problems that do
converge require a large number of iterations and long computation times. BTM and
ADMM are significantly more robust, being able to solve most of the benchmark prob-
lems. While BTM solves more problems, ADMM requires fewer iterations and exhibits
faster computation times for its converged problems. The number of required iterations
and computation time for the QAC algorithm is comparable to BTM and ADMM. QAC
converges fast near the optimum, yielding the lowest values of the primal residual upon
convergence, but it is not very robust, solving only slightly more than half of the bench-
mark problems. Note however, that all other algorithms except the subgradient method
use more information on the subproblems and that ADMM enforces that the subsystem
problems are modified which may have practical disadvantages in a fully distributed set-
ting. The QADA and QNDA algorithms show the best performance, both being able to
solve almost all benchmark problems. Interestingly, while QADA requires less iterations
V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 43

44 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058

Fig. 7. Results of the distributed optimization of problem QP(7)
(256,2).

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 45

Fig. 8. Results of the distributed optimization of problem QP(17)
(16,2).

46 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
to converge, QNDA requires less computation time. This is due to the fact that the up-
date steps of the dual variables are less expensive in the case of QNDA, as no regression
and no singular value decomposition are required for the updates of the approximated
dual and the step size constraints respectively. However, if the required communication
time is larger than assumed in this study, QADA might perform better. In terms of scal-
ability, both ADMM and BTM perform well for cases with relatively few subproblems
where they tend to perform better than the approximation-based algorithms. Their per-
formance deteriorates as the problem size increases. In contrast, the approximation-based
algorithms scale well with the problem size. The main influencing parameter for the per-
formance of these algorithms is the number of dual variables/system-wide constraints.
The proposed algorithms are especially well suited for distributed optimization problems
that consist of many subproblems which are coupled by relatively few constraints.

Fig. 7 shows the results for the distributed optimization of benchmark problem
QP(7)

(256,2). The contour plots in Fig. 7a demonstrate the advantage of the QADA
and QNDA algorithms compared to the QAC algorithm. The squared primal residual
‖wp(λ)‖2

2 (left) is nonconvex and nonsmooth. In the shown problem instance, the opti-
mum lies near a point of nondifferentiability, making it difficult for the QAC algorithm
to find a suitable quadratic approximation. In contrast, the dual function d(λ) (shown
on the right) is concave. Additionally, the effect of the changing set of active constraints,
which cause the nonsmoothness, is less profound in the dual function. These effects lead
to faster convergence of the QADA and QNDA algorithms, even though QADA initially
takes some steps away from the optimum. Among the examined algorithms the ones
approximating the dual function (BTM, QADA, QNDA) exhibit the best performance.
The subgradient method and ADMM also converge, but require more iterations.

While the bundle cuts are able to handle the nonsmoothness of the dual function in
most cases, this does not apply to all benchmark problems. Fig. 8 shows the results for
benchmark problem QP(17)

(16,2), where the optimum lies at a point of nondifferentiabil-
ity. No algorithm manages to converge, except for ADMM, which smoothens the dual
function via the regularization term in the augmented Lagrange function. All other al-
gorithms terminate close to the optimum, but are not able to reach it within the allowed
number of iterations. The QADA and QNDA algorithms manage to converge for most
benchmark problems, even for the ones where the optimum lies at a nondifferentiable
point. From the tests ADMM is only able to reach an optimum at a nondifferentiable
point if only a few subproblems are involved.

6.2. Distributed MIQPs

In [69] only convex QPs were considered. In this paper the computational results
are extended by also considering distributed MIQPs. The benchmark problems have the
following structure:

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 47
min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (113a)

s. t.
∑
i∈I

Aixi ≤ b, (113b)

Dixi ≤ di, ∀i ∈ I, (113c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (113d)

xi ∈ Rnc
xi × Znd

xi ,∀i ∈ I, (113e)

with nc
xi

= �nxi
/2� and nd

xi
= �nxi

/2�. The matrices and vectors Hi, ci, Ai, xLB
i

and xUB
i were generated in the same way as for the distributed QPs. The elements

for the individual constraints (113c) were drawn from continuous uniform distributions
[Di]l,j ∈ Uc(−5, 5) and [di]l ∈ Uc(−1, 1).

The elements of the right-hand side of the system wide constraints (113b) b were
drawn from the same distribution as the elements of the matrices Ai. Since the system-
wide constraints are inequalities a situation might occur were the solutions of the
subproblems are completely decoupled, i.e., were λ = 0 results in a feasible solution.
This trivial solution is avoided by tightening the system-wide constraints. Once all sub-
problems were generated, the decoupled subproblems

min
xi

1
2xT

i Hixi + cTi xi, (114a)

s. t. Dixi ≤ di, ∀i ∈ I, (114b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (114c)

xi ∈ Rnc
xi × Znd

xi ,∀i ∈ I, (114d)

were solved, obtaining the decoupled optimal primal variables x̃∗
i . The elements of b

were then tightened according to

[b]l = [b]l − (1 + [β]l)

∥∥∥∥∥∑
i∈I

Aix̃∗
i

∥∥∥∥∥
2

, (115)

with [β]l ∈ Uc(0.1, 0.3). Finally, after generating all subproblem parameters the feasibility
of the central problem was evaluated. If the problem was infeasible, the benchmark
problem was discarded and a new one was generated.

For the MIQPs large-scale problems were considered, i.e., problems with Ns � nb
[12,60]. The number and size of the subproblems were varied as follows:

Number of subproblems: Ns ∈ {100, 200, 300, 400, 500},

Number of variables: nxi
∈ {2, 3, 4, 5}.

48 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
All subproblems contain the same number of variables nx = nxi
and the number of

system-wide constraints is equal to the number of variables of each subproblem, i.e., nb =
nx. Ten benchmark problems were generated for each combination (Ns, nb), resulting in
a total of 200 MIQP benchmark problems.

6.2.1. Recovery of primal feasibility for distributed MIQPs
Due to the integrality constraints (113e) MIQPs are always nonconvex, i.e., strong

duality does not hold. This means that the primal problem might not be feasible at
the optimal dual solution. Vujanic et al. [60] proved that a feasible primal solution
can be obtained for large-scale mixed-integer linear programs (MILP) if the system-
wide constraints are tightened via a contraction. The right-hand side of the system-wide
constraints is contracted as follows,∑

i∈I
Aixi ≤ b, (116a)

b = b − ζ, (116b)

[ζ]l = nb · max
i∈I

{
max
xi∈Xi

[Ai]l,:xi − min
xi∈Xi

[Ai]l,:xi

}
, (116c)

where [Ai]l,: denotes the lth row of the matrix Ai. The same contraction was used in this
paper. Therefore, in a first step all subproblems have to solve the two inner optimization
problems in (116c) and communicate the results to the coordinator. The coordinator
then collects all responses and tightens the coupling constraints. It is important to note,
that the contracted right-hand side b̄ is used to compute the subgradient and dual value
within the distributed optimization algorithm. However, the original right-hand side b
is used to compute the values of the primal residual for the termination criterion, as one
is interested in the feasibility of the original problem. As the coupling constraints are
inequalities, the primal residual is computed using (26) and nonnegativity constraints
are imposed on the dual variables.

6.2.2. Parameter settings for distributed MIQPs
As noted earlier, the coupling constraints (113b) are inequalities for the MIQP bench-

mark problems. In general, it is easier to find a feasible solution for inequality constrained
problems using dual decomposition-based distributed optimization than for equality con-
strained ones. By selecting larger values for the dual variables, the corresponding primal
solution is “pushed” towards primal feasibility. This can be achieved by using an aggres-
sive parametrization of the distributed optimization algorithms. However, even though
an obtained primal solution might be feasible, it tends to be further away from the opti-
mum, compared to a more conservative parametrization. This is illustrated in Fig. 9 for
problem MIQP(1)

(300,3) using the subgradient method. By setting the initial step size pa-
rameter α(0) to 5 ×10−2 convergence is achieved within a single iteration. In comparison,
setting the parameter to 3 × 10−4 leads to convergence after 100 iterations. However,

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 49
Fig. 9. Results of the distributed optimization of problem MIQP(1)
(300,2) using the subgradient method with

different initial step size parameters α(0).

the more aggressive parameter leads to a primal solution with a relative duality gap of
5.74% while the conservative choice leads to a gap of 0.48% (cf. Sec 6.2.3, eq. (117)).
This is due to the obtained values of the dual variables. As seen in Fig. 9b and 9d the
more conservative choice converges with smaller values of the dual variables, which lie
closer to the optimum. Similar effects can be observed for all distributed optimization al-
gorithms. Therefore, all algorithms are parametrized more conservatively for the MIQP
benchmark problems compared to the QP problems in order to obtain better primal
solutions.

The step size parameter was set to α(0) = 3 × 10−4 and the regularization pa-
rameter for ADMM was set to ρ(0) = 10−3/Ns. The age parameter of NAPS was
set to τ = 1.5 × nreg,min. The bounds for the covariance-based step size constraints
were set to sl = nb × 10−8, sl = nb × 10−4 and γ = 0.1. The remaining param-
eters remained unchanged compared to the QP benchmark problems. All parameters
were set by trial and error, in order to find the parameters that result in the most
converged benchmark problems. All parameters are summarized in Table A.5 in the
appendix.

As discussed in Sec. 6.2.1, the distributed optimization algorithms actually try to solve
a primal problem with the contracted right-hand side b. However, the algorithms are
terminated prematurely, i.e., when the original problem is feasible. In this case the dual
variables might not have converged to a stationary value, as they are updated on the basis
of the tightened problem. Therefore, only the primal residual is used as a convergence
criterion for the MIQP benchmark problems in order to avoid unnecessary iterations. It
should be noted that waiting for the dual variables to converge to a stationary value can
also deteriorate the primal solution, similar to an aggressive parametrization.

5

Fig. 10. Relative duality gaps (rel. DG) of the MIQP benchmark problems upon termination for the examined
algorithms. The value of the rel. DG for not converged runs has no meaning, as it corresponds to an infeasible
primal solution (cf. Table D.8).

Table 2
Summary of the results for the coordination of MIQPs (mean values of the converged instances only),
t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in s),
rel. DG: mean relative duality gap of converged runs (in %), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp rel. DG %c

SG 86.69 69.88 1.66 99.5
BTM 80.52 65.41 1.66 100
ADMM 25.06 21.16 2.22 100
QAC 59.40 52.83 2.13 86.0
QADA-SG 19.37 18.37 2.54 100
QADA-BTM 20.78 18.62 3.53 100
QADA-QNDA 22.20 22.76 2.86 100
QNDA 79.90 74.91 1.73 100

6.2.3. Results for distributed MIQPs
The MIQP benchmark problems were solved using the same algorithms as for the QP

problems. The results are illustrated in Fig. 10 and summarized in Table 2. Instead of
depicting the primal residual (which is 0 for converged runs), Fig. 10 shows the relative
duality gap,

rel. DG = 100 ·
∑

i∈I fi(x∗
i (λ)) − d(λ)∑

i∈I fi(x∗
i (λ)) (117)

for all benchmark problems, i.e., the relative difference between the objective value of
a feasible primal solution obtained for a value of the dual variables λ and the corre-
sponding value of the dual function. As weak duality still holds, the value of the dual
function provides a lower bound on the global optimum of the primal problem. Thus,
0 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 51

Fig. 11. Results of the distributed optimization of problem MIQP(7)
(100,2).

52 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Fig. 12. Results of the distributed optimization of problem MIQP(9)
(500,5).

the relative DG is useful to prove a worst-case distance of a found solution to the global
optimum. As can be seen, most algorithms can solve all benchmark problems, except
for the subgradient method (which solves all but one) and QAC. Out of the considered
algorithms, QADA exhibits the best performance, both in terms of computation time
and required iterations. QADA here shows a significantly superior performance when
compared to QNDA.

The results indicate that the primal residual cannot be approximated well as a
quadratic function in all cases, leading to a poor performance of the QAC algorithm.
One such instance is shown in Fig. 11 for benchmark problem MIQP(7)

(100,2). The surface
plots in Fig. 11a show that the primal residual ‖wp‖2

2, which is approximated by QAC,

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 53
Table 3
Computational results for all MIQP benchmark problems with Ns = 500 and nx = 5. The central solution
shows the relative integrality gap and the computation time while the distributed optimization algorithms
show the relative duality gap and the computation time.

Central SG BTM
rel. IG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 3.70 3600 0.77 22.67 0.82 50.55

MIQP(2)
(500,5) 2.87 3600 0.43 12.97 0.35 30.91

MIQP(3)
(500,5) 3.74 3600 0.31 29.18 0.83 56.29

MIQP(4)
(500,5) 3.81 3600 1.22 2.42 0.03 6.48

MIQP(5)
(500,5) 3.00 3600 0.05 148.11 2.52 200.63

MIQP(6)
(500,5) 3.51 3600 0.03 162.75 3.42 208.11

MIQP(7)
(500,5) 3.15 3600 4.78 20.23 0.36 43.17

MIQP(8)
(500,5) 3.22 3600 5.36 137.68 2.01 181.13

MIQP(9)
(500,5) 3.53 3600 3.41 33.23 0.81 61.12

MIQP(10)
(500,5) 3.33 3600 0.59 66.4 0.96 106.82

Mean 3.39 1.21 63.56 1.21 94.52
ADMM QAC QADA-SG
rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 0.80 22.88 – 465.69 0.92 18.72

MIQP(2)
(500,5) 0.55 27.07 0.37 12.98 0.37 12.98

MIQP(3)
(500,5) 1.04 21.65 1.03 33.40 1.22 19.49

MIQP(4)
(500,5) 0.04 18.93 0.05 2.43 0.05 2.48

MIQP(5)
(500,5) 4.76 23.46 4.28 39.72 4.78 30.65

MIQP(6)
(500,5) 5.36 23.45 5.15 41.83 5.89 26.76

MIQP(7)
(500,5) 0.39 21.69 0.36 19.73 0.70 18.32

MIQP(8)
(500,5) 4.85 23.40 0.75 46.61 5.29 26.45

MIQP(9)
(500,5) 1.21 23.43 0.67 350.01 1.07 19.30

MIQP(10)
(500,5) 1.79 23.7 2,75 67.61 1.15 21.53

Mean 2.08 22.97 1.71 68.26 2.14 19.67
QADA-BTM QADA-QNDA QNDA
rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 0.90 21.86 0.85 21.93 0.77 54.13

MIQP(2)
(500,5) 0.50 19.37 0.43 21.38 0.31 33.34

MIQP(3)
(500,5) 1.22 23.06 1.15 23.20 0.83 67.61

MIQP(4)
(500,5) 0.03 6.48 0.03 4.46 0.03 4.39

MIQP(5)
(500,5) 3.96 31.68 5.54 31.66 2.69 245.26

MIQP(6)
(500,5) 4.10 35.24 9.02 30.56 3.43 249.38

MIQP(7)
(500,5) 0.66 22.54 0.59 21.74 0.36 50.78

MIQP(8)
(500,5) 9.18 31.95 6.03 31.05 2.01 217.67

MIQP(9)
(500,5) 1.38 21.37 1.40 23.79 0.87 77.00

MIQP(10)
(500,5) 5.86 32.19 2.23 29.46 0.95 124.96

Mean 2.78 24.57 2.73 23.92 1.22 112.45

is nonsmooth and nonconvex. In comparison, the dual function is always concave and
the nonsmoothness is less profound. Therefore, QADA and QNDA are able to compute
a better smooth approximation and to handle the nonsmoothness through the bundle

54 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
cuts. This is reflected in the convergence of the algorithms. QADA converges quickly
to a feasible primal solution. ADMM converges in a similar number of iterations. While
QNDA does also converge, it does so in the same number of iterations as BTM and is
slower than QADA and ADMM. Finally, QAC is not able to converge within the allowed
number of iterations.

For integer problems the optimal duality gap tends to decrease as the number of
subproblems increases [60]. This also holds for the nonsmoothness of the response
surfaces [69]. Thus, the performance of the approximation-based algorithms tends to
improve for larger problems. An example is shown in Fig. 12 for benchmark problem
MIQP(9)

(500,5) where all algorithms converge to a feasible solution. The evolution of the
primal residual (Fig. 12a) and the dual variables (Fig. 12b) indicate that QAC tends
to oscillate, leading to a slower convergence. Fig. 12 also shows that BTM and QNDA
converge slower than QADA and ADMM. This holds for the majority of the MIQP
benchmark problems. Interestingly, the increased number of subproblems also affects
the subgradient method, which tends to perform better for larger MIQP problem in-
stances.

As discussed in Sec. 1, one reason for employing distributed optimization is to preserve
privacy between the subproblems. However, another reason might be the computational
performance of the system-wide optimization problem. This aspect is relevant for large-
scale mixed-integer problems, where a centralized monolithic solution can become in-
tractable. Decomposing a large-scale problem into smaller subproblems and solving them
in a distributed manner can lead to significant computational savings. A main appeal of
state-of-the-art MIP solvers is that even when the global optimum is not found within the
desired computation time, a worst-case distance to this optimum can be inferred through
the relative integrality gap (rel. IG). The same holds for dual decomposition-based dis-
tributed optimization algorithm, where the distance of a found feasible primal solution
to the global optimum is bounded by the duality gap. MIPs are always nonconvex due
to the integrality constraints, meaning that strong duality does not hold. However, weak
duality is always satisfied and provides bounds on the global optimum. In order to assess
the quality of the solutions obtained through the dual decomposition-based distributed
optimization algorithms, they were compared to solutions obtained through a central
optimization of the system-wide problem using the commercial solver Gurobi for the
benchmark problems with Ns = 500 and nx = 5. A time limit of one hour (3600 s) was
set for the central optimization. The results are shown in Table 3. Remarkably, Gurobi
was not able to solve any problem to global optimality within the time limit. In contrast,
the dual decomposition-based algorithms all converge within much shorter computation
times (except for problem MIQP(1)

(500,5) using QAC). Even though the found primal so-
lutions are not provably globally optimal, the relative DG is usually better than the
relative IG provided by Gurobi. Thus, distributed optimization provides better bounds
(and better primal solutions) for the examined benchmark problems. Among the dual
decomposition-based distributed optimization algorithms QADA-SG exhibits the best
computation times, followed by ADMM. QADA-BTM and QADA-QNDA exhibit larger

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 55
computation times, since the initial samping steps are computationally more expensive,
compared to simple subgradient updates.

6.3. General distributed convex problems

In Sec. 6.1 all of the subproblems were quadratic programs. In this section, more
general convex problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (118a)

s. t.
∑
i∈I

Aixi = 0, (118b)

xT
i Gixi ≤ p2

i , ∀i ∈ I (118c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (118d)

are considered. The objective functions fi(xi) are all convex functions (inside the feasi-
ble set of (118)) and are summarized in Table B.6 in the appendix alongside the bounds
(118d) and the distributions from which their parameters were randomly drawn. The
objective function for each subproblem is chosen randomly out of the considered con-
vex functions with a uniform probability. The parameters of the system-wide constraints
(118b) were drawn from the same distributions as for the distributed QP problems. Each
subproblem is subject to individual convex constraints in the form of an ellipsoid around
the origin (118c), with random parameters Gi = NT

i Ni, [Ni]l,j ∈ N (μ = 0, σ = 1)
and pi ∈ Uc(1, 5). The number and size of the subproblems were varied as fol-
lows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},
Number of variables: nxi

∈ {2, 3, . . . , 10}, Ns ≥ nxi
.

All subproblems contain the same number of primal variables nx = nxi
and the num-

ber of system-wide constraints is equal to the number of variables of each subproblem,
nb = nx. Ten benchmark problems were generated for each combination (Ns, nb), re-
sulting in a total of 560 convex benchmark problems. Note that all benchmark problems
are convex and satisfy Slater’s condition, as x = 0 is a strictly feasible solution. As the
system-wide constraints (118b) are equalities, no nonnegativity constraints are imposed
on the dual variables.

6.3.1. Parameter settings for distributed convex problems
The parameters for the distributed convex benchmarks were set to be equal to the

ones for the distributed QPs (cf. Sec. 6.1.1 and Table A.5). All parameters were set
by trial and error, in order to find the parameters that result in the most converged

5

Fig. 13. Values of the primal residuals upon termination for the distributed convex programs. Each data
point represents an algorithm applied to a benchmark problem (cf. Table D.9).

Table 4
Summary of the results for the coordination of convex problems (mean values of the converged instances
only), t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in
s), ‖wp‖2: mean primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp ‖wp‖2 %c

SG 342.51 310.45 9.72 46.07
BTM 160.29 139.29 7.8 78.26
ADMM 117.44 104.97 7.44 93
QAC 207.16 186.9 6.55 81.52
QADA 123.52 149.39 6.95 75.1
QNDA 97.13 114.71 4.58 97.14

benchmark problems. As the previous results showed that the performance of QADA
is not heavily influenced by the algorithm used for the initial sampling phase, only the
initialization with QNDA is considered in the following. For the sake of brevity this is
denoted by QADA instead of QADA-QNDA.

6.3.2. Results for distributed convex problems
The results for the distributed optimization of the convex benchmark problems are

illustrated in Fig. 13 and summarized in Table 4. The mean computation time for a
single update step of the primal and dual variables (Tcomp/t) increases compared to the
distributed QPs. This is due to the fact that the solution of the general convex subprob-
lems is computationally more expensive than that of the QPs. This is also due to the fact
that the problems with an affine and quadratic objective function can be solved by the
commercial solver Gurobi, while the general convex problems are solved with IPOPT.
This points to a benefit of distributed optimization, namely, that arbitrary solvers can
be used for each subproblem [42]. Table 4 shows that QNDA achieves the largest num-
6 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 57

Fig. 14. Results of the distributed optimization of problem Conv (6)
(64,2).

58 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Fig. 15. Results of the distributed optimization of problem Conv (4)
(256,7).

ber of converged benchmark problems and requires the least number of iterations and
the second least computation time. In comparison, QADA performs rather poorly, only
outperforming the subgradient method. Interestingly, QADA performs better for rela-
tively few subproblems and system-wide constraints. One such instance is depicted in
Fig. 14 for benchmark problem Conv(6)

(64,2). Here QADA requires the fewest iterations to
converge. In contrast, QNDA takes multiple steps away from the optimum, significantly
deteriorating its performance. Fig. 14a and 14c also show that ADMM overshoots in
the beginning, which might indicate that a less aggressive tuning could lead to a better
convergence.

The QNDA algorithm outperforms all other algorithms for large benchmark problems.
One such instance is depicted in Fig. 15 for problem Conv(4) . No algorithm converges,
(256,7)

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 59
except for the subgradient method and QNDA. QAC exhibits significant oscillations.
The remaining algorithms (BTM, ADMM and QADA) all converge to the vicinity of the
optimum relatively quickly. However, they are not able to actually find the optimum. This
is also illustrated in Fig. 15b, where it can be seen that all algorithms terminate close to
the optimal dual variables. This behavior is indicative for an optimal solution lying close
to or at a point of nondifferentiability. While the subgradient method converges after a
large number of iterations, QNDA computes the solution more efficiently. Initially, the
algorithm follows a similar path as BTM. However, while BTM is not able to converge,
QNDA does so within few iterations.

7. Summary and outlook

In this paper, two new efficient dual decomposition-based distributed optimization
algorithms were presented. Both are based on the approximation of the dual function by
a quadratic function. The quadratically approximated dual ascent (QADA) algorithm
solves a regression problem based on information collected from previous iterations in
order to estimate the parameters of the quadratic surrogate function. The quasi-Newton
dual ascent (QNDA) algorithm updates the approximated Hessian of the dual func-
tion through a BFGS-update. The update of the dual variables for both algorithms is
subject to step size constraints. In contrast to the primal residual which was approx-
imated in previous work based on quadratic surrogates, the dual function is concave,
regardless of the problem class of the primal optimization problem. However, the dual
function is usually nonsmooth, if the set of active individual constraints changes. This
nonsmoothness was addressed by constructing cutting planes using subgradients from
previous iterations and incorporating them into the update of the dual variables as ad-
ditional constraints. Results for a large number of benchmark problems showed the
efficiency of the proposed algorithms. A remarkable result in our view is that dual
decomposition-based distributed optimization algorithms, and especially QADA, can
be used to speed up the solution of mixed-integer programs were a centralized solu-
tion does not converge in reasonable amounts of time. While the QADA algorithm
showed superior performance for distributed MIQPs, the QNDA algorithm outperformed
the other algorithms for general distributed convex problems. For distributed QPs the
QADA and QNDA algorithms showed a similar performance, outperforming other algo-
rithms.

When comparing the algorithms, it must not be forgotten that they use different
amounts of information that is exchanged between the coordinator and the local opti-
mizations. The subgradient method and QAC only need information on the residual of
the system-wide constraints, the bundle method, QADA and QNDA additionally need
the values of the dual function while ADMM requires a modification of the local prob-
lems and the communication of auxiliary variables. Depending on the application, this
exchange of additional information and the modification of the local problems may be
problematic or not.

60 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
Future research will progress in two directions, algorithmic improvements and applica-
tions. In terms of the performance of the QADA algorithm, the solution of the regression
problem is a key component. If this problem is not well conditioned, the approximation
can fail and lead to wrong update steps. Therefore, a preconditioning strategy of the re-
gression problem could improve the subsequent update steps. Wenzel et al. [70] proposed
a method to evaluate the quality of regression data sets based on their Λ-poisedness. The
selection of the regression data could be performed by directly optimizing this criterion.
The quality criterion could also be used to perform exploratory moves, in order to en-
hance the approximation data [25]. Furthermore, the update steps of the dual variables
require the solution of an optimization problem. For badly conditioned or badly selected
data the update problems can become nonconvex in some cases for both algorithms.
Guaranteeing the convexity of the update problem would significantly impact the com-
putational performance. This could be achieved by posing the problem of computing the
surrogate function as a semi-definite programming problem. The aforementioned algo-
rithmic improvements could also enhance the performance of the QAC algorithm. The
results for the distributed convex problems showed that the QADA algorithm converges
faster to the vicinity of the optimum. However, the QNDA algorithm is more effective
in actually finding the optimum once it reached its vicinity. The strengths of both al-
gorithms could be combined by alternating between different update strategies for the
dual variables. Finally, in this paper no assumptions where made on the topology of the
network of subproblems. The network topology is reflected in the matrices Ai. Explic-
itly considering the sparsity structure of the system-wide constraints could lead to the
elimination of the need for a central coordinator and the application of the algorithms
to network optimization.

In terms of applications, the QAC algorithm was developed in the context of
market-like coordination of coupled production plants with shared resources [68]. Dual
decomposition-based distributed optimization can also be applied in other areas. Model
predictive control (MPC) has been a major field of research in distributed optimiza-
tion [15]. Dual decomposition-based distributed MPC could be applied for systems with
slow dynamics and long sampling times where a certain degree of privacy between
the subsystems is required [6]. Another potential application for dual decomposition-
based distributed optimization is demand-side management (DSM), where multiple
energy consumers are connected to a common grid [34]. This is an example of au-
tonomous subsystems sharing a limited resource (energy). DSM problems are usually
posed as mixed-integer problems, which results in additional challenges for distributed
optimization, as discussed in this paper. Privacy also plays an important role in ma-
chine learning applications when training data is stored in a decentralized fashion and
cannot be shared. Dual decomposition can for instance be used for the distributed
training of support vector machines [21] (convex problems) or for distributed cluster-
ing [45] (integer problems) by training individual models and coupling their parameters
through consensus constraints. In the context of machine learning, parallelization of the

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 61
algorithms on specialized hardware like GPUs can provide further computational bene-
fits.

CRediT authorship contribution statement

Vassilios Yfantis: Conceptualization, Methodology, Software, Design and evaluation
of experiments, Writing - Original Draft, Visualization, Simon Wenzel: Conceptualiza-
tion, Software, Investigation, Writing - Review & Editing, Achim Wagner: Writing -
Review & Editing, Supervision, Martin Ruskowski: Writing - Review & Editing, Super-
vision, Project administration, Funding acquisition, Sebastian Engell: Conceptualization,
Methodology, Writing - Review & Editing, Supervision

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to thank Nigora Gafur for providing helpful comments on the
manuscript.

Appendix A. Summary of the used parameters

Table A.5 contains all parameters used for the dual decomposition-based distributed
optimization algorithms in Sec. 6.

Appendix B. Convex objective functions

All objective functions used for the convex benchmark problems in Sec. 6.3 are sum-
marized in Table B.6.

Appendix C. Benchmark problems

All benchmark problems used in Sec. 6 can be found under https://github .com /VaYf /
EJCOMP _Benchmark _Problems.

Appendix D. Summaries of computational results

Tables D.7, D.8 and D.9 summarize the results for the distributed optimization of the
QP, MIQP and general convex benchmark problems respectively.

https://github.com/VaYf/EJCOMP_Benchmark_Problems
https://github.com/VaYf/EJCOMP_Benchmark_Problems

62
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058

roblems.

Algorithms

All
eter SG, BTM, QAC, QADA, QNDA

All
ces All
s All

QADA, QNDA
ADMM
ADMM
ADMM
ADMM
ADMM
QAC, QADA

QAC, QADA
QAC, QADA

QAC, QADA
QAC, QADA
QAC, QADA
Table A.5
Detailed parameter settings of the distributed optimization algorithms for the solution of the benchmark

QP/Conv MIQP Description

λ(0) 0 0 initial dual variables
α(0) 2 × 10−3 3 × 10−4 initial step size/trust region param
tmax 500 500 maximum number of iterations
εp, 10−2 10−2 primal residual convergence tolera
εd 10−2 – dual residual convergence toleranc
εb 0.6 0.6 bundle cuts threshold
ρ(0) 1/Ns 10−3/Ns initial regularization parameter
τincr 1.5 1.5 see (50)
τdecr 1.25 1.25 see (50)
μ 10 10 see (50)
z(0) 0 0 initial auxiliary variables
nreg,start nreg,min nreg,min collected points before QAC/QAD

are initialized
τ 2 × nreg,min 1.5 × nreg,min allowed age of data points
Δλ 5 × 10−5 5 × 10−5 radius of inner circle

for data selection
si nb × 10−6 nb × 10−8 ellipsoid parameter (66)
si nb × 10−3 nb × 10−4 ellipsoid parameter (66)
γ 0.1 1 ellipsoid parameter (69)
p

n
e

A

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
63

Parameters

ai, [ci]l ∈ N (μ = 0, σ = 1)
See Sec. 6.1

10 · 1 [ai]l, [ci]l ∈ Uc(1, 5)

[ai]l, [ci]l ∈ N (μ = 0, σ = 1)
10 · 1 [ai], [ci]l ∈ Uc(1, 5)

10 · 1 [ai], [ci]l ∈ Uc(1, 5)
Table B.6
Used convex objective functions for the distributed convex programs.

Name fi(xi) Bounds

Affine cT
i xi + ai −10 · 1 ≤ xi ≤ 10 · 1

Quadratic 1
2xT

i Hixi + cT
i xi −10 · 1 ≤ xi ≤ 10 · 1

Powers
∑nxi

l=1 ([xi]l + [ci]l)[ai]l − 1
2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤

Exponential
∑nxi

l=1 exp([ci]l · [xi]l + [ai]l) −10 · 1 ≤ xi ≤ 10 · 1
Negative log −

∑nxi

j=1[ci]j log([xi]j + [ai]j) − 1
2 min
j=l,...,nxi

[ci]l · 1 ≤ xi ≤

Negative entropy
∑nxi

j=1[ai]j [xi]j log([xi]j + [bi]j) − 1
2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤

64
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
Table D.7

terations until convergence, ‖wp‖2: mean primal
e of converged runs within tmax iterations.

BTM

t ‖wp‖2 Tcomp %c

196.95 7.47 160.07 95.11
90.24 5.68 72.7 100
79.78 5.78 64.28 100
146.82 6.52 118.31 100
177.52 6.85 143.1 100
65.1 6.33 52.45 100
112.74 7.07 90.85 100
167.06 6.99 134.69 100
185.76 7.56 149.77 100
239.9 7.45 193.63 98
268.96 7.47 217.47 94
320.42 7.46 260.22 86
70.36 6.04 56.7 100
103.48 6.96 83.39 100
140.16 6.74 112.99 100
177.34 8.02 143.0 100
233.92 7.69 188.8 100
246.31 7.81 199.12 96
303.51 7.77 246.35 94
356.37 7.77 291.76 92
383.29 7.95 319.84 82
65.5 6.16 52.8 100
96.04 7.12 77.4 100
130.08 7.12 104.88 100
166.04 7.68 133.9 100
207.43 8.06 167.42 98
237.71 7.7 192.17 96
291.64 7.82 236.7 100
328.81 8.04 268.97 94
352.24 8.09 292.34 92
55.82 6.16 45.01 100
80.36 6.73 64.82 100
116.08 7.37 93.65 98
155.72 7.76 125.68 100
Results for the coordination of QPs (mean values of the converged instances only), t: mean number of
residual of converged runs (×10−3), Tcomp: mean computation time of converged runs (in s), %c: percent

QP SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 384.74 9.88 308.36 16.83 179.55 6.81 145.54 82.3
(2, 2) 488.0 9.96 390.71 2 19.88 6.6 15.92 100
(4, 2) 435.6 9.93 348.76 10 32.22 5.93 25.81 100
(4, 3) – – – 0 44.62 5.73 35.75 100
(4, 4) – – – 0 49.22 6.14 39.43 100
(8, 2) 335.67 9.93 268.76 6 37.32 6.25 29.9 100
(8, 3) 344.0 9.98 275.45 2 57.84 6.28 46.33 100
(8, 4) – – – 0 69.96 6.41 56.05 100
(8, 5) – – – 0 80.42 5.29 64.43 100
(8, 6) – – – 0 97.48 5.58 78.14 100
(8, 7) – – – 0 117.02 5.25 93.83 100
(8, 8) – – – 0 143.42 4.34 115.02 100
(16, 2) 307.14 9.85 245.96 14 45.26 7.55 36.26 100
(16, 3) – – – 0 57.78 8.22 46.29 100
(16, 4) – – – 0 76.16 8.61 61.02 100
(16, 5) – – – 0 90.02 8.22 72.14 100
(16, 6) – – – 0 112.88 7.09 90.52 100
(16, 7) – – – 0 130.1 7.56 104.37 100
(16, 8) – – – 0 132.5 7.18 106.31 100
(16, 9) – – – 0 162.78 6.66 130.64 100
(16, 10) – – – 0 169.2 6.38 135.8 100
(32, 2) 407.57 9.9 326.43 14 62.68 7.98 50.24 100
(32, 3) 384.0 9.74 307.54 4 68.76 8.68 55.13 100
(32, 4) – – – 0 70.06 8.92 56.15 100
(32, 5) – – – 0 90.48 9.05 72.55 100
(32, 6) – – – 0 117.22 9.12 94.06 100
(32, 7) – – – 0 119.48 9.05 95.91 100
(32, 8) – – – 0 140.3 8.96 112.66 100
(32, 9) – – – 0 158.14 9.28 127.01 100
(32, 10) – – – 0 175.53 9.09 141.04 98
(64, 2) 269.73 9.81 216.11 30 119.82 7.55 96.14 100
(64, 3) 401.6 9.91 321.79 10 167.74 7.27 134.71 100
(64, 4) 232.0 9.94 185.91 2 154.4 7.12 124.04 96
(64, 5) 462.0 9.9 370.21 2 180.18 7.74 144.85 100
 i
ag

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
65

BTM

t ‖wp‖2 Tcomp %c

204.92 7.63 165.55 100
225.84 7.91 182.7 98
268.52 8.05 217.97 92
297.57 8.19 243.03 98
327.05 7.87 270.27 88
47.18 6.18 38.05 100
71.42 7.06 57.59 100
107.2 7.74 86.48 100
150.42 7.74 121.39 100
184.9 7.95 149.3 100
228.14 8.17 184.49 98
270.06 8.21 219.05 94
302.5 8.15 246.89 84
328.77 8.44 271.64 86
47.62 7.05 38.44 100
79.18 6.99 63.92 100
115.52 7.21 93.27 96
161.58 8.1 130.5 96
213.37 8.17 172.5 92
275.6 8.2 223.0 90
311.61 8.13 252.73 76
317.19 8.61 258.52 62
340.5 8.78 281.28 56

(continued on next page)
Table D.7 (continued)

QP SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

(64, 6) – – – 0 184.04 7.15 148.13 98
(64, 7) – – – 0 160.06 8.19 128.85 100
(64, 8) – – – 0 173.29 8.74 139.54 98
(64, 9) – – – 0 154.56 9.21 124.49 100
(64, 10) – – – 0 165.35 9.76 133.2 98
(128, 2) 336.5 9.74 269.66 60 195.11 6.21 156.95 94
(128, 3) 357.54 9.86 286.51 26 265.8 5.87 214.33 82
(128, 4) 396.5 9.89 317.75 16 297.69 6.26 240.2 78
(128, 5) 483.0 9.85 387.09 2 329.59 5.98 266.25 64
(128, 6) – – – 0 363.05 4.86 293.65 42
(128, 7) 430.5 9.91 345.11 4 388.74 4.2 314.79 38
(128, 8) – – – 0 393.42 5.29 318.96 24
(128, 9) – – – 0 379.73 5.41 308.82 22
(128, 10) – – – 0 347.78 5.51 283.17 18
(256, 2) 264.78 9.75 212.3 72 285.66 4.99 233.81 76
(256, 3) 346.23 9.87 277.61 52 309.54 4.76 254.01 56
(256, 4) 367.05 9.87 294.31 40 332.08 4.94 272.93 24
(256, 5) 413.67 9.9 331.73 18 365.67 4.16 301.43 24
(256, 6) 444.2 9.9 356.26 10 449.0 6.89 370.87 8
(256, 7) 356.5 9.92 285.94 4 446.5 4.47 369.52 4
(256, 8) 487.0 9.83 390.68 2 358.0 4.02 296.67 2
(256, 9) 483.0 9.93 388.06 2 0
(256, 10) – – – 0 – – – 0

66
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
Table D.7 (continued)

QADA-BTM

t ‖wp‖2 Tcomp %c

128.10 3.26 135.22 96.96
79.29 1.16 81.5 98
54.2 0.69 54.53 100
83.78 1.0 80.78 100
99.24 0.65 94.21 98
50.18 0.75 49.0 100
74.5 0.97 71.98 96
90.65 1.52 85.24 96
101.38 1.58 94.36 100
126.63 3.07 118.89 98
166.5 2.12 161.86 96
204.39 2.61 207.13 92
38.9 0.98 36.99 98
77.4 1.04 73.76 100
87.06 2.26 80.52 100
99.9 2.19 92.27 100
140.04 3.15 130.28 100
169.7 3.15 163.62 92
191.09 4.52 189.8 92
254.27 3.48 272.58 96
287.04 4.55 331.77 90
38.42 0.82 35.46 100
57.86 1.16 54.2 98
68.57 3.03 62.98 98
105.58 3.75 96.52 96
133.7 3.56 123.52 94
164.98 3.43 158.62 96
200.6 3.12 198.95 100
229.2 4.03 243.75 90
263.07 4.28 303.17 92
33.58 1.55 44.82 100
51.44 1.0 73.93 100
68.62 3.43 94.95 96
101.2 3.72 135.79 98
121.0 4.6 160.05 98
150.56 4.47 212.24 100
183.59 4.49 257.16 92
QP QAC QADA-SG

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 199.24 2.15 167.73 57.32 133.49 3.31 139.5 96.46
(2, 2) 71.59 1.7 59.78 98 92.1 1.48 94.36 98
(4, 2) 59.35 0.12 49.52 98 62.96 0.83 63.07 98
(4, 3) 133.77 0.61 111.15 88 98.19 0.84 94.21 96
(4, 4) 172.55 0.73 142.92 84 103.83 0.84 98.74 96
(8, 2) 61.18 0.13 50.89 100 55.68 0.34 54.11 100
(8, 3) 114.68 0.59 95.07 88 70.14 0.77 66.6 98
(8, 4) 198.28 0.57 164.05 72 102.63 2.0 96.3 98
(8, 5) 187.36 0.3 154.64 50 107.82 1.72 99.41 100
(8, 6) 232.47 1.18 191.63 38 135.53 2.73 126.11 98
(8, 7) 267.89 1.12 220.67 18 178.96 3.0 172.32 96
(8, 8) 283.17 1.59 233.67 12 217.6 2.75 219.73 94
(16, 2) 48.09 0.61 39.89 92 46.83 0.29 44.31 96
(16, 3) 90.12 0.18 74.5 82 72.41 1.4 68.11 98
(16, 4) 173.22 0.53 142.89 64 90.72 1.85 84.46 100
(16, 5) 212.15 1.27 174.71 54 106.08 3.24 96.94 100
(16, 6) 300.0 1.21 246.79 24 147.48 3.12 137.22 100
(16, 7) 262.0 4.5 215.46 8 181.55 4.18 174.51 94
(16, 8) 329.0 4.63 271.44 4 203.02 4.0 203.03 92
(16, 9) 412.0 0.0 342.64 2 266.65 4.23 283.6 98
(16, 10) – – – 0 298.77 4.33 347.32 86
(32, 2) 42.54 0.21 35.13 92 46.56 0.91 43.19 100
(32, 3) 84.18 0.63 69.35 80 62.56 1.89 58.2 100
(32, 4) 143.88 1.45 118.33 82 75.53 2.66 69.08 98
(32, 5) 248.36 1.41 204.51 56 118.35 4.32 107.45 96
(32, 6) 253.23 0.85 208.03 26 138.91 3.02 129.05 92
(32, 7) 412.5 3.98 339.07 8 169.02 3.28 160.11 96
(32, 8) 244.0 – 201.09 2 198.66 3.84 198.02 100
(32, 9) – – – 0 241.02 3.83 255.18 92
(32, 10) – – – 0 270.86 4.87 307.4 88
(64, 2) 45.31 0.59 41.39 96 31.62 1.02 43.44 100
(64, 3) 85.67 1.21 77.27 90 49.58 1.94 71.2 100
(64, 4) 139.49 2.05 124.65 82 69.34 3.83 93.72 94
(64, 5) 220.75 1.68 197.5 48 110.73 3.04 144.17 98
(64, 6) 359.5 4.08 320.61 32 130.98 4.59 174.69 98
(64, 7) 429.0 5.58 381.52 8 160.73 4.85 221.55 96
(64, 8) – – – 0 187.64 4.01 246.8 90

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
67

QADA-BTM

t ‖wp‖2 Tcomp %c

207.84 5.44 223.83 98
243.56 5.43 282.29 96
25.9 1.75 23.48 100
40.96 1.77 38.04 98
68.24 3.34 62.19 100
88.96 4.44 80.45 100
118.29 5.03 109.91 98
151.77 6.01 146.24 96
180.35 5.16 180.84 98
216.63 5.68 232.67 98
254.94 4.75 294.96 94
24.92 2.11 31.03 100
40.41 3.26 37.57 98
63.68 5.26 57.08 100
86.22 4.88 77.67 98
109.28 4.76 102.81 92
137.23 5.16 131.69 94
181.83 5.65 184.45 96
228.23 6.11 248.18 94
256.17 4.45 299.57 92

(continued on next page)
Table D.7 (continued)

QP QAC QADA-SG

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

(64, 9) – – – 0 211.48 4.66 223.92 96
(64, 10) – – – 0 248.17 5.04 285.49 96
(128, 2) 33.55 0.91 27.63 98 29.16 1.02 26.11 100
(128, 3) 74.86 1.84 61.54 100 56.67 1.64 52.49 98
(128, 4) 144.81 3.16 119.0 84 67.94 4.62 60.51 98
(128, 5) 255.65 3.19 209.99 74 91.12 4.59 81.62 100
(128, 6) 317.08 3.64 260.34 26 120.16 4.17 109.3 98
(128, 7) 447.43 6.88 367.6 14 155.96 5.05 150.04 94
(128, 8) – – – 0 176.44 5.64 174.09 96
(128, 9) – – – 0 216.81 5.78 229.86 96
(128, 10) – – – 0 258.61 4.93 292.52 92
(256, 2) 30.66 1.65 27.41 94 24.26 2.26 31.32 100
(256, 3) 65.47 3.01 53.86 68 44.76 3.11 40.82 98
(256, 4) 136.28 3.63 120.78 80 64.12 4.62 57.22 100
(256, 5) 214.71 4.14 189.67 68 89.23 4.97 80.8 96
(256, 6) 374.73 5.77 330.63 30 111.79 5.25 104.01 94
(256, 7) 354.0 7.29 311.04 8 136.79 6.07 130.12 94
(256, 8) – – – 0 181.6 5.34 184.46 96
(256, 9) – – – 0 223.89 5.85 240.29 94
(256, 10) – – – 0 265.65 5.18 309.53 92

68
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
Table D.7 (continued)

5

QP QADA-QNDA QNDA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
Mean 127.23 3.29 135.47 96.57 134.31 3.94 126.4 98
(2, 2) 73.71 1.32 76.14 98 114.79 1.81 110.15 96
(4, 2) 58.92 0.88 59.72 100 107.0 1.24 98.03 10
(4, 3) 88.22 1.13 85.64 100 162.68 3.05 147.07 88
(4, 4) 99.66 0.85 93.68 100 183.33 2.89 161.29 98
(8, 2) 48.82 0.6 48.29 100 67.62 2.03 58.86 10
(8, 3) 66.49 0.58 63.23 98 113.92 3.72 98.82 96
(8, 4) 86.49 1.38 81.01 98 162.72 3.45 143.16 10
(8, 5) 105.98 1.52 99.51 98 158.6 3.8 138.52 10
(8, 6) 125.84 2.09 118.4 98 196.5 4.65 174.04 10
(8, 7) 171.27 2.07 165.87 98 209.17 4.44 184.88 96
(8, 8) 208.91 3.68 210.65 92 249.43 5.49 224.42 94
(16, 2) 52.8 1.23 49.9 98 55.67 2.3 47.84 98
(16, 3) 72.73 1.08 69.9 98 93.02 3.35 80.1 10
(16, 4) 81.64 1.69 75.68 100 118.66 4.09 102.81 10
(16, 5) 102.96 3.26 95.29 100 139.9 4.25 121.31 10
(16, 6) 135.53 3.31 126.33 98 184.63 4.34 161.44 98
(16, 7) 168.29 3.9 164.59 90 175.94 5.46 157.71 98
(16, 8) 193.8 3.81 194.65 92 215.06 4.65 194.23 10
(16, 9) 248.6 4.25 266.73 96 241.82 5.34 224.1 10
(16, 10) 273.55 5.2 317.29 84 273.83 4.82 259.13 92
(32, 2) 47.54 0.87 44.06 100 56.96 2.8 49.13 10
(32, 3) 63.46 1.53 59.4 100 84.42 3.46 73.24 10
(32, 4) 73.53 1.82 67.76 98 104.52 2.86 90.92 10
(32, 5) 103.4 3.13 94.43 96 124.96 4.14 108.99 98
(32, 6) 127.04 2.97 117.49 92 139.69 4.78 123.51 98
(32, 7) 162.69 3.17 156.72 96 165.2 4.27 147.07 98
(32, 8) 194.74 3.45 194.06 100 200.04 4.73 181.42 10
(32, 9) 225.04 3.84 240.13 90 206.24 4.2 191.17 98
(32, 10) 260.49 5.3 302.28 94 217.28 5.3 206.8 10
(64, 2) 31.08 1.16 42.06 100 51.02 2.25 60.07 10
(64, 3) 50.65 1.79 78.23 98 63.92 2.81 78.38 10
(64, 4) 71.19 2.61 101.98 96 87.51 3.97 105.08 98
(64, 5) 98.82 4.44 131.8 98 106.36 4.09 129.2 10
(64, 6) 116.65 4.06 156.17 98 126.41 3.71 154.4 98
(64, 7) 157.96 4.76 231.93 98 141.68 4.6 178.34 10
c

.

0

0

0
0
0

0
0
0

0
0

0
0
0

0

0
0
0

0

0

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
69

.5
Table D.7 (continued)

QP QADA-QNDA QNDA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 127.23 3.29 135.47 96.57 134.31 3.94 126.4 98
(64, 8) 180.93 4.5 249.15 90 165.38 5.51 197.14 94
(64, 9) 206.29 5.01 223.49 98 176.47 5.31 164.97 98
(64, 10) 240.42 4.63 279.79 96 193.42 4.65 183.88 100
(128, 2) 28.78 1.76 26.24 100 36.2 2.12 31.54 100
(128, 3) 44.4 2.08 41.81 100 53.04 2.8 46.94 100
(128, 4) 64.8 3.81 59.89 98 72.96 3.84 64.4 100
(128, 5) 88.72 4.96 81.46 100 101.54 4.19 90.49 100
(128, 6) 107.71 4.67 100.64 98 104.16 4.8 93.86 100
(128, 7) 137.64 5.93 133.35 90 128.54 4.89 116.57 100
(128, 8) 179.18 5.22 181.73 98 148.16 4.74 136.43 100
(128, 9) 214.43 4.8 232.81 98 159.65 4.91 151.1 98
(128, 10) 251.77 5.29 294.71 94 179.27 4.34 172.01 98
(256, 2) 23.52 2.44 30.01 100 33.42 2.4 40.75 100
(256, 3) 51.31 3.92 49.09 98 50.52 3.11 45.01 100
(256, 4) 72.76 4.52 67.19 100 69.56 4.33 63.65 100
(256, 5) 86.71 4.95 79.88 98 84.71 4.14 77.23 98
(256, 6) 107.24 4.51 102.95 92 98.55 3.94 90.51 98
(256, 7) 138.79 6.7 138.27 94 119.44 4.14 111.61 96
(256, 8) 172.15 4.65 179.9 92 138.16 4.21 131.36 98
(256, 9) 218.28 5.79 238.54 92 148.18 4.9 145.65 100
(256, 10) 260.3 5.52 314.51 92 159.38 4.22 157.88 96

70
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058

erations until convergence, rel. DG: mean relative
age of converged runs within tmax iterations.

BTM
t rel. DG Tcomp %c

80.52 1.66 65.41 100
29.3 0.81 23.72 100
66.1 1.67 53.59 100
98.7 4.71 80.04 100
124.0 9.64 100.67 100
57.6 0.5 46.54 100
57.6 0.86 46.56 100
157.5 2.98 127.89 100
124.6 2.94 101.29 100
44.7 0.32 36.24 100
51.9 0.58 42.15 100
86.0 1.23 69.97 100
110.8 1.53 90.18 100
34.7 0.16 28.15 100
99.7 0.76 80.91 100
84.2 1.06 68.55 100
93.9 1.15 76.49 100
55.2 0.18 44.75 100
42.6 0.28 34.56 100
75.4 0.63 61.44 100
115.9 1.21 94.52 100
Table D.8
Results for the coordination of MIQPs (mean values of the converged instances only), t: mean number of
duality gap of converged runs (in %), Tcomp: mean computation time of converged runs (in s), %c: percen

MIQP SG ADMM
t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 86.69 1.66 69.88 99.5 25.06 2.22 21.16 10
(100, 2) 58.1 0.78 46.73 100 23.4 1.11 18.95 100
(100, 3) 73.4 1.65 59.11 100 21.2 1.69 17.15 100
(100, 4) 60.7 4.81 48.85 100 23.5 5.2 19.24 100
(100, 5) 51.6 9.76 41.61 100 22.7 10.09 18.43 100
(200, 2) 113.33 0.35 90.94 90 25.6 1.08 20.8 100
(200, 3) 66.6 0.84 53.5 100 24.5 1.06 20.07 100
(200, 4) 146.5 2.9 118.08 100 23.7 3.91 19.66 100
(200, 5) 65.1 2.97 52.54 100 23.2 3.61 19.11 100
(300, 2) 129.9 0.31 104.55 100 27.0 0.88 22.31 100
(300, 3) 66.2 0.58 53.34 100 25.4 0.79 21.19 100
(300, 4) 71.2 1.25 57.54 100 24.3 1.49 20.39 100
(300, 5) 61.1 1.56 49.37 100 24.7 1.82 20.82 100
(400, 2) 89.4 0.13 72.04 100 28.4 0.59 23.93 100
(400, 3) 165.2 0.76 133.14 100 26.9 2.26 23.16 100
(400, 4) 77.0 1.06 62.28 100 25.4 1.99 21.89 100
(400, 5) 54.3 1.17 43.94 100 24.2 1.63 21.03 100
(500, 2) 170.3 0.16 137.18 100 29.9 1.17 25.84 100
(500, 3) 58.9 0.28 47.55 100 26.3 0.57 23.37 100
(500, 4) 76.4 0.63 61.81 100 25.6 1.31 22.85 100
(500, 5) 78.5 1.21 63.56 100 25.4 2.08 22.97 100
it
t

0

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
71

QADA-BTM
t rel. DG Tcomp %c

20.78 3.53 18.62 100
17.6 0.99 26.82 100
17.4 2.8 18.07 100
26.1 5.58 22.19 100
32.1 27.97 27.19 100
12.5 0.83 11.05 100
16.9 1.03 15.03 100
27.0 7.36 23.07 100
29.4 3.79 24.91 100
10.5 0.38 9.22 100
15.7 0.85 14.18 100
22.1 2.55 18.53 100
28.9 2.85 24.28 100
12.4 0.18 12.49 100
18.6 1.64 15.97 100
23.3 1.66 19.6 100
29.5 5.01 24.96 100
12.2 0.29 10.64 100
15.0 0.5 13.3 100
19.2 1.53 16.23 100
29.1 2.78 24.57 100

(continued on next page)
Table D.8 (continued)

MIQP QAC QADA-SG
t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 59.4 2.13 52.83 86.0 19.37 2.54 18.37 100
(100, 2) 63.0 0.03 56.64 20 23.4 1.59 34.3 100
(100, 3) 81.0 1.66 71.81 60 23.4 2.1 32.31 100
(100, 4) 82.14 4.49 74.82 70 19.8 5.09 17.21 100
(100, 5) 55.6 11.16 47.98 100 22.7 13.42 19.53 100
(200, 2) 101.17 0.44 92.76 60 15.2 1.01 17.43 100
(200, 3) 95.5 0.92 85.42 100 18.3 1.46 17.62 100
(200, 4) 59.22 4.91 52.42 90 23.3 4.56 19.73 100
(200, 5) 42.2 3.29 36.12 100 23.5 6.08 19.94 100
(300, 2) 89.2 0.37 80.62 100 15.6 0.4 14.61 100
(300, 3) 48.6 0.74 42.99 100 17.3 0.92 16.6 100
(300, 4) 34.89 2.26 29.85 90 18.8 2.04 15.88 100
(300, 5) 35.5 1.61 29.91 100 22.9 2.04 19.14 100
(400, 2) 65.0 0.2 59.38 80 12.5 0.19 10.87 100
(400, 3) 30.57 2.98 26.28 70 19.4 2.44 16.9 100
(400, 4) 27.6 1.81 23.37 100 18.9 1.29 15.97 100
(400, 5) 39.8 1.57 33.7 100 23.0 1.45 19.08 100
(500, 2) 51.33 0.43 46.84 90 13.0 0.56 11.32 100
(500, 3) 79.4 0.36 71.45 100 16.7 0.49 15.42 100
(500, 4) 30.3 1.6 25.99 100 16.6 1.44 13.93 100
(500, 5) 76.0 1.71 68.26 90 23.1 2.14 19.67 100

72
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058

c

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
Table D.8 (continued)

MIQP QADA-QNDA QNDA
t rel. DG Tcomp %c t rel. DG Tcomp

Mean 22.2 2.86 22.76 100 79.9 1.73 74.91
(100, 2) 43.7 0.95 77.42 100 29.4 0.78 26.3
(100, 3) 23.8 1.82 29.72 100 65.5 1.65 60.62
(100, 4) 30.9 5.94 30.3 100 100.4 4.92 91.62
(100, 5) 29.6 19.24 26.36 100 122.0 9.1 115.9
(200, 2) 13.0 0.95 12.22 100 58.2 0.5 52.43
(200, 3) 16.1 1.02 15.2 100 57.7 0.88 52.75
(200, 4) 27.9 6.39 26.16 100 152.3 4.67 143.7
(200, 5) 29.4 4.59 26.34 100 122.9 2.98 116.56
(300, 2) 10.3 0.33 9.17 100 45.0 0.32 40.4
(300, 3) 16.9 1.02 15.91 100 51.4 0.57 47.45
(300, 4) 21.0 2.39 18.86 100 84.7 1.21 79.91
(300, 5) 28.5 2.4 25.83 100 109.4 1.55 103.82
(400, 2) 11.9 0.21 11.88 100 35.1 0.15 31.74
(400, 3) 19.0 1.67 17.62 100 99.4 0.76 92.27
(400, 4) 22.8 2.01 20.92 100 84.0 1.06 79.31
(400, 5) 27.1 1.43 24.91 100 92.8 1.14 89.43
(500, 2) 12.5 0.38 11.54 100 55.8 0.19 50.58
(500, 3) 14.9 0.51 14.15 100 42.8 0.28 39.82
(500, 4) 18.4 1.26 16.71 100 74.2 0.63 71.13
(500, 5) 26.3 2.73 23.92 100 115.1 1.22 112.45
%
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
73

ber of iterations until convergence, ‖wp‖2: mean
rcentage of converged runs within tmax iterations.

BTM

t ‖wp‖2 Tcomp %c

160.29 7.8 139.29 78.26
128.2 6.61 105.05 100
98.0 7.62 86.08 100
107.44 7.25 89.48 90
148.1 6.89 123.98 100
74.0 5.83 61.39 80
99.4 5.88 82.6 100
108.6 7.45 90.65 100
103.9 7.66 86.58 100
145.6 6.87 121.68 100
199.5 8.29 167.84 100
220.8 8.37 185.82 100
46.9 4.8 39.15 100
88.7 5.79 74.66 100
109.7 7.73 92.0 100
110.9 7.96 92.33 100
172.5 8.06 144.77 100
191.67 8.07 161.48 90
209.3 8.34 176.79 100
225.88 8.97 191.94 80
333.67 9.13 286.26 60
56.6 6.08 47.84 100
62.9 5.82 53.21 100
84.5 8.2 71.58 100
138.3 8.1 117.08 100
148.11 8.29 125.71 90
239.83 8.33 203.34 60
280.0 8.85 239.04 60
344.0 8.89 293.6 50
331.5 9.43 284.68 20
68.5 6.61 58.72 100
106.7 8.31 93.44 100
101.56 7.6 87.82 90

(continued on next page)
Table D.9
Results for the coordination of convex problems (mean values of the converged instances only), t: mean num
primal residual of converged runs (×10−3), Tcomp: mean computation time of converged runs (in s), %c: pe

Conv SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 342.51 9.72 310.45 46.07 117.44 7.44 104.97 93.0
(2, 2) – – – 0 27.2 8.2 22.26 100
(4, 2) – – – 0 25.8 6.92 21.31 100
(4, 3) – – – 0 37.6 7.04 31.05 100
(4, 4) – – – 0 38.6 7.34 31.69 100
(8, 2) – – – 0 42.8 7.15 35.25 100
(8, 3) – – – 0 51.7 8.39 42.51 100
(8, 4) – – – 0 50.1 7.67 41.44 100
(8, 5) – – – 0 55.0 5.93 45.93 100
(8, 6) – – – 0 64.0 6.26 53.24 100
(8, 7) – – – 0 83.8 5.54 69.81 100
(8, 8) – – – 0 96.6 6.59 80.13 100
(16, 2) 464.0 9.92 381.03 10 35.4 7.66 29.7 100
(16, 3) 345.0 9.87 287.14 10 49.6 8.25 41.39 100
(16, 4) – – – 0 66.5 7.91 55.52 100
(16, 5) – – – 0 54.5 7.68 45.43 100
(16, 6) – – – 0 67.8 7.55 56.55 100
(16, 7) – – – 0 72.2 7.2 60.33 100
(16, 8) – – – 0 77.5 7.73 65.06 100
(16, 9) – – – 0 83.0 7.55 69.74 100
(16, 10) – – – 0 107.5 7.17 90.01 100
(32, 2) 229.0 9.57 191.38 20 71.9 7.91 60.72 100
(32, 3) 429.5 9.94 361.66 20 51.4 8.22 43.72 100
(32, 4) 432.0 9.91 364.56 10 54.8 8.7 46.59 100
(32, 5) – – – 0 50.4 8.16 42.87 100
(32, 6) – – – 0 55.4 8.48 47.0 100
(32, 7) – – – 0 69.7 8.5 59.0 100
(32, 8) – – – 0 94.9 8.7 82.04 100
(32, 9) – – – 0 88.22 8.15 74.93 90
(32, 10) 469.0 9.51 395.54 10 98.8 7.62 84.84 100
(64, 2) 332.0 9.92 281.45 20 88.0 6.59 75.52 100
(64, 3) 361.0 9.93 308.74 20 101.9 6.81 89.45 100
(64, 4) 332.0 9.92 285.71 20 62.0 8.0 53.59 100

74
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058

BTM

t ‖wp‖2 Tcomp %c

138.0 8.36 119.09 80
153.0 8.69 131.54 20
231.5 8.77 201.97 40
262.0 9.68 227.68 30
– – – 0
– – – 0
38.7 6.5 34.32 100
153.8 7.22 139.38 100
140.75 8.39 128.16 40
163.0 8.94 146.74 30
210.0 7.81 186.94 30
269.0 8.85 238.95 10
– – – 0
– – – 0
– – – 0
41.67 7.48 40.3 90
188.5 7.9 186.54 100
270.75 8.12 266.69 40
227.5 9.8 222.26 20
– – – 0
– – – 0
– – – 0
– – – 0
– – – 0
Table D.9 (continued)

Conv SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
(64, 5) – – – 0 98.2 7.56 84.45 10
(64, 6) – – – 0 69.3 8.48 62.24 10
(64, 7) 411.5 9.93 353.78 20 94.5 8.53 83.29 10
(64, 8) – – – 0 81.78 8.0 70.77 90
(64, 9) – – – 0 106.22 8.16 91.6 90
(64, 10) – – – 0 135.71 6.38 118.44 70
(128, 2) 268.5 9.84 238.85 60 172.89 5.99 153.89 90
(128, 3) 309.2 9.74 277.81 50 188.2 5.16 170.22 10
(128, 4) 268.0 8.92 252.23 30 200.1 6.92 184.32 10
(128, 5) 289.0 9.81 259.23 60 219.6 6.81 200.39 10
(128, 6) 409.0 9.94 360.74 20 238.4 7.7 211.37 10
(128, 7) 340.0 9.67 317.57 40 291.0 7.92 272.24 80
(128, 8) 323.2 9.71 289.48 50 283.88 8.26 259.66 80
(128, 9) 375.5 9.86 335.07 40 278.71 7.62 255.45 70
(128, 10) 429.0 9.4 397.06 40 185.86 8.79 167.21 70
(256, 2) 175.29 9.66 169.3 70 258.25 3.87 249.57 40
(256, 3) 243.38 9.63 238.09 80 441.57 6.63 427.84 70
(256, 4) 306.86 9.69 312.87 70 – – – 0
(256, 5) 256.7 9.46 257.95 100 453.0 7.61 437.14 10
(256, 6) 346.0 9.71 339.83 90 – – – 0
(256, 7) 339.75 9.73 332.69 80 – – – 0
(256, 8) 348.1 9.69 345.85 100 – – – 0
(256, 9) 358.62 9.7 362.9 80 – – – 0
(256, 10) 399.29 9.51 393.96 70 – – – 0
c

0
0
0

0
0
0
0

V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
75

Table D.9 (continued)

QNDA

t ‖wp‖2 Tcomp %c

97.13 4.58 114.71 97.14
98.12 4.06 84.55 80
70.7 2.34 66.92 100
132.56 3.88 127.71 90
129.5 3.78 120.74 100
71.12 3.54 65.38 80
93.33 3.34 89.99 90
90.1 3.84 87.91 100
82.6 5.79 83.3 100
104.7 3.7 103.46 100
135.0 4.97 130.73 100
142.5 4.49 143.87 100
54.67 2.08 51.27 90
100.3 2.55 100.26 100
95.5 4.44 97.24 100
82.8 4.26 81.0 100
116.3 3.94 120.19 100
125.8 5.37 127.2 100
105.5 5.07 109.11 100
137.6 3.87 151.06 100
176.22 6.27 203.63 90
66.9 2.07 64.47 100
83.6 2.99 93.87 100
64.2 4.81 68.41 100
84.3 3.37 88.93 100
96.0 4.99 100.6 100
103.4 4.53 111.76 100
108.2 4.32 137.21 100
111.6 4.93 125.65 100
164.1 6.41 222.04 100
111.67 2.97 117.66 90
73.7 4.21 89.08 100
54.1 2.68 58.95 100
92.5 5.01 109.2 100
81.0 6.34 95.44 100
115.2 5.31 163.71 100
108.2 4.84 127.24 100

(continued on next page)
Conv QAC QADA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 207.16 6.55 186.9 81.52 123.52 6.95 149.39 75.1
(2, 2) 134.0 4.87 114.82 50 132.62 5.58 129.93 80
(4, 2) 84.3 4.91 73.94 100 101.4 5.42 106.85 100
(4, 3) 146.0 6.12 127.36 90 115.7 5.37 120.47 100
(4, 4) 214.8 4.36 186.9 100 124.3 5.74 126.38 100
(8, 2) 89.88 4.42 78.25 80 122.88 5.12 128.55 80
(8, 3) 117.1 3.78 101.48 100 66.33 6.49 70.7 90
(8, 4) 157.2 5.31 136.01 100 125.1 6.73 128.81 100
(8, 5) 154.6 5.89 133.19 100 102.3 7.28 104.77 100
(8, 6) 300.0 6.57 258.93 70 121.8 6.22 127.86 100
(8, 7) 395.4 6.9 342.82 50 158.89 6.93 176.31 90
(8, 8) 333.4 6.88 286.44 50 184.6 8.11 224.27 100
(16, 2) 64.0 6.74 55.7 90 61.3 5.61 60.78 100
(16, 3) 138.1 5.51 121.15 100 80.6 5.17 86.59 100
(16, 4) 156.33 6.33 135.76 90 126.56 7.23 132.23 90
(16, 5) 178.1 8.52 153.3 100 90.6 7.46 94.26 100
(16, 6) 235.78 8.02 203.73 90 127.5 7.34 137.42 100
(16, 7) 354.75 8.14 307.39 80 144.3 7.64 161.92 100
(16, 8) 378.75 8.16 328.46 40 153.3 7.99 189.9 100
(16, 9) 439.5 7.08 382.58 20 185.78 7.94 256.69 90
(16, 10) – – – 0 246.86 8.03 360.54 70
(32, 2) 55.88 3.54 49.33 80 63.3 3.82 67.01 100
(32, 3) 73.6 6.85 65.25 100 45.4 7.66 49.21 100
(32, 4) 90.5 5.96 80.05 100 82.5 8.2 88.87 100
(32, 5) 145.0 6.9 127.45 90 88.6 7.69 97.37 100
(32, 6) 222.3 7.22 194.63 100 109.1 8.44 118.63 100
(32, 7) 344.56 7.17 300.29 90 166.43 8.59 197.02 70
(32, 8) 433.67 8.96 378.71 30 130.57 7.72 160.34 70
(32, 9) 458.0 7.81 406.43 10 161.71 8.35 217.13 70
(32, 10) – – – 0 150.33 7.8 200.96 30
(64, 2) 46.3 3.27 41.35 100 52.0 5.34 58.92 100
(64, 3) 64.0 5.64 57.8 90 61.11 7.37 69.24 90
(64, 4) 86.5 7.18 77.84 100 101.67 7.73 115.04 90
(64, 5) 190.5 6.76 171.24 100 198.62 7.03 228.11 80
(64, 6) 208.6 8.35 191.2 100 70.0 7.38 82.49 10
(64, 7) 371.2 9.12 339.08 100 161.75 9.4 207.02 40
(64, 8) 412.25 7.29 369.97 40 146.33 9.19 191.32 30

76
V

.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058

QNDA

c t ‖wp‖2 Tcomp %c

107.2 6.18 124.94 100
121.5 5.09 149.86 100

0 63.5 1.84 68.96 100
66.9 3.59 81.81 100
88.44 4.97 110.79 90
62.89 4.35 70.19 90
73.6 6.21 88.67 100
94.8 6.06 123.52 100
85.11 5.76 96.92 90
119.1 6.2 181.47 100
126.67 7.44 194.22 90

0 46.3 3.62 60.89 100
81.7 4.91 116.57 100
68.8 5.36 99.93 100
51.3 5.47 74.96 100
65.56 5.74 85.24 90
99.3 6.04 174.23 100
93.7 6.46 144.96 100
121.78 5.5 198.38 90
137.67 4.54 257.37 90
Table D.9 (continued)

Conv QAC QADA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
(64, 9) – – – 0 170.0 8.09 240.05 20
(64, 10) – – – 0 198.0 6.57 326.19 10
(128, 2) 32.33 6.87 30.23 90 40.8 6.33 44.26 10
(128, 3) 54.5 4.59 51.73 100 67.44 7.38 81.15 90
(128, 4) 82.7 6.3 79.4 100 257.2 7.03 318.01 50
(128, 5) 126.44 7.39 118.16 90 275.67 9.13 336.91 30
(128, 6) 322.5 7.16 297.78 100 96.0 5.98 114.36 30
(128, 7) 398.25 8.76 369.4 40 104.0 0.7 133.61 10
(128, 8) – – – 0 102.5 7.98 156.0 40
(128, 9) – – – 0 – – – 0
(128, 10) – – – 0 – – – 0
(256, 2) 33.8 4.87 34.64 100 36.8 6.5 43.9 10
(256, 3) 53.0 5.27 54.75 100 114.38 7.03 148.99 80
(256, 4) 90.89 6.78 96.88 90 170.5 8.73 227.01 40
(256, 5) 173.8 7.11 184.27 100 57.0 4.08 75.53 10
(256, 6) 388.1 8.39 400.16 100 – – – 0
(256, 7) 498.0 7.27 501.07 10 – – – 0
(256, 8) – – – 0 – – – 0
(256, 9) – – – 0 – – – 0
(256, 10) – – – 0 – – – 0

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 77
References

[1] K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-linear Programming, Stanford Uni-
versity Press, 1958.

[2] A. Bagirov, N. Karmitsa, M.M. Mäkelä, Introduction to Nonsmooth Optimization: Theory, Practice
and Software, Springer, 2014.

[3] J. Barreiro-Gomez, N. Quijano, C. Ocampo-Martinez, Constrained distributed optimization: a pop-
ulation dynamics approach, Automatica 69 (2016) 101–116, https://doi .org /10 .1016 /j .automatica .
2016 .02 .004.

[4] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
[5] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numerical computing,

SIAM Rev. 59 (2017) 65–98, https://doi .org /10 .1137 /141000671.
[6] B. Biegel, J. Stoustrup, P. Andersen, Distributed MPC via dual decomposition, in: Distributed

Model Predictive Control Made Easy, Springer, 2014, pp. 179–192.
[7] J.R. Birge, L. Qi, Z. Wei, Convergence analysis of some methods for minimizing a nonsmooth convex

function, J. Optim. Theory Appl. 97 (1998) 357–383.
[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning

via the alternating direction method of multipliers, Found. Trends Mach. Learn. 3 (2011) 1–122,
https://doi .org /10 .1561 /2200000016, https://www .nowpublishers .com /article /Details /MAL -016.

[9] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, USA,
2004.

[10] M.A. Bragin, P.B. Luh, B. Yan, X. Sun, A scalable solution methodology for mixed-integer linear
programming problems arising in automation, IEEE Trans. Autom. Sci. Eng. 16 (2019) 531–541,
https://doi .org /10 .1109 /TASE .2018 .2835298.

[11] M.A. Bragin, P.B. Luh, J.H. Yan, N. Yu, G.A. Stern, Convergence of the surrogate Lagrangian
relaxation method, J. Optim. Theory Appl. 164 (2015) 173–201, https://doi .org /10 .1007 /s10957 -
014 -0561 -3.

[12] A. Camisa, I. Notarnicola, G. Notarstefano, Distributed primal decomposition for large-scale MILPs,
IEEE Trans. Autom. Control 67 (2021) 413–420.

[13] N. Chatzipanagiotis, D. Dentcheva, M.M. Zavlanos, An augmented Lagrangian method for dis-
tributed optimization, Math. Program. 152 (2015) 405–434.

[14] N. Chatzipanagiotis, M.M. Zavlanos, On the convergence of a distributed augmented Lagrangian
method for nonconvex optimization, IEEE Trans. Autom. Control 62 (2017) 4405–4420.

[15] P.D. Christofides, R. Scattolini, D.M. de la Pena, J. Liu, Distributed model predictive control: a
tutorial review and future research directions, Comput. Chem. Eng. 51 (2013) 21–41.

[16] A.R. Conn, K. Scheinberg, L.N. Vicente, Introduction to derivative-free optimization, J. Soc. Ind.
Appl. Math. (2009), https://doi .org /10 .1137 /1 .9780898718768.

[17] I. Dunning, J. Huchette, M. Lubin, JuMP: a modeling language for mathematical optimization,
SIAM Rev. 59 (2017) 295–320, https://doi .org /10 .1137 /15M1020575.

[18] M. Eisen, A. Mokhtari, A. Ribeiro, A decentralized quasi-Newton method for dual formulations
of consensus optimization, in: 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE,
2016, pp. 1951–1958.

[19] M. Eisen, A. Mokhtari, A. Ribeiro, Decentralized quasi-Newton methods, IEEE Trans. Signal Pro-
cess. 65 (2017) 2613–2628.

[20] H. Everett, Generalized Lagrange multiplier method for solving problems of optimum allocation of
resources, Oper. Res. (1963) 399–417.

[21] P.A. Forero, A. Cano, G.B. Giannakis, Consensus-based distributed support vector machines, J.
Mach. Learn. Res. 11 (2010).

[22] M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution
of Boundary-Value Problems, Studies in Mathematics and Its Applications, vol. 15, North-Holland
Pub. Co, Amsterdam and New York and New York, N.Y., 1983, http://www .sciencedirect .com /
science /book /9780444866806.

[23] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximation, Comput. Math. Appl. 2 (1976) 17–40, https://doi .org /10 .1016 /0898 -
1221(76)90003 -1.

[24] C. Gambella, B. Ghaddar, J. Naoum-Sawaya, Optimization problems for machine learning: a survey,
Eur. J. Oper. Res. 290 (2021) 807–828.

[25] W. Gao, R. Hernández, S. Engell, A study of explorative moves during modifier adaptation with
quadratic approximation, Processes 4 (2016) 45.

http://refhub.elsevier.com/S2192-4406(23)00002-3/bibDEC848926EC99588981F82A143B718E1s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibDEC848926EC99588981F82A143B718E1s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib32F11409FB64F86BF793E756DBB35CDCs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib32F11409FB64F86BF793E756DBB35CDCs1
https://doi.org/10.1016/j.automatica.2016.02.004
https://doi.org/10.1016/j.automatica.2016.02.004
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibC4D73935C00FA778075FC8FC125F2C95s1
https://doi.org/10.1137/141000671
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib8374B12CF71F218E7DE15BA409AB6185s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib8374B12CF71F218E7DE15BA409AB6185s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib92FD932BB2FFB148616A615A9AA6CC3Es1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib92FD932BB2FFB148616A615A9AA6CC3Es1
https://doi.org/10.1561/2200000016
https://www.nowpublishers.com/article/Details/MAL-016
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib871EE2CC5CF9D663617DD3E848BA19E8s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib871EE2CC5CF9D663617DD3E848BA19E8s1
https://doi.org/10.1109/TASE.2018.2835298
https://doi.org/10.1007/s10957-014-0561-3
https://doi.org/10.1007/s10957-014-0561-3
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib0A022048A426F12AB85990F793E62E3Es1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib0A022048A426F12AB85990F793E62E3Es1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib3065242EDA84CE261FE101D53431DDC5s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib3065242EDA84CE261FE101D53431DDC5s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib06C5E09C3CD2CF28DCBF19942C5FC267s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib06C5E09C3CD2CF28DCBF19942C5FC267s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib580EBFEA4706B4B25AEFEB14F177BDB9s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib580EBFEA4706B4B25AEFEB14F177BDB9s1
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1137/15M1020575
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib943AA49C09706BFED11C0F76FAA82CCEs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib943AA49C09706BFED11C0F76FAA82CCEs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib943AA49C09706BFED11C0F76FAA82CCEs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib53AF9761BD631CD4AB239964D2F930A5s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib53AF9761BD631CD4AB239964D2F930A5s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib7B4280BB062BE8A69FC5AA4A9252B7E9s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib7B4280BB062BE8A69FC5AA4A9252B7E9s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib38625AD91D4F6E8B5E2D796E946AD8E6s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib38625AD91D4F6E8B5E2D796E946AD8E6s1
http://www.sciencedirect.com/science/book/9780444866806
http://www.sciencedirect.com/science/book/9780444866806
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1016/0898-1221(76)90003-1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib7911785094B92F57A12C2EEE4F9AE4F9s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib7911785094B92F57A12C2EEE4F9AE4F9s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE956EC33DBB634082F3B6404631E6ABFs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE956EC33DBB634082F3B6404631E6ABFs1

78 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
[26] W. Gao, S. Wenzel, S. Engell, A reliable modifier-adaptation strategy for real-time optimization,
Comput. Chem. Eng. 91 (2016) 318–328, https://doi .org /10 .1016 /j .compchemeng .2016 .03 .019.

[27] T. Goldstein, B. O’Donoghue, S. Setzer, R. Baraniuk, Fast alternating direction optimization meth-
ods, SIAM J. Imaging Sci. 7 (2014) 1588–1623, https://doi .org /10 .1137 /120896219.

[28] Z. Guo, G.J. Koehler, A.B. Whinston, A market-based optimization algorithm for distributed sys-
tems, Manag. Sci. 53 (2007) 1345–1358, https://doi .org /10 .1287 /mnsc .1060 .0690.

[29] L.L.C. Gurobi Optimization, Gurobi optimizer reference manual, https://www .gurobi .com, 2021.
[30] S. Han, U. Topcu, G.J. Pappas, Differentially private distributed constrained optimization, IEEE

Trans. Autom. Control 62 (2017) 50–64, https://doi .org /10 .1109 /TAC .2016 .2541298.
[31] B.S. He, H. Yang, S.L. Wang, Alternating direction method with self-adaptive penalty parameters

for monotone variational inequalities, J. Optim. Theory Appl. 106 (2000) 337–356, https://doi .org /
10 .1023 /A :1004603514434.

[32] H. He, D. Han, A distributed Douglas-Rachford splitting method for multi-block convex minimiza-
tion problems, Adv. Comput. Math. 42 (2016) 27–53.

[33] B. Houska, J. Frasch, M. Diehl, An augmented Lagrangian based algorithm for distributed noncon-
vex optimization, SIAM J. Optim. 26 (2016) 1101–1127, https://doi .org /10 .1137 /140975991.

[34] I.Y. Joo, D.H. Choi, Distributed optimization framework for energy management of multiple smart
homes with distributed energy resources, IEEE Access 5 (2017) 15551–15560.

[35] J. Konečnỳ, B. McMahan, D. Ramage, Federated optimization: distributed optimization beyond the
datacenter, arXiv https://arxiv .org /abs /1511 .03575, 2015.

[36] A. Kozma, C. Conte, M. Diehl, Benchmarking large-scale distributed convex quadratic program-
ming algorithms, Optim. Methods Softw. 30 (2015) 191–214, https://doi .org /10 .1080 /10556788 .
2014 .911298.

[37] Q. Le, A. Smola, S. Vishwanathan, Bundle methods for machine learning, Adv. Neural Inf. Process.
Syst. 20 (2007).

[38] M. Li, Generalized Lagrange multiplier method and kkt conditions with an application to distributed
optimization, IEEE Trans. Circuits Syst. II, Express Briefs 66 (2018) 252–256.

[39] T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: challenges, methods, and future
directions, IEEE Signal Process. Mag. 37 (2020) 50–60.

[40] A.B. Liu, P.B. Luh, M.A. Bragin, B. Yan, Ordinal-optimization concept enabled decomposition and
coordination of mixed-integer linear programming problems, IEEE Robot. Autom. Lett. 5 (2020)
5051–5058, https://doi .org /10 .1109 /LRA .2020 .3005125.

[41] Y. Lu, M. Zhu, Privacy preserving distributed optimization using homomorphic encryption, Auto-
matica 96 (2018) 314–325, https://doi .org /10 .1016 /j .automatica .2018 .07 .005.

[42] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M.I. Jordan, P. Richtárik, M. Takáč, Distributed optimiza-
tion with arbitrary local solvers, Optim. Methods Softw. 32 (2017) 813–848.

[43] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optim. Methods Softw. 17
(2002) 1–29, https://doi .org /10 .1080 /10556780290027828.

[44] L.S. Maxeiner, S. Engell, An accelerated dual method based on analytical extrapolation for dis-
tributed quadratic optimization of large-scale production complexes, Comput. Chem. Eng. 135
(2020) 106728, https://doi .org /10 .1016 /j .compchemeng .2020 .106728.

[45] S. Merugu, J. Ghosh, Privacy-preserving distributed clustering using generative models, in: Third
IEEE International Conference on Data Mining, IEEE, 2003, pp. 211–218.

[46] I. Necoara, J. Suykens, Interior-point Lagrangian decomposition method for separable convex opti-
mization, J. Optim. Theory Appl. 143 (2009) 567–588.

[47] A. Nedic, D.P. Bertsekas, Incremental subgradient methods for nondifferentiable optimization,
SIAM J. Optim. 12 (2001) 109–138, https://doi .org /10 .1137 /S1052623499362111.

[48] A. Nedić, J. Liu, Distributed optimization for control, Annu. Rev. Control, Robot. Auton. Syst. 1
(2018) 77–103.

[49] J.E. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Applied Opti-
mization, vol. APOP 87, Kluwer Acad. Publ., Boston, Mass, 2004, http://www .loc .gov /catdir /
enhancements /fy0822 /2003061994 -d .html.

[50] Y. Nesterov, A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k2),
Sov. Math. Dokl., , 1983, pp. 372–376.

[51] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
[52] I. Notarnicola, G. Notarstefano, Constraint-coupled distributed optimization: a relaxation and du-

ality approach, IEEE Trans. Control Netw. Syst. 7 (2020) 483–492, https://doi .org /10 .1109 /TCNS .
2019 .2925267.

https://doi.org/10.1016/j.compchemeng.2016.03.019
https://doi.org/10.1137/120896219
https://doi.org/10.1287/mnsc.1060.0690
https://www.gurobi.com
https://doi.org/10.1109/TAC.2016.2541298
https://doi.org/10.1023/A:1004603514434
https://doi.org/10.1023/A:1004603514434
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibA230468FF2004BA9B440A2C276B97209s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibA230468FF2004BA9B440A2C276B97209s1
https://doi.org/10.1137/140975991
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib9B844CFE5B7F14D22C202FCBDEA12BE3s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib9B844CFE5B7F14D22C202FCBDEA12BE3s1
https://arxiv.org/abs/1511.03575
https://doi.org/10.1080/10556788.2014.911298
https://doi.org/10.1080/10556788.2014.911298
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib5B05320A055C39739E697D34CDEF8C1Ds1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib5B05320A055C39739E697D34CDEF8C1Ds1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibD6A166993753FF53429C0A2099C2BE3As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibD6A166993753FF53429C0A2099C2BE3As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib56E36A7A55C6A710692B1BE097967ECDs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib56E36A7A55C6A710692B1BE097967ECDs1
https://doi.org/10.1109/LRA.2020.3005125
https://doi.org/10.1016/j.automatica.2018.07.005
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE3327D051D4BB6136269D36C773A0475s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE3327D051D4BB6136269D36C773A0475s1
https://doi.org/10.1080/10556780290027828
https://doi.org/10.1016/j.compchemeng.2020.106728
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib8CA63E763AA8C522353B714F15E73EE3s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib8CA63E763AA8C522353B714F15E73EE3s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibF4B23C17599E51DE5FB437BE2D0AEECBs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibF4B23C17599E51DE5FB437BE2D0AEECBs1
https://doi.org/10.1137/S1052623499362111
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib44431BB830C0C80C60EC0B5D09AEE85Cs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib44431BB830C0C80C60EC0B5D09AEE85Cs1
http://www.loc.gov/catdir/enhancements/fy0822/2003061994-d.html
http://www.loc.gov/catdir/enhancements/fy0822/2003061994-d.html
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibA74E32C0AC7A93D84E0EBACEE968A766s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibA74E32C0AC7A93D84E0EBACEE968A766s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib51A92244D83A5099138C7A07BDCE5697s1
https://doi.org/10.1109/TCNS.2019.2925267
https://doi.org/10.1109/TCNS.2019.2925267

V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 79
[53] D.P. Palomar, M. Chiang, A tutorial on decomposition methods for network utility maximization,
IEEE J. Sel. Areas Commun. 24 (2006) 1439–1451, https://doi .org /10 .1109 /JSAC .2006 .879350.

[54] N. Parikh, S. Boyd, Proximal algorithms, Foundations and trends® in Optimization 1 (2014)
127–239.

[55] P. Pflaum, M. Alamir, M.Y. Lamoudi, Scalability study for a hierarchical NMPC scheme for resource
sharing problems, in: 2015 European Control Conference (ECC), IEEE, 2015, pp. 1468–1473.

[56] M. Ruskowski, A. Herget, J. Hermann, W. Motsch, P. Pahlevannejad, A. Sidorenko, S. Bergweiler,
A. David, C. Plociennik, J. Popper, K. Sivalingam, A. Wagner, Production bots for production level
4, atp Magazin 62 (2020) 62–71, https://doi .org /10 .17560 /atp .v62i9 .2505.

[57] A.M. Sampat, V.M. Zavala, Fairness measures for decision-making and conflict resolution, Optim.
Eng. 20 (2019) 1249–1272, https://doi .org /10 .1007 /s11081 -019 -09452 -3.

[58] S. Sun, Z. Cao, H. Zhu, J. Zhao, A survey of optimization methods from a machine learning per-
spective, IEEE Trans. Cybern. 50 (2019) 3668–3681.

[59] C.A. Uribe, S. Lee, A. Gasnikov, A. Nedić, A dual approach for optimal algorithms in distributed
optimization over networks, in: 2020 Information Theory and Applications Workshop (ITA), IEEE,
2020, pp. 1–37.

[60] R. Vujanic, P.M. Esfahani, P.J. Goulart, S. Mariéthoz, M. Morari, A decomposition method for
large scale MILPs, with performance guarantees and a power system application, Automatica 67
(2016) 144–156.

[61] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, Math. Program. 106 (2006) 25–57, https://doi .org /10 .1007 /
s10107 -004 -0559 -y.

[62] D. Walker, Walras’s theories of tatonnement, J. Polit. Econ. (1987) 758–774.
[63] S.L. Wang, L.Z. Liao, Decomposition method with a variable parameter for a class of monotone

variational inequality problems, J. Optim. Theory Appl. 109 (2001) 415–429, https://doi .org /10 .
1023 /A :1017522623963.

[64] S. Wenzel, Distributed Optimization of Coupled Production Systems via Market-Like Coordination,
Shaker Verlag, 2020.

[65] S. Wenzel, S. Engell, Coordination of coupled systems of systems with quadratic approximation,
IFAC-PapersOnLine 52 (2019) 132–137, https://doi .org /10 .1016 /j .ifacol .2019 .06 .023.

[66] S. Wenzel, W. Gao, S. Engell, Handling disturbances in modifier adaptation with quadratic approx-
imation, IFAC-PapersOnLine 48 (2015) 132–137, https://doi .org /10 .1016 /j .ifacol .2015 .11 .072.

[67] S. Wenzel, R. Paulen, S. Krämer, B. Beisheim, S. Engrell, Price Adjustment in Price-Based Coordi-
nation Using Quadratic Approximation, Computer Aided Chemical Engineering, vol. 38, Elsevier,
2016, pp. 193–198.

[68] S. Wenzel, R. Paulen, G. Stojanovski, S. Krämer, B. Beisheim, S. Engell, Optimal resource allocation
in industrial complexes by distributed optimization and dynamic pricing, Automatisierungstechnik
64 (2016) 428–442.

[69] S. Wenzel, F. Riedl, S. Engell, An efficient hierarchical market-like coordination algorithm for
coupled production systems based on quadratic approximation, Comput. Chem. Eng. 134 (2020)
106704, https://doi .org /10 .1016 /j .compchemeng .2019 .106704.

[70] S. Wenzel, V. Yfantis, W. Gao, Comparison of regression data selection strategies for quadratic
approximation in RTO, in: 27th European Symposium on Computer Aided Process Engineering,
in: Computer Aided Chemical Engineering, vol. 40, Elsevier, 2017, pp. 1711–1716.

[71] B. Yang, M. Johansson, Distributed optimization and games: a tutorial overview, in: M. Morari, M.
Thoma, A. Bemporad, M. Heemels, M. Johansson (Eds.), Networked Control Systems, in: Lecture
Notes in Control and Information Sciences, vol. 406, Springer London, London, 2010, pp. 109–148.

[72] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, K.H. Johansson, A
survey of distributed optimization, Annu. Rev. Control 47 (2019) 278–305.

[73] V. Yfantis, M. Ruskowski, A hierarchical dual decomposition-based distributed optimization algo-
rithm combining quasi-Newton steps and bundle methods, in: 30th Mediterranean Conference on
Control and Automation (MED), IEEE, 2022, pp. 31–36.

[74] M. Zargham, A. Ribeiro, A. Ozdaglar, A. Jadbabaie, Accelerated dual descent for network flow
optimization, IEEE Trans. Autom. Control 59 (2014) 905–920, https://doi .org /10 .1109 /TAC .2013 .
2293221.

[75] Y. Zhang, N. Gatsis, G.B. Giannakis, Disaggregated bundle methods for distributed market clearing
in power networks, in: 2013 IEEE Global Conference on Signal and Information Processing, IEEE,
2013, pp. 835–838.

https://doi.org/10.1109/JSAC.2006.879350
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib078A3E259E6CBD165B93D7806C41A476s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib078A3E259E6CBD165B93D7806C41A476s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib5AA57AD4BB5F11A8D15D255FF0F29FEEs1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib5AA57AD4BB5F11A8D15D255FF0F29FEEs1
https://doi.org/10.17560/atp.v62i9.2505
https://doi.org/10.1007/s11081-019-09452-3
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib3894E959501B58CBEAC6C6119F03BB81s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib3894E959501B58CBEAC6C6119F03BB81s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib01395BB84BF7DBA48200A66EF07CE906s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib01395BB84BF7DBA48200A66EF07CE906s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib01395BB84BF7DBA48200A66EF07CE906s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib190EEEC641006FF608970E9FCB4132E7s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib190EEEC641006FF608970E9FCB4132E7s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib190EEEC641006FF608970E9FCB4132E7s1
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib108FBAE7C51BB4397C91C9237D897B63s1
https://doi.org/10.1023/A:1017522623963
https://doi.org/10.1023/A:1017522623963
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE7E46D48CC63A29A12EB4D6DF31A7425s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibE7E46D48CC63A29A12EB4D6DF31A7425s1
https://doi.org/10.1016/j.ifacol.2019.06.023
https://doi.org/10.1016/j.ifacol.2015.11.072
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibC16AF3F7362C608B6CC2F6AF489A2B60s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibC16AF3F7362C608B6CC2F6AF489A2B60s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibC16AF3F7362C608B6CC2F6AF489A2B60s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibFA125925E0288901C6949D75844042C7s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibFA125925E0288901C6949D75844042C7s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibFA125925E0288901C6949D75844042C7s1
https://doi.org/10.1016/j.compchemeng.2019.106704
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibCC5588D196C99F57780DAB58F283F76Ds1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibCC5588D196C99F57780DAB58F283F76Ds1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibCC5588D196C99F57780DAB58F283F76Ds1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib841408C03D65C7D654B97C140CA9264As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib841408C03D65C7D654B97C140CA9264As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib841408C03D65C7D654B97C140CA9264As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib908FAB84530795E5DC52F1C93B544A10s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bib908FAB84530795E5DC52F1C93B544A10s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibD4A76A7436FD4BF9656091D8238C8A9As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibD4A76A7436FD4BF9656091D8238C8A9As1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibD4A76A7436FD4BF9656091D8238C8A9As1
https://doi.org/10.1109/TAC.2013.2293221
https://doi.org/10.1109/TAC.2013.2293221
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibEE1473E445ABB17B439DAA1786332779s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibEE1473E445ABB17B439DAA1786332779s1
http://refhub.elsevier.com/S2192-4406(23)00002-3/bibEE1473E445ABB17B439DAA1786332779s1

	Hierarchical distributed optimization of constraint-coupled convex and mixed-integer programs using approximations of the d...
	1 Introduction
	2 Notation
	3 Duality and dual decomposition
	4 Review of dual decomposition-based distributed optimization
	4.1 Subgradient method
	4.2 Bundle trust method
	4.3 Alternating direction method of multipliers
	4.4 Other related dual decomposition-based methods

	5 Algorithms based on smooth approximations
	5.1 Regression-based approximations
	5.1.1 Fitting the parameters of a quadratic model
	5.1.2 Regression data selection strategy
	5.1.3 Covariance-based step size constraint
	5.1.4 The QAC algorithm
	5.1.5 Quadratically approximated dual ascent
	5.1.6 Bundle cuts
	5.1.7 Summary of regression-based algorithms

	5.2 Quasi-Newton dual ascent
	5.3 Discussion of the convergence properties of the QADA and QNDA algorithms

	6 Computational results
	6.1 Distributed QPs
	6.1.1 Parameter settings for distributed QPs
	6.1.2 Results for distributed QPs

	6.2 Distributed MIQPs
	6.2.1 Recovery of primal feasibility for distributed MIQPs
	6.2.2 Parameter settings for distributed MIQPs
	6.2.3 Results for distributed MIQPs

	6.3 General distributed convex problems
	6.3.1 Parameter settings for distributed convex problems
	6.3.2 Results for distributed convex problems

	7 Summary and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Summary of the used parameters
	Appendix B Convex objective functions
	Appendix C Benchmark problems
	Appendix D Summaries of computational results
	References

