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A B S T R A C T

Industry 4.0 has facilitated the access to sensor and actuator data from manufacturing systems, leading to
studies on data-driven anomaly detection, but limited attention has been paid to finding root causes and
automating this process using formalized expert knowledge. This is crucial due to the scarcity of qualified
engineers and the time-consuming nature of diagnosing issues in large production systems. To address this
gap, we present a framework that combines data-driven anomaly detection with a knowledge graph that
provides domain knowledge by leveraging typical explanations of such models (i.e.,data streams potentially
caused the detection) for further diagnosis. The framework’s usefulness to infer affected components or data
set labels has been evaluated using two deep anomaly detection approaches. For knowledge-based diagnosis,
three query strategies that utilize various knowledge graph relationships are implemented through three
Artificial Intelligence (AI) techniques. The proposed anomaly detection approach, informed by integrating
expert knowledge via the graph structure of the knowledge graph and node embeddings for encoding time
series, outperforms baselines and a deep autoencoder in detecting anomalies and in identifying anomalous
data streams. In subsequent diagnosis, it achieves the best performance on a complete knowledge graph in
combination with a graph pattern matching query by identifying the label or affected component in 60%
of detected anomalies by providing 4.1 labels or 2.3 components until the correct one is identified. In
case of a corrupted one, Symbolic-Driven Neural Reasoning (SDNR) and Case-Based Reasoning (CBR) with
knowledge graph embeddings demonstrate advantages by halving the number of incorrect labels and unaffected
components.
1. Introduction

Industry 4.0 has transformed production facilities into
Cyber-Physical Production Systems (CPPSs) equipped with numer-
ous sensors and actuators (Nguyen et al., 2019). This transforma-
tion enables a change from preventive to Predictive Maintenance
(PredM) through automated signal analysis (Selcuk, 2017), ensur-
ing safety and minimizing unexpected disturbances. A core task of
PredM is the detection of anomalies and the determination of their
causes (Serradilla et al., 2020a). Two key challenges are of particular
importance in this regard: (1) when monitoring entire CPPSs (i.e., at
system level Tamssaouet et al., 2021), high-dimensional time series
are being generated and (2) usually only a few labeled examples
of occurred faults and failures1 are available (Klein et al., 2020).
Due to limited labeled data, unsupervised or self-supervised learning
approaches have gained high interest for anomaly detection (Darban

∗ Corresponding author.
E-mail addresses: patrick.pat.klein@gmail.com (P. Klein), malburgl@uni-trier.de (L. Malburg), bergmann@uni-trier.de (R. Bergmann).

1 For better readability, we do not distinguish between both in the following anymore and use failures for both.

et al., 2022). Some approaches proposed for that purpose (e.g., Zhao
et al., 2020a; Zhang et al., 2019a; Khoshnevisan and Fan, 2019; Bulla
and Birje, 2021; Deng and Hooi, 2021; Su et al., 2019a; Li et al., 2021)
identify data streams with the most significant deviations from the
normal state for samples classified as abnormal (Darban et al., 2022).
However, these approaches typically end with identifying abnormal
data streams, making it challenging for engineers to deduce affected
components due to the high number of monitored data streams and the
complexity of the component interrelationships of a CPPS (Monostori,
2014; Diedrich, 2023; Medina-Oliva et al., 2014). Finding the cause is
often not considered as part of these models and studies, as the domain
knowledge required for inference is difficult to obtain for such a model
from unlabeled time series data alone.

For this reason, research explores combining PredM approaches,
traditionally divided into knowledge-driven, physics-based, and data-
driven, to handle the complexity of modern manufacturing assets
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Fig. 1. Sketch of the applied approach that processes incoming data with a data-driven anomaly detection, then identifies anomalous data streams to infer affected components
or the data set’s label by using a knowledge graph as an RCA.
(Jimenez et al., 2020; Nunes et al., 2023). These approaches, though
different, can be complementary when properly deployed (Jimenez
et al., 2020; Bouhadra and Forest, 2024). Although data-driven anomaly
detection leverages deep learning to process high-dimensional, high-
frequency, and high-volume time series data and excels in pattern
matching (Rezaeianjouybari and Shang, 2020), a knowledge-based
model can incorporate available domain knowledge (von Rueden et al.,
2019). Prior knowledge about the system is particularly helpful in find-
ing the root cause in complex and interconnected systems (Niggemann
and Lohweg, 2015) and overcoming some challenges (e.g., spurious
correlations and number of training examples) in data-driven models
alone (Steenwinckel et al., 2021b; Klein et al., 2021; Farbiz et al., 2022;
Hagendorfer, 2021). Despite the potential of knowledge-based models
to complement data-driven ones for diagnostic purposes (Jimenez et al.,
2020; Bouhadra and Forest, 2024), their integration is still in its
infancy (De Paepe et al., 2021; Nunes et al., 2023; Breit et al., 2023;
Franciosi et al., 2024). To address these aforementioned shortcomings,
we propose a framework that extends data-driven anomaly detection
with a knowledge-based diagnosis Root Cause Analysis (RCA) module.
By this combined method, it is possible to infer the data set’s label
or affected component of a CPPS, as shown in Fig. 1. The main
contributions are as follows:

• Since deep anomaly detection methods for PredM usually end
with a case study of identified data streams as an explana-
tion (e.g., Zhao et al., 2020a; Zhang et al., 2019a; Khoshnevisan
and Fan, 2019; Bulla and Birje, 2021; Deng and Hooi, 2021;
Su et al., 2019a; Li et al., 2021), one main contribution is
to continue at this point with a RCA. Therefore, relationships
between data streams and components formalized in a knowledge
graph are leveraged to infer or reason the data set’s label or af-
fected component in a CPPS. We propose several query strategies
and AI approaches for logical inference (i.e., SPARQL) or using
knowledge graph embeddings with SDNR and CBR.

• We propose an informed self-supervised one-class learning ap-
proach that integrates domain knowledge in the form of data
stream relationships derived from the knowledge graph. It outper-
forms several baselines and a deep autoencoder. Combined with
a counterfactual approach, it allows identifying data streams for
detected anomalies.

• We present a FMEA ontology to model the knowledge about faults
and failures, instantiated based on the data set used and aligned
with an existing smart factory model ontology.

This paper follows the Design Science Research Methodology (Peffers
et al., 2018) and an experimental evaluation (Von Alan et al., 2004,
p. 85) to rigorously prove the usefulness, quality, and effectiveness of
the developed artifact. A literature review ensures research rigor, and
a concept is defined to combine deep anomaly detection models with
semantically modeled expert knowledge, implements it prototypically,
and evaluates it experimentally using data split into train, validation,
and test sets. The anomaly detection is evaluated for its ability to detect
faults and failures and identify the causative data streams, as well as for
diagnosis. In addition, the usefulness of a knowledge graph for logical
inference, SDNR, and CBR is evaluated.

The remainder of the paper is structured as follows: First, some
basic definitions, techniques, the used data set and knowledge graph
2 
are presented (Section 2). Followed by the proposed framework for
combining a data-driven anomaly detection with a knowledge graph for
RCA and its specific implementation for evaluation is described (Sec-
tion 3). Then the results of the evaluation are presented and discussed
(Section 4). Next, related work on data-driven anomaly detection with
expert knowledge for RCA in the field of PredM is presented (Section 5),
before, the contributions and limitations are discussed (Section 6).
Finally, a conclusion and possible future research are given (Section 7).

2. Foundations

First, the foundations of anomaly detection are introduced (Sec-
tion 2.1), focusing on self-supervised approaches used in the proposed
method (Section 2.2). Afterwards, counterfactuals for explaining de-
tected anomalies are presented in Section 2.3. Next, graph structure
learning (Section 2.4) to integrate expert knowledge into the proposed
model is introduced. Thereafter, the used data set and the knowledge
graph for finding the data set’s label or affected component are de-
scribed in Sections 2.5 and 2.6. Finally, SDNR for identifying root
causes of detected anomalies is explained in Section 2.7.

2.1. Data-driven anomaly detection

The general objective of anomaly detection is to locate patterns in
the data that do not align with the expected behavior observed in a data
set regarded as describing the usual state (Foorthuis, 2020; Ruff et al.,
2020). Formally, an anomaly detection model 𝑓 (⋅) assigns examples 𝑥 ∈
 = {𝑥𝑒}𝑁𝑒=0 (e.g., windows of time series) to either 0 for indicating
that the input is in a healthy state or 1 for an irregularity, expressed
as 𝑓 ∶  → {0, 1}. A common approach for unsupervised anomaly
detection is the utilization of a one-class classifier for 𝑓 (Fourure et al.,
2021) to obtain an anomaly score 𝑠 = 𝑓 (𝑥) in a first step, followed by
a final binary classification as anomaly 𝑦̂ = 1 if 𝑠 > 𝜏 or normal with
𝑦̂ = 0:

𝑦̂ =

{

1, if 𝑠 (𝑥) > 𝜏
0, otherwise.

(1)

Depending on the use case, the anomaly score 𝑠(𝑥) may be a prediction
for the most recent time point of the window 𝑥 (e.g., Kim et al., 2021) or
for the whole window (e.g., Qiu et al., 2021). Typically, 𝑓 is trained on
an anomaly-free data set  , consisting of only examples that represent
normal conditions, which are not labeled (Fourure et al., 2021). For
empirically determining the threshold 𝜏, only a few failure examples
are needed, which is less than what is required to learn a supervised
model. A larger anomaly score 𝑠(𝑥) implies that the example 𝑥 is more
likely to be anomalous (Fourure et al., 2021) and in PredM, a higher
score 𝑠(𝑥) may indicate a more severe fault or a condition closer to the
end of life (Malhotra et al., 2016).

Common baseline approaches for 𝑓 include k-Nearest Neighbors
(k-NN) and One-Class Support Vector Machine (OC-SVM). k-NN is a
distance-based anomaly detection method that relies on the assumption
that normal data points are closely grouped and anomalous ones are
separated from them. These techniques typically calculate the anomaly
score 𝑠 as the distance (e.g., Euclidean distance) between a sample 𝑞
and its 𝑘-nearest neighbors of the (fault-free) data set, or from one or
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more mean points. Representation-based methods learn a transforma-
ion that projects data into a space that facilitates anomaly recogni-

tion (Fourure et al., 2021). A prominent example is OC-SVM (Schölkopf
et al., 1999), which uses a hypersphere to encompass all normal
nstances in the projection space (Fourure et al., 2021). Ruff et al.

(2018) proposed a deep one-class classification approach, which learns
representations by minimizing the distance of normal examples to a
enter 𝜂 as given in (Ruff et al., 2018; Sohn et al., 2021):

min
𝑓

E𝑥‖𝑓 (𝑥) − 𝜂‖2. (2)

The neural network 𝑓 (⋅) extracts common features of normal exam-
les to map them close to the center 𝜂 (Ruff et al., 2018). Another

approach of this category by Sohn et al. (2021) obtains useful repre-
sentations through self-supervised deep learning as input to OC-SVM
r for one-class classification.

2.2. Self-supervised representation learning for anomaly detection

Self-supervised learning approaches for computer vision have
gained popularity due to their ability to achieve performance com-
arable to supervised learning with less labeled data (Jaiswal et al.,

2020). These approaches embed augmented versions of the same sam-
le image as input and embed them close together, while pushing

away embeddings from different samples (Jaiswal et al., 2020). Image
epresentations are often based on a Siamese neural network architec-

ture (Chen and He, 2020) with geometric and color transformations
as augmentations. For sequential data such as time series, the task
often involves predicting future or missing information (Jaiswal et al.,
2020). However, Sohn et al. (2021) argue that self-supervised learning
for multi-class classification may not suit one-class anomaly detec-
tion due to representational issues: First, most contrastive learning
approaches require negative pairs, which can counteract a one-class
classification by pushing away the same class instead of centering it
(cf. Eq. (2)) (Sohn et al., 2021). Furthermore, the loss function of self-
supervised learning aims for a uniform distribution of representations,
making outlier isolation difficult (Sohn et al., 2021). This means that
the representations learned with those approaches are not suitable for
anomaly detection. For using anomaly detection for time series, useful
augmentations are less known, and it is challenging to design these
ransformations manually (Qiu et al., 2021). These shortcomings lead to
he proposed modification of the self-supervised approach introduced
n the following to be applied for detecting anomalies.

SimSiam siamese network
The self-supervised SIMple SIAMese Network (SimSiam) approach

y Chen and He (2020) achieves noteworthy results without requiring
negative sample pairs, large batch sizes, or momentum encoders, and
erves as the foundation for the proposed one-class anomaly detection
ethod discussed later in this paper. Fig. 2 shows the architecture in

conjunction with a traditional Siamese neural network. Two augmented
images (𝑥𝑎, 𝑥𝑏) are created from the same image 𝑥 and then processed
by an encoder network 𝑓 (⋅) with the same weights 𝜃, resulting in
embedding 𝑒 = 𝑓 (𝑥). For visual tasks, 𝑓 typically consists of an encoder
to extract deep features (e.g., ResNet He et al., 2015) plus a predictor
Multilayer Perceptron (MLP) ℎ(⋅) (Grill et al., 2020). The MLP predictor
has a bottleneck structure (comparable to an autoencoder), and its
ole requires further investigation (Chen and He, 2020). The output
of the prediction MLP head ℎ(⋅) predicts the other encoder’s output:

𝑝𝑎 = ℎ(𝑓 (𝑥𝑎)) and 𝑒𝑏 = 𝑓 (𝑥𝑏). The total loss for each pair is defined as:

𝐿 = 1
2
𝑑(𝑝𝑎, 𝑒𝑏) + 1

2
𝑑(𝑝𝑏, 𝑒𝑎), with 𝑑(𝑝𝑎, 𝑒𝑏) = − 𝑝𝑎

‖𝑝𝑎‖2
×

𝑒𝑏
‖𝑒𝑏‖2

(3)

where ‖ ⋅ ‖2 is the 𝓁2-norm, and 𝑑(⋅) is the negative Cosine similarity
between the elements. The stop gradient operation2 is applied to 𝑒𝑏

2 Detailed explanation at https://www.tensorflow.org/api_docs/python/tf/
top_gradient, accessed on 07/24/2022.
3 
Fig. 2. Sketch of the SimSiam architecture from Chen and He (2020) compared to the
common siamese neural network architecture (Bromley et al., 1993).

so that the network is only updated based on the gradients of the
other branch, i.e., the error of predictor 𝑝𝑎. The loss is averaged
over a batch, with a minimum value of −1. Experiments have shown
competitive performance in image classification using representation 𝑒
from encoder 𝑓 with a linear classifier or with k-NN (Chen and He,
2020). The authors attribute the prevention of a collapsing solution to
the prediction head and gradient stop operation (Chen and He, 2020).

2.3. Counterfactual explanation

Data-driven methods for detecting anomalies in time series data
often lack helpful explanations for their predictions (Sulem et al., 2022;
Karlsson et al., 2020). The reconstruction error of autoencoders can
identify anomalous data streams (Zhang et al., 2019a; Zhao et al.,
2020b) (see Fig. 14) or they can be combined with feature-based
explanation methods such as SHapley Additive exPlanations (Lundberg
and Lee, 2017), as shown by Antwarg et al. (2019) or Bulla and
Birje (2021). Another approach is the use of counterfactuals, which
ighlights what should have been changed in an instance to achieve a
ifferent outcome (Guidotti, 2022). For distance-based classification of

time series, Delaney et al. (2021, 2020) propose to retrieve the nearest
unlike neighbor (NUN) 𝑥𝑁 𝑈 𝑁 from another class 𝑦𝑗 ≠ 𝑦𝑖, which is the
most similar one to the query 𝑞, and use it to create a counterfactual
explanation:

𝑥𝑐 𝑓 = 𝑥𝑁 𝑈 𝑁 + 𝛿, with 𝑥𝑁 𝑈 𝑁 = min
𝑥𝑗

𝑑(𝑞 , 𝑥𝑗 ) ∣ 𝑥 ∉ 𝑦𝑖, 𝑓 (𝑞) ∈ 𝑦𝑖. (4)

The Nearest Unlike Neighbor (NUN) 𝑥𝑁 𝑈 𝑁 is modified to be closer to
the query 𝑞 according to a distance measure 𝑑(⋅, ⋅). The perturbation 𝛿
ends before the predicted class of 𝑥𝑁 𝑈 𝑁+𝛿 changes to 𝑦𝑖 (Delaney et al.,
2020). To explain a supervised deep learning model, Delaney et al.
(2021) suggest using a feature weight 𝑤 (e.g., from class activation
mapping (CAM)) (Zhou et al., 2016) to assign weights to the time
steps of 𝑥𝑁 𝑈 𝑁 based on their contribution to the model’s prediction
towards 𝑦𝑗 . The contiguous sub-sequence of 𝑥𝑁 𝑈 𝑁 according to 𝑤 is
then replaced with the values of 𝑞 until 𝑓 (𝑥𝑐 𝑓 ) ∈ 𝑦𝑗 (Delaney et al.,
2021).

2.4. Graph structure learning

In addressing the challenge of modeling complex relationships be-
tween data streams, graph-based approaches offer a promising direc-
tion. Graph Structure Learning (GSL) (Zhu et al., 2021) focuses on
developing modules to learn an encoding function 𝑓𝐺 𝑆 𝐿(⋅) that pro-
uces the optimal graph structure 𝐴∗ ∈ R| |×| | as an adjacency matrix
ith  nodes (Zhu et al., 2021). The following variants for a graph

tructure learning module have been found in the literature:

A𝐿
𝑊 = ReLU(𝑊 ) (5)

𝐿 𝑇
A𝐸11
= ReLU(t anh(𝛼(E1 ⋅ E1 ))) (6)

https://www.tensorflow.org/api_docs/python/tf/stop_gradient
https://www.tensorflow.org/api_docs/python/tf/stop_gradient
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Fig. 3. Smart factory model used for data generation (Klein. and Bergmann., 2019).
PS means Processing Station, VGR is Vacuum Gripper Robot.

A𝐿
𝐸12

= ReLU(t anh(𝛼(E1 ⋅ E𝑇
2 ))) (7)

A𝐿
𝐸12−𝐸21

= ReLU(t anh(𝛼(E1 ⋅ E𝑇
2 − E2 ⋅ E𝑇

1 ))) (8)

A𝐿
‖𝐸11‖2

= ReLU(‖𝐸1‖2 ⋅ ‖𝐸1‖
𝑇
2 ) (9)

A𝐿
‖𝐸12‖2

= ReLU(‖𝐸1‖2 ⋅ ‖𝐸2‖
𝑇
2 ) (10)

Eq. (5), based on Zhu et al. (2021) and referred to as Global-A
in Wu et al. (2020), is a baseline using a learnable weight matrix
𝑊 ∈ R| |×| | that is randomly initialized or a predefined adjacency
matrix can be used. The Rectified Linear Unit (ReLU) activation func-
tion ensures positive values in the adjacency matrix. Fatemi et al.
(2021) applied the Exponential Linear Unit (ELU) function (Clevert
et al., 2016) instead of ReLU and added 1 to address the gradient flow
problem caused by edges in 𝐴𝐿 that become zero or less. Eqs. (6)–(10)
enable the learning of a node representation 𝐸𝑖 for each node 𝑛𝑖, where
𝐸𝑖 = t anh(𝛼 𝑀𝑖 ⋅𝑊𝑖 + 𝑏𝑖) with learned parameters 𝑀𝑖 ∈ R| |×𝑑 and 𝑊𝑖 ∈
R𝑑×𝑑 Here, 𝑑 is the number of dimensions, and 𝛼 is a hyperparameter
for controlling the saturation rate of t anh(⋅). Eqs. (6)–(8) are from Wu
et al. (2020), while Eqs. (9) and (10) are from Deng and Hooi (2021).
For an undirected graph, the outgoing and ingoing edge representations
are identical (Eqs. (6) and (9)), while a directed one uses different
representations (e.g., in Eq. (7), (8) and (10)). The learned adjacency
matrix 𝐴𝐿 is commonly post-processed to achieve 𝐴∗ with the desired
structure and properties, such as sparsity and normalization.

2.5. Data set

The data set3 used in this work has been generated using a Fis-
chertechnik smart factory model enhanced with various condition mon-
itoring sensors, including accelerometers for measuring vibrations and
differential air pressure sensors for pneumatic systems (Klein. and
Bergmann., 2019). It comprises five workstations (referred to as txt15
to txt19): a sorting line with color recognition (txt15), two Process-
ing Stations (PSs, txt16 and txt17), a Vacuum Gripper Robot (VGR,
txt18), and a high-bay warehouse (txt19), as shown in Fig. 3. These
workstations are interconnected to handle incoming workpieces and
simulate a production process. During the simulated manufacturing
process, faults and failures are randomly injected and labeled with 28

3 https://drive.google.com/drive/folders/1-1KfT_FjsUSTDgXajhl7-
ZCPGsL7rYqw?usp=sharing, last accessed on 05/02/2025.
4 
classes, categorized as follows: (i) false signals from sensors used for
control-purposes, (ii) artificially induced vibrations on two conveyor
belt motors, (iii) leakages in pneumatic systems and (iv) various other
malfunctions (e.g., incorrectly executed transport processes). All sensor
and actuator data streams are recorded to capture the data that describe
the entire state of the CPPS model for monitoring at the system level.
For each failure mode, expert knowledge about features (i.e., data
streams) is specified that contain directly observable patterns and
relevant contextual information to detect the failure (see Table 11).
The data is pre-processed, which involves interpolating missing values,
re-sampling to 4 ms frequency, and scaling to [0, 1]. A sliding window
with a step size of one second and a length of four seconds is used to
extract individual examples, resulting in a multivariate time series of
𝑋 = [0, 1]1000×61 (i.e., 1000 observations with 61 data streams). The
examples are divided into training, validation, and test sets, ensuring
independence by assigning examples from a failure simulation run to
either training/validation or test set. The class and example distribution
of the data set are shown in the Appendix in Table 9.

2.6. Knowledge graph

To represent expert knowledge about a manufacturing system such
as a CPPS, a common approach is to build a so-called knowledge
graph by using Semantic Web Technologys (SWTs) such as the Resource
Description Framework (RDF) or the Web Ontology Language (OWL),
e.g., Kalayci et al. (2020) and Hubauer et al. (2018). Using OWL,
knowledge about things (e.g., components, failure modes, data streams)
of a production environment can be represented by forming groups and
relationships between them (Hitzler et al., 2012). A knowledge graph
provides information on the relationships between its entities (Ji et al.,
2021), with relationships between actuators and sensors (e.g., hosts of
the Semantic Sensor Network ontology Haller et al., 2019) being of
particular interest for tracing anomalous signals detected by anomaly
detection back to their origin. The built knowledge graph makes ex-
pert knowledge explicit and machine-readable regarding component
arrangements and relationships, as well as failure modes, which is
necessary for effective Root Cause Analysis (RCA).

For the smart factory model used to generate the data set (cf. Sec-
tion 2.5), the semantic knowledge graph FTOnto (Klein et al., 2019a)
provides the foundation as an ontology to model the arrangements and
relationships of components based on established domain ontologies.
Having this knowledge is crucial for building intelligent applications
such as for smart production control (Malburg et al., 2023b,a) with
semantic web services (Malburg et al., 2020), or for integrating it in
neural networks for fault detection (Klein et al., 2021).

2.7. Symbolic inference and symbolic-driven neural reasoning

For diagnosing detected anomalies, maintenance engineers can con-
sult a knowledge graph (cf. Section 2.6) for RCA information, often
through queries formulated in the SPARQL. These queries can infer
new information by pattern matching, such as determining potential
affected components from anomalous data streams. However, SPARQL
queries rely on complete and correct Knowledge Graphs, which is often
not the case in practice (Boschin et al., 2022). To address missing
relationships, symbolic-driven neural reasoning (SDNR) (Zhang et al.,
2021) can predict them using knowledge graph embeddings. These em-
beddings map entities and relations of a knowledge graph by mapping
them into low-dimensional vectors, capturing semantic meanings (Ji
et al., 2021). This work uses the multipurpose neural embedding model
StarSpace (Wu et al., 2018) to embed entities. Therefore, the knowledge
graph is represented in the form of triples (ℎ, 𝑟, 𝑡) comprising a head
concept ℎ, a relation 𝑟, and a tail concept 𝑡. StarSpace creates two
training examples from each triple: inferring the left entity (ℎ) from
the relation (𝑟) and the right feature vector (𝑡), so that 𝑎 = ℎ and 𝑏 =
𝑟 + 𝑡. The similarity 𝑠𝑖𝑚(𝑎, 𝑏) should be higher than when 𝑎 is replaced

https://drive.google.com/drive/folders/1-1KfT_FjsUSTDgXajhl7-ZCPGsL7rYqw?usp=sharing
https://drive.google.com/drive/folders/1-1KfT_FjsUSTDgXajhl7-ZCPGsL7rYqw?usp=sharing
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Fig. 4. A translation-based approach (Bordes et al., 2013) such as StarSpace uses the
elation vector 𝑟 as a translation from the head vector ℎ to the entity vector 𝑡. Fig.

based on Ji et al. (2021).

with a random entity 𝑎−, by a margin of ℎ. During training, StarSpace
produces feature vectors yielding ℎ ≈ 𝑟 + 𝑡 and ℎ + 𝑟 ≈ 𝑡, as shown
n Fig. 4. These embeddings enable SDNR to evaluate logical formulas

representing expert knowledge for finding a root cause, and the embed-
ings can be used to infer unknown (i.e., not modeled) relationships
etween entities of the knowledge graph. In SDNR, a triple (ℎ, 𝑟, 𝑡)
s interpreted as a binary predicate 𝑟(ℎ, 𝑡) (Zhang et al., 2021), with

its score 𝑠(ℎ, 𝑟, 𝑡) ∈ [0, 1] from the embedding model like StarSpace,
considered as a prediction of its truth value (1 being absolute truth, 0
completely false). More complex logical formulas can be constructed by
combining several triples (i.e., binary predicates) with logical operators
such as conjunction ∧ (i.e., and), disjunction ∨ (i.e., or), or negation
¬. By utilizing the (product) t-norm fuzzy logics (Hajek, 1998), a
omplex formula consisting of atoms 𝑓𝑖 (i.e., triples or formulas) can

be evaluated using the truth values (i.e., scores 𝑠(⋅)) of its constituents,
as shown in Eqs. (11a), (11b), and (11c) (Guo et al., 2016). A higher
ruth value indicates better-satisfied rules (Guo et al., 2016).

𝑠
(

𝑓1 ∧ 𝑓2
)

= 𝑠
(

𝑓1
)

⋅ 𝑠
(

𝑓2
)

(11a)
(

𝑓1 ∨ 𝑓2
)

= 𝑠
(

𝑓1
)

+ 𝑠
(

𝑓2
)

− 𝑠
(

𝑓1
)

⋅ 𝑠
(

𝑓2
)

(11b)

𝑠
(

¬𝑓1
)

= 1 − 𝑠
(

𝑓1
)

. (11c)

3. Combining data-driven anomaly detection with knowledge
graphs for diagnosis

After Section 3.1 presented the general framework to combine
 data-driven anomaly detection with a knowledge graph, this sec-

tion describes its application to the previously built knowledge graph
(Section 2.6) and generated data set (Section 2.5). First, Section 3.2
describes the data-driven anomaly detection used for module (I), which
already integrates expert knowledge. Then, Section 3.3 explains the
counterfactual approach used to identify anomalous data streams,

hich represents the bridge module (II). Next, Section 3.4 presents
he RCA module (III). This section compromises how expert knowl-
dge about failures is modeled using semantic web technologies (Sec-

tion 3.4.1) and how the applied query strategies and constraints are
sed on the knowledge graph to improve and automate the diagnosis
Section 3.4.2).

3.1. Architectural overview

This section presents a framework for combining data-driven
nomaly detection with expert knowledge for diagnosis, represented by
 knowledge graph. The technologies selected for anomaly detection

and diagnosis reflect the different characteristics of these tasks to
optimally fit their respective strengths and weaknesses. Neural net-
works, for example, possess strong learning capabilities for processing
time series data (Rezaeianjouybari and Shang, 2020), while expert
nowledge helps to trace the causes of anomalies. This follows a
5 
common approach in AI: applying deep learning for low-level per-
ception and logical knowledge for high-level reasoning (Yang et al.,
2020). Rather than building a neural network to directly predict root
causes, the framework leverages outputs, particularly anomaly scores
per data stream, to identify root causes based on prior knowledge
and logical constraints. This separation facilitates the learning task
of the neural network and allows independent modification of expert
knowledge (Yang et al., 2020). The proposed framework, depicted in
Fig. 5, consists of three main parts:

Anomaly Detection Module (I): a data-driven anomaly detection (left
side in Fig. 5),

Bridge Module (II): a bridge connecting both modules (middle in
Fig. 5), and

RCA Module (III): a knowledge graph for diagnosis (right side in Fig. 5).

The framework operates as follows: The data-driven model detects
anomalies, as it can learn knowledge from data without any prior
nowledge of the system’s normal state, typically providing an anomaly

score 𝑠 ∈ [0, 1] to indicate if an input sample is anomalous (cf.
Section 2.1). These models often provide additional information such
as affected time intervals and data streams (Darban et al., 2022),

hich serves as a bridge to access the knowledge graph for diagnosis.
he knowledge graph provides information on possible failure modes
elated to the data stream, using anomalous data streams as entry

points. This background knowledge, challenging to learn from time
series data alone (Steenwinckel et al., 2021a; Klein et al., 2021),
an be used with knowledge graph embedding methods to predict

new relationships and uncover unknown knowledge (Garofalo et al.,
2018). Logical constraints based on actuator activity and symptoms can
refine diagnosis by excluding unreliable predictions. Auxiliary informa-
tion enriches and verifies predictions based on the knowledge graph’s
modeled knowledge. Since anomaly diagnosis (i.e., RCA) is knowledge-
intensive and time-consuming (Steenwinckel et al., 2018; Diedrich,
2023), quick response is essential to avoid serious failures and unneces-
sary shutdowns. Thus, accurate anomaly detection and automated RCA
are crucial for fast solution identification. This framework can deploy
any anomaly detection method ranking data streams by abnormality
and any knowledge base providing appropriate entry points. The next
section describes the approaches used for each component to assess the
framework’s usefulness.

3.2. AD module: Anomaly detection with identification of anomalous data
treams

This section describes the component associated with the anomaly
detection module (I) (cf. Section 3.1). Section 3.2.1 describes the ap-
plied Siamese neural network for anomaly detection, and Section 3.2.2
explains the integration of expert knowledge into the neural network
via a graph structure learning component and knowledge graph embed-
dings.

3.2.1. Training a simple siamese network with only normal data
The proposed anomaly detection approach is motivated by the

effectiveness of representation learning and distance-based methods
(cf. Section 5.1), and their ability to provide (factual) explanations
through nearest neighbors. Existing approaches for representation
learning are not designed for time series and the specific transforma-
tions are unknown (cf. Section 2.2). Approaches that address this
(e.g., Qiu et al., 2021) do not provide the affected data streams,
which is necessary for diagnosis. To address these shortcomings, the
SimSiam architecture (cf. Section 2.2) is chosen for its ability to learn
representations without negative examples, its simplicity, and its state-
of-the-art performance in classification tasks. It is applied to anomaly
detection similarly to its original principle by minimizing the distance
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between pairs consisting of two differently augmented images 𝑥𝑎, 𝑥𝑏
generated from the same underlying image 𝑥. As universally useful
transformations for generating 𝑥𝑎 and 𝑥𝑏 are not known for multivariate
time series data in anomaly detection (Qiu et al., 2021), the obstacle is
to find another way, the model can learn to map both transformations
𝑥𝑎, 𝑥𝑏 to the same point in the space, as illustrated in Fig. 6. To ac-
complish this task, pairs of examples representing the normal condition
with different operating states are randomly used as 𝑥𝑎, 𝑥𝑏. The goal is
to allow the model to learn a useful transformation for the encoder
network 𝑓 (⋅) and to map the normal examples near each other (i.e., in
high-density regions where i.e., 𝑑(𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗 )) ≈ 0,∃𝑥 ∈ ). Similarly
to reconstruction-based anomaly detection approaches, the assumption
is that an anomalous instance, which has not been seen before during
training, will be mapped apart from any normal example (i.e., in a
low-density region). This is because the learned transformation does
not map the unseen anomalous data near to the normal data, resulting
in an embedding vector that lies further apart than normal examples
in the embedding space. A further difference is the removal of the
stop gradient operation, which contributes to achieving a standard
distribution for each latent feature over a mini batch (Chen and He,
2020). This removal ensures that all normal examples are clustered
closely, contrasting with the original architecture’s purpose of learning
diverse representations for multiple classes (cf. Section 2.2).

In summary, the proposed data-driven anomaly detection approach
assumes that the model can learn a representation that eliminates intra-
class variations between normal instances of the normal class (e.g., due
to different operating states or production processes). This principle is
similar to using the reconstruction error in autoencoders. Each time
series window 𝑥 is represented by a latent vector 𝑒 extracted from
an unsupervised deep network 𝑓 (⋅), with the anomaly score based on
the distance 𝑑(⋅) to known normal examples. Larger distances indicate
greater deviations from the normal state (Malhotra et al., 2016) and
examples beyond a certain threshold are classified as anomalous.

3.2.2. Integrating expert knowledge about data streams
The knowledge graph from Section 2.6 describes the manufacturing

system and contains valuable domain knowledge on the relationships
between components. Integrating this kind of prior knowledge aims
to improve the anomaly detection model’s performance and prevent
relearning with the risk of learning it wrong. This leads to a so-
called informed machine learning model (von Rueden et al., 2019).
Integration of expert knowledge is achieved through an adjacency
matrix derived from the knowledge graph, providing a foundation
for learning explicit dependencies between data streams using graph
convolutions. The derived adjacency matrix contains binary values and
is bidirectional due to challenges in determining exact information
flow direction and weight of the relationship. To enhance this initial
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representation, a graph structure learning module (cf. Section 2.4)
is employed to refine this adjacency matrix, learning meaningful and
causal dependencies between the data streams while considering the
existing relationships from the derived one. The learned adjacency
matrix 𝐴𝐿 is post-processed by applying an element-wise multiplication
(⊙) with the derived (binary) adjacency matrix 𝐴𝐸 , to achieve the
optimal one:

𝐴⋆ = 𝐴𝐸 ⊙ 𝐴𝐿. (12)

This operation masks out irrelevant relationships that are not modeled
in the knowledge graph. The adjacency matrix 𝐴𝐸 derived from the
knowledge graph (cf. B) ensure that only meaningful/causal depen-
dencies are learned by the graph structure learning module and used
to process the data by the anomaly detection model. Utilizing 𝐴𝐸

should enable detection of anomalous events that disrupt learned corre-
lations between data streams within the knowledge graph’s boundaries.
Related work has demonstrated the importance of this approach for
processing multivariate time series, particularly for anomaly detection
in cyber–physical systems (e.g., Deng and Hooi, 2021).

Furthermore, the embeddings learned from the knowledge graph
applying Owl2Vec (Chen et al., 2020) are used as an additional input
to provide latent features to describe data streams, as proposed in Klein
et al. (2021). These embeddings enable the anomaly detection model
to incorporate expert knowledge from the knowledge graph not present
in the time series data. Technically, in a deeper layer of the model, the
characteristics of the encoded data stream features are concatenated
with the latent features of the node that represents the data stream in
the knowledge graph, as described in Klein et al. (2021) and in H.2.
This integration allows the model to make use of the knowledge in
the form of the latent features to encode each data stream’s time series
along with its knowledge graph features. For example, two data streams
with binary values from a light barrier or position switch may have
different meanings. By combining data streams with knowledge graph
embeddings during encoding, latent features add semantics to the data
stream values, aiming to enhance the model’s representation.

3.3. Bridge module: Finding the subset of anomalous data streams via a
counterfactual approach

An instance-based counterfactual approach is proposed to identify
the subset of anomalous data streams by using the example of the
nearest normal condition according to the anomaly detection model.
Combined with the trained Siamese neural network (Section 3.2), the
approach works as follows:

1. For an example 𝑄𝑖 ∈ R𝑛×𝑚 detected as anomalous, retrieve the
nearest neighbor 𝑋𝑖

𝑐 𝑓 ∈ R𝑛×𝑚 from normal examples based on
the distance-based anomaly detection (cf. Section 3.2).
Fig. 5. Sketch of the proposed combination between a data-driven Anomaly Detection and a knowledge-based semantic Knowledge Graph for root-cause analysis.
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Fig. 6. The SimSiam architecture (cf. Section 2.2) learns a representation using pairs of randomly chosen normal data points (illustrated as green dots in the left ellipse). The
encoder is assumed to transform normal data into a Euclidean vector space, mapping them into high-density clusters. For anomaly detection, the Cosine distance between the 𝑘 = 1
nearest neighbors (k-NN) of normal data determines whether an unseen data point is normal or anomalous.
2. Replace each data stream of 𝑄𝑖 with those from 𝑋𝑖
𝑐 𝑓 , creating 𝑚

versions (𝑄𝑖
𝛿𝑗

) where only one data stream 𝑗 is replaced.

3. For each modification, compare the similarity 𝑠𝑗 = 𝑠𝑖𝑚
(

𝑓 (𝑄𝑖
𝛿𝑗
),

𝑓 (𝑋𝑖
𝑐 𝑓 )

)

in the deep embedding space to the original similarity 𝑠
(i.e., without the perturbation applied to the input). An improve-
ment (𝑠𝑗 > 𝑠) indicates that replacing the data stream makes the
example more normal, thus 𝑗 is considered anomalous.

4. Generate a new (artificial) query example by replacing all suspi-
cious data streams with those of the normal example. Retrieve a
new nearest neighbor and repeat steps 2–3. The subset of data
streams  now marked as suspected is considered causative of
the detected anomaly, with order defined by similarity 𝑠𝑖𝑚(⋅).

Theoretically, replacing multiple data streams in step two of gener-
ating 𝑄𝑖

𝛿 is possible but increases the computational effort. The number
of combinations is calculated as

(𝑚
𝑘

)

= 𝑚!
(𝑚−𝑘)!⋅𝑘! , where 𝑚 is the total

number of data streams and 𝑘 the number selected in a combination.
Input perturbation (as in the second step) allows assessment of the
model’s reaction to local changes, serving as an explanation (Utkin
et al., 2019). The higher output variation indicates a higher dependence
on the input feature (i.e., data stream).

3.4. RCA module: Knowledge graph for diagnosis

This section describes the content of the RCA module which con-
sists of the developed FMEA ontology and modeled fault and failure
knowledge (Section 3.4.1) and how the knowledge graph is used for
RCA (Section 3.4.2).
3.4.1. Developed FMEA ontology and modeled fault and failure knowledge

To facilitate subsequent diagnosis after an anomaly is detected, the
knowledge graph from Section 2.6 is extended with knowledge about
faults and failures that can occur in the used physical smart factory
and are contained in the data set. Before an actual occurrence of a
failure, possible ones are already identified and documented as part of
a FMEA in spreadsheets, and this knowledge can be used for anomaly
diagnosis. Although various ontologies model FMEA (cf. Section 5.2),
they lack failure mode to function relations and the failure mechanism
concept. Due to different understandings (e.g., some work modeled
causes as a subclass of a failure mode), this work follows Burge’s
FMEA concept diagram (Burge, 2011). The resulting FMEA ontology4

is shown in Fig. 7. It models Components (e.g., a workstation, machine,
actuator, or sensor) with Functions and possible FailureModes, as well as
FailureEffects, FailureCauses and FailureMechanisms. A Symptom class is
introduced, which is used to describe symptoms that occur after a fault
and can be used as indicators for an impending failure mode. To ensure
a shared meaning of the concepts, each class has the corresponding

4 https://gitlab.rlp.net/kleinp/public/-/blob/main/FMECA.owl, last
accessed on 11/06/23.
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Fig. 7. Excerpt of FMEA core concepts and their relationships Extensions are illustrated
with dashed lines.

International Electrotechnical Commission (IEC) definition in natural
language as an annotation. Additionally, logical class constructors have
been used to express further knowledge in a more formal and explicit
way.

The instantiated knowledge graph used in this work5 comprises
nearly 5600 axioms and contains in total 466 classes, as well as
442 individuals. Fig. 8 shows an excerpt of a modeled failure mode,
its relation to a sensor, and its effects. It depicts an acceleration
sensor (AccSen_ADXL_1) mounted on a motor (SM_Motor_1) for con-
dition monitoring purposes. The figure illustrates how vibration data
insights connect to an actuator’s condition in the model via a chain
over related entities. By analyzing the vibration data, a symptom
can be discovered that could be Higher_Vibration (i.e., higher ampli-
tudes in the vibration data) which is indicative of the failure mode
Insufficient_Power_to_Drive_Conveyor_Belt which is related to the func-
tion Drive_Conveyor_Belt of the motor SM_Motor_1. This chain enables
inferences from sensor signals to components, functions, and implica-
tions for the production process. The model allows concluding that
higher vibrations in the acceleration sensor (AccSen_ADXL_1) may indi-
cate a bearing defect in the motor Vibration_SM_Motor_1, which drives
the conveyor belt SM_Conveyor_Belt. For diagnosis, related information
such as possible cause (Defect_Bearing), mechanism (Wear), and effect
(Slower/No_Transport_To_Target_Pos) are modeled. This example demon-
strates how FMEA knowledge combined with the structure of the fac-
tory model is used to create a knowledge graph, helping maintenance
engineers rapidly infer causes and appropriate actions.

https://gitlab.rlp.net/kleinp/public/-/blob/main/FMECA.owl
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Fig. 8. Excerpt of a modeled failure mode with its relation to a sensor and its modeled effects.
m

Fig. 9. The semantic failure mode description proposed in Section 3.4.1 is illustrated
n the excerpt of the Knowledge Graph shown in the figure. Rectangles with rounded
orners represent entities, while edges indicate object properties and dotted edges

represent data properties. This sub-graph is used to define the logical constraint of
Eq. (13).

3.4.2. Using a knowledge graph for root cause analysis
Of particular interest in our work is the diagnosis of anomalies using

nowledge-based approaches, an area often overlooked in data-driven
ethods (cf. Section 5). In our case, diagnosis involves identifying

the data set’s label or affected component for a detected anomaly.
We utilize knowledge illustrated in Figs. 7 and 9, expressed as logical
formula:
[

PredM:isRelevantFor(𝑐 , 𝑓 ) (13a)

FMEA:hasPotentialFM(𝑐 , 𝑓 ) ] (13b)

FMEA:definesFM(𝑎, 𝑓 ) (13c)

FMEA:indicates(𝑠, 𝑓 ) (13d)

PredM:hasLabel(𝑓 , 𝑙) (13e)

5 https://gitlab.rlp.net/kleinp/public/-/tree/main/, last accessed on
11/06/23.
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where ∧ is the conjunction operator (i.e., and), ∨ is the disjunction op-
erator (i.e., or), 𝑐, 𝑎, 𝑓 , 𝑠, 𝑐, and 𝑙 are variables, and FMECA:definesFM,
FMECA:indicates, PredM:isRele-vantFor, and PredM:hasLabel are predi-
cates. We can view RCA as assigning reasonable values to these vari-
ables based on the output of data-driven anomaly detection and prior
expert knowledge. If the formula evaluates to true, we have found a
possible root cause candidate. We distinguish between query strategies
(how we assign variables) and approaches for finding the root cause.

Query strategies. As a baseline for finding concrete labels, the following
strategies are proposed for a given set  of data streams, ordered by
severity of contribution to the detected anomaly:

Query 1-L (Q1-L): Iterate over each anomalous data stream in  and
provide associated labels; start with the highest contributor to
the detection.

Query 2-L (Q2-L): Iterate over a decreasing amount of combinations
of multiple data streams from  and provide labels from the
intersection of anomalous data streams; start with the highest
contributor.

Query 3-L (Q3-L): Iterate over each anomalous data stream of  and
provide all labels that are associated with components in the
same workstation; start with the highest contributor.

The term label denotes a specific node/entity related to a failure
ode, condition, etc. (cf. Fig. 7). It is expected to be the final result of

a RCA and corresponds to the data set’s label. From a label node, other
relevant things can be retrieved, e.g., the affected component, (opera-
tional) functions, causes, recommended maintenance actions, etc. These
query strategies can also be applied to identify the affected components
by replacing Eq. (13e) with the predicate PredM:isPotentialFMof which
is of great interest in the case of previously unknown or not modeled
failure modes.

Query 1-C (Q1-C): Iterate over each data stream of  and provide all
associated affected components; start with the highest contribu-
tor to the detection.

https://gitlab.rlp.net/kleinp/public/-/tree/main/
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In general, integrating logically specified background knowledge
as constraints on the output of a data-driven anomaly detection aims
to improve performance and ensure compliance with the background
knowledge, which is crucial in safety-critical environments (Giunchiglia
t al., 2022; Farbiz et al., 2022; Hagendorfer, 2021). For each of query
trategy, expert knowledge on failure mode detection plausibility can
e integrated as constraints, further restricting found labels or affected
omponents based on: (i) operational state of components (active/in-
ctive) and (ii) observed symptoms. The first constraint, expressed in
q. (13c), is based on anomalies being detectable only when the com-
onents are operational. The second, expressed in Eq. (13d), requires

confirmation through observed symptoms modeled in the knowledge
graph (Section 3.4.1), allowing for finer classification between failure

odes for the same component. Although applicable to all queries,
these constraints are evaluated only with the first query strategy,
leading to the following strategies:

Q1-L+Constr. and Q1-C+Constr. To the previous queries Q1-L and
Q1-C, constraints (Constr.) are added regarding (i) components’
operational state and (ii) observed symptoms, further restrict-
ing found labels or affected components. The first constraint
addresses the fact that anomalies are often detectable only when
components are operational. The second requires symptom con-
firmation for specific failure modes, enabling finer classification
between different failure modes for the same component.

After this subsection has outlined the general query strategies, the fol-
lowing subsections illustrate how these are implemented with different
(AI) approaches (SPARQL, SDNR, CBR).

Approaches used for implementing the query strategies. The most intuitive
method is the implementation in SPARQL (Harris and Seaborne, 2013)
 the common querying language to infer knowledge from knowledge

graphs. The implementation of the query strategy Q1-L, referred to
s SPARQL Q1-L, is shown in Listing 1 and consists of the union of

two graph patterns. This query corresponds to Eq. (13) (excluding
onstraint specific Eqs. (13c) and (13d)). Its execution is according Q1-L

which means replacing the data streams according to the anomalous list
provided by the data-driven anomaly detection model and the returned
labels (i.e., results of the query) are evaluated. Note that SPARQL Q1-L
+ Constr. extends SPARQL Q1-L with constraints from Q1-L + Constr.,
formalized in Eqs. (13c) and (13d). For the implementations of the
other SPARQL queries (SPARQL Q2-L, SPARQL Q3-L, SPARQL Q1-C,
SPARQL Q1-L + Constr., SPARQL Q1-C + Constr.), the reader is referred
o I.

Listing 1: SPARQL Q1-L is used to obtain possible labels based on
 given anomalous data stream (e.g., a_15_1_y, the x-axis of an
cceleration sensor).
PREFIX xsd : <http : / /www.w3. org/2001/XMLSchema#>
PREFIX f t on to : <http : / / i o t . uni−t r i e r . de/FTOnto#>
PREFIX fmea : <http : / / i o t . uni−t r i e r . de/FMEA#>
PREFIX predm : <http : / / i o t . uni−t r i e r . de/PredM#>

SELECT ? l a b e l s
WHERE {

{
?component f t on to : i s _ a s s o c i a t ed _w i t h _da t a _ s t r e am

" a_15_1_y " ̂ ̂ xsd : s t r i n g .
?component fmea : hasPotent ia lFai lureMode ? fai lureModes .
? fa i lureModes predm : hasLabel ? l a b e l s

}UNION{
?component f t on to : i s _ a s s o c i a t ed _w i t h _da t a _ s t r e am

" a_15_1_y " ̂ ̂ xsd : s t r i n g .
? fa i lureModes predm : i sDe tec tab le InDataS t reamOf_Di rec t

?component .
? fa i lureModes predm : hasLabel ? l a b e l s

}
}
 p
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The second approach, SDNR (cf. Section 2.7), uses knowledge graph
embeddings and allows a domain expert to express logical formulas like
q. (13). Unlike SPARQL queries, it does not guarantee valid knowl-

edge but can predict relationships, potentially helpful for incomplete
knowledge bases (Boschin et al., 2022). Such approaches are considered
by itself as a combination between expert knowledge and machine
earning. SDNR is applied in two variants:

SDNR Q1-L+Constr.: Evaluates a logical expression (Eq. (13)) similar
to SPARQL Q1-L + Constr., assigning the anomalous data stream
as fixed and varying other variables to find the highest score.
Returns the label with the highest assertion.

SDNR Q1-C+Constr.: Similar to SDNR Q1-L + Constr. but replicates
SPARQL Q1-C + Constr., returning affected components instead
of labels.

Note that SDNR differs from simple k-Nearest Neighbors (k-NN) by
allowing experts to consider specific relationships, formulate logical ex-
pressions, and integrate background knowledge as logical constraints.

A knowledge-based approach to finding the root cause is provided
y CBR (Bergmann, 2002). CBR is a problem-solving paradigm that

utilizes the specific knowledge of previously experienced concrete prob-
lem situations (cases) to address new problems. In our context, CBR
allows us to take advantage of past experiences in identifying root
causes of anomalies. As our scenario is anomaly detection where no
examples (of sensor data) from previous failures are available, we have
o apply analogical reasoning on between a query and instances of

the knowledge graph. Unlike the two previous approaches that rely on
symbolically encoded knowledge, the CBR approach applies analogical
reasoning between sets of similar data streams. Whereas the two pre-
vious approaches are relying on symbolic encoded knowledge to find
a root cause, the CBR approach applies analogical reasoning between
sets of similar data streams represented by embedding to measure the
imilarity between the anomaly detection set and the sets stored in

the case base. Similarly to SDNR Q1-L + Constr., knowledge graph
embeddings are used to represent domain knowledge instances, and the
approach is similar to the retrieval approach presented in Klein et al.
(2019b). Case descriptions are represented as the sums of data stream
embeddings that are related to the label (see Table 11). The label (with
its knowledge graph node) corresponds to the case’s knowledge item
(i.e., solution). In this way, all labels and components of the data set are
epresented as cases in a case base, and the query strategies introduced
reviously can be applied to implement CBR Q1-L, CBR Q2-L, CBR Q1-
. For CBR Q1-L + Constr. and CBR Q1-C + Constr., the similarity

is measured using the cosine function between the sum of the query
and case embeddings. For implementing the constraint of CBR Q1-L +
Constr. and CBR Q1-C + Constr., the minimum similarity is computed
as:

sim𝐺(𝑎, 𝑏) = min{sim𝐷(𝑎𝐷, 𝑏𝐷), sim𝐹 (𝑎𝐹 , 𝑏𝐹 ), sim𝑆 (𝑎𝑆 , 𝑏𝑆 )} (14)

where sim𝐷 is the local similarity between the embedding vectors 𝑎𝐷
and 𝑏𝐷 representing the data streams of the query 𝑎 and a case 𝑏.
ikewise, the local similarity measure sim𝐹 is used for the actuated
unction and sim𝑆 for observed symptoms. In the case of multiple
mbeddings used for 𝑎 or 𝑏 such as in the case of the case representation
𝐷, the sum of the embeddings is used. The minimum function as global
imilarity ensures that cases that do not fit all aspects are ranked lower,
onsidering only the lowest measured similarity as global similarity
im𝐺. It is important to note that our current implementation of CBR
ocuses primarily on the retrieval phase of the traditional 4R cycle
Retrieve, Reuse, Revise, Retain) (Aamodt and Plaza, 1994). Although

this approach allows us to effectively identify similar cases for root
cause analysis, the full development of the reuse, revise, and retain
hases remains an area for future work.
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Fig. 10. Order of the steps required to evaluate the performance of finding a root cause.
Applied procedure for finding a root cause. After the query strategies
and approaches are presented, the root cause finding procedure (used
in the evaluation in Section 4) for a predicted anomaly is shown in
Algorithm 1. Upon correct anomaly detection, the Jenks Natural Break
(JNS) algorithm reduces the abnormal data stream list  to the subset  ,
containing only streams with the highest anomaly scores. Each stream 𝑐
in  is processed using the chosen query strategy 𝑞 (e.g., Q1-L, Q2-L) to
find reasonable labels or affected components 𝑙 until the ground truth 𝑙
matches. Ground truth 𝑦 and the correct root cause 𝑙 are used only for
evaluation, not for RCA or anomaly detection.

Algorithm 1: Implemented Procedure for Finding the Root
Cause (As Used for Evaluation)

Input: Test data set 𝑇 𝑒𝑠𝑡, know. graph , query strat. 𝑞,
ano. pred. model 𝑓 (⋅), ano. pred. ground truth 𝑦,
ano. pred. by model 𝑦̂, found label or aff. comp. 𝑙, label or
aff. comp. ground truth 𝑙

Result: Root cause 𝑙
1

2 for 𝑥 in 𝑇 𝑒𝑠𝑡 do // Iterate over all test examples
3 𝑦̂ = 𝑓 (𝑥) // Anomaly prediction
4 if 𝑦̂ == 𝑦 and 𝑦 == 1 then // Only true positives used

for eval.
5  = 𝑓 (𝑥) // Ordered list w. anomalous data

streams
6 ∗ = 𝑟𝑒𝑑 𝑢𝑐 𝑒() // Reduce to most important ones
7 for 𝑐 in ∗ do // c is a abnormal data stream
8 𝑓 , 𝑠 = 𝑒𝑥𝑡𝑟𝑎𝑐 𝑡(𝑥, 𝑐) // Get functions f and

symptoms s
9 ̂ = 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒(, 𝑞 , 𝑐 , 𝑓 , 𝑠) // Query knowledge graph
10 for 𝑙 in ̂ do // Verify found labels
11 if 𝑙 == 𝑙 then
12 return 𝑙 and break // Correct root cause

found!

4. Evaluation

The evaluation aims to validate the usefulness of combining data-
driven anomaly detection with expert knowledge represented by se-
mantic web technologies for RCA. For this purpose, the following tasks
shown in Fig. 10 are evaluated:

(i) Anomaly Detection: Detecting abnormal behavior in time series
windows (Section 4.4).

(ii) Anomalous Data Stream Identification: Identifying causative
data streams for the detection (Section 4.5).

(iii) Anomaly Diagnosis: Finding root causes (labels or affected com-
ponents) using expert knowledge from the knowledge graph (Sec-
tions 2.6 and 3.4.1) based on identified causative data streams.
10 
While measuring the performance in these tasks, the evaluation
seeks to assess whether the combination of expert knowledge and Ma-
chine Learning (ML) proposed in the framework is useful, by examining
the following hypotheses:

H1 Integrating expert knowledge from the knowledge graph (Sec-
tion 2.6, 3.4.1) improves anomaly detection performance.

H2 Anomaly detection models incorporating expert knowledge are
more accurate in identifying relevant data streams than models
without.

H3 Query strategies combining multiple causative data streams (e.g.,
Q2-L) find root causes more accurately.

H4 With complete and correct knowledge modeling, SPARQL queries
are more precise than embedding-based approaches (SDNR,
CBR). However, for incomplete knowledge bases, embedding
approaches are preferable due to their relation prediction capa-
bilities.

H1 postulates that the integration of expert knowledge into a data-
driven model should lead to comparable or better performance than the
same or similar model without such knowledge. Furthermore, any per-
formance improvement suggests that expert knowledge is appropriate
and valid for anomaly detection. The second H2 focuses on improved
causative stream identification. The assumption is that the integration
of expert knowledge also helps the model in determining the causative
streams. H3 proposes that the combination of multiple causative data
streams reduces the number of incorrect findings. Finally, H4 postulates
that if domain knowledge is perfectly modeled, working directly at
the symbolic level is advantageous. However, if there are gaps in the
modeled knowledge, the approaches using embeddings such as CBR
and SDNR are superior due to its link prediction capabilities. In sum-
mary, hypotheses H1 and H2 focus on performance improvements by
combining expert knowledge and machine learning, while hypotheses
H3 and H4 are more focused on applying the developed ontology and
knowledge graph for automating RCA.

4.1. Evaluated anomaly detection approaches

To evaluate the performance of the proposed anomaly detection ap-
proach and validate its compatibility with other deep learning methods,
it is compared to classical baselines and a deep autoencoder approach.
These are briefly introduced in the following, with further details in
Appendix H.

4.1.1. Baselines
As a baseline, OC-SVM is used with different input representations

and default hyperparameters from sklearn (Pedregosa et al., 2011). In
addition, k-NN with 𝑘 = 1 is employed, using various input represen-
tations and distance measures (𝓁1, 𝓁2, and Cosine). The best performer
on the validation set, consistently the Cosine distance, is chosen for the
test set. Dynamic Time Warping (DTW) as measure is excluded due to
prohibitive computational costs for our large dataset (more than 20,000

examples, each with 61,000 entries) (Klein et al., 2020). Furthermore,
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DTW’s time-axis adaptation could mask anomalous differences, lead-
ing to suboptimal results. Instead, we use time series representations
from ROCKET (Dempster et al., 2020) and signature matrices (as in
MSCRED Zhang et al., 2019a), alongside raw data.

4.1.2. Multi-scale convolutional recurrent encoder-decoder (MSCRED) and
MSCRED-AM

The Multi-scale Convolutional Recurrent Encoder-Decoder (MSCRED
framework (Zhang et al., 2019b) is used as an example of a state-of-
the-art deep reconstruction-based anomaly detection approach. In Shen
et al. (2020), MSCRED ranked second among 13 approaches evaluated
on four datasets. How MSCRED is applied is described in detail in H.4.
The MSCRED variant integrating expert knowledge through masking ir-
relevant correlations in the signature matrix is called MSCRED AM. AM
denotes restriction by an adjacency matrix derived from the knowledge
graph (cf. Appendix B). This masking, applied to input and output,
aims to exclude irrelevant correlations from signature matrices based
on expert knowledge. The intention is that reconstruction errors of
correlations calculated from unrelated data streams are not considered,
potentially reducing noise in anomaly detection. Other components and
hyperparameters remain similar to MSCRED.

4.1.3. Siam 1D CNN FC and siam 2D CNN GCN+GSL
As described in Section 3.2, we use a special Siamese neural network

approach (cf. Section 2.2) trained on normal data, with two encoder
structures:

• Siam CNN-1D FC: 1D convolutions followed by fully connected
layers.

• Siam CNN-2D GCN + GSL: 2D convolutions with graph convolu-
tional layers, using knowledge graph embeddings for each data
stream and an adjacency matrix derived from the knowledge
graph. A graph structure learning module (cf. Section 2.4) learns
connection strengths.

The integration of knowledge graph embeddings for encoding time
series and the adjacency matrix derived from the knowledge graph
by the second approach are used to infuse prior expert knowledge,
resulting in an informed anomaly detection. Detailed architectures for
both approaches are in H.2.

4.2. Performance measures

For each evaluation task, we present measures to compare the
performance of the approach and evaluate the hypotheses. The anomaly
detection performance is assessed using Receiver Operating Charac-
teristic (ROC) and Precision-Recall (PR) curves (Goix, 2016), report-
ing mean ROC AUC, PR AUC, and Average Precision of Precision-
Recall Curve (AvgPR) over five runs with Standard Deviation (SD).
For anomaly diagnosis, we evaluate the ranked data streams using
HitRate@p% and Hits@k6 (Darban et al., 2022). To evaluate query
strategies (Section 3.4.2) to identify labels or affected components, we
introduce three measures:

Query Ratio =
# executed queries

# correctly found labels . (15)

Label Ratio =
# provided labels

# correctly found labels . (16)

Coverage =
# correctly found labels

# true positives . (17)

The Query Ratio (QR) quantifies computational effort vs. positive
outcomes. Label Ratio (LR) compares the provided with correctly iden-
tified labels, preferring fewer labels for human inspection. For affected

6 The detailed calculation is explained in Appendix J.
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Table 1
Comparison of anomaly detection performance.

component searches, components replace labels. Coverage (Cov) mea-
sures found labels relative to true positive anomalies. The # executed
queries corresponds to the amount of iterations made in the second for-
loop of Alg. 1 and the third loop corresponds to # provided labels in
Eq. (16).

4.3. General experiment setting and evaluation protocol

The experiments are conducted on the dataset from Section 2.5,
with expert knowledge provided by the knowledge graph (Sections 2.6
and 3.4.1). To evaluate the anomaly detection, each example 𝑥𝑖 is a
four-second time series window that is labeled as a whole instance
either as normal (i.e., 𝑦𝑖 = 0) or as a fault or failure (i.e., anomaly, 𝑦𝑖 =
1) (e.g., as in Qiu et al., 2021). In the case of a labeled anomaly, the
anomalous behavior can be observed either over the entire sequence
(e.g., in the case of a motor Fault and Failure (FaF)), at multiple time
points or sub-sequences during this period (i.e., flickering of a light
barrier sensor) or only in a single sub-sequence of the whole window
(e.g., delayed opening of a valve). This labeling approach is similar to
Deng and Hooi (2021) method of down-sampling to 10-s medians with
the most common label. This approach can be justified by the fact that
time series in an industrial environment are commonly collected at a
relatively high frequency (i.e., several hundreds of measurement values
per second) and their interpretation is often not based on individual
measurements, but on features calculated over several measurements
instead. Moreover, conducting an anomaly detection for each time
point of a time series sampled with a frequency of several hundred
per second would theoretically lead to several hundreds of windows
(corresponding to the sampling frequency of the time series) for which
an anomaly detection needs to be executed, resulting in uneconomical
high computational costs.

4.4. Results of the anomaly detection

Table 1 presents the usefulness of anomaly scores from baselines
and deep learning approaches. The baselines (k-NN with Cosine dis-
tance and OC-SVM) outperform the reconstruction-based MSCRED on
the test and validation sets. The k-NN using the signature matrix (Sig-
Mat) consistently achieves second-best results, indicating the usefulness
of this representation. MSCRED’s poorer performance likely stems from
its reconstruction-based approach rather than its representation. Since
MSCRED learns to reconstruct the input data well (cf. training loss in
Fig. 18), it can be suggested that it generalizes too well, which leads
to anomalies being reconstructed accurately (Gong et al., 2019). This is
supported by high false negative rates (FNR) for MSCRED and MSCRED
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Table 2
Comparison of deep anomaly detection approaches for identifying anomalous data streams.
Table 3
Results obtained by SPARQL queries and knowledge graph embeddings for finding the label for detected anomalies.

The values of each cell represent the following metrics: (QR) | (LR) | (Cov). The best (LR) value beside the Oracle
is marked in bold. A more detailed overview is provided in the appendix with Table 13.
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AM. For instance, MSCRED’s FNR on the test set is around 0.90, imply-
ing many undetected anomalies. The distance-based Siam CNN-2D GCN
+ GSL proposed achieves the best performance. Regarding the integra-
tion of expert knowledge (H1), MSCRED AM outperforms MSCRED, and
Siam CNN-2D GCN + GSL is the best performing approach. Siam CNN-
2D GCN + GSL’s 128-dimensional output vector allows more efficient
omputations compared to larger representations of k-NN baselines
nearly 60,000 for SigMats or 20,000 for ROCKET), indicating that its
earned features are sufficiently expressive. In summary, the results of

anomaly detection indicate that the proposed integration of prior expert
nowledge and its implementation have a positive effect and therefore
atisfy H1. This is supported by the better performance of MSCRED
M and Siam CNN-2D GCN + GSL compared to their prior knowledge-

free counterpart. Furthermore, it can be concluded that the knowledge
modeled in Sections 2.6 and 3.4.1 is valid, sufficient, and useful, as
well as the proposed ways to inject it (i.e., restricting via an adjacency
matrix and as data stream embeddings).

4.5. Results of the identification of anomalous data streams

The bridge module (cf. Section 3.1) flags and sorts data streams
based on their anomaly score contribution for diagnosis and RCA.
erformance is evaluated by comparing identified streams with ex-
ert assessments (cf. Table 11, Appendix). Table 2 presents results

for identifying relevant anomaly-causing data streams, focusing on
deep learning approaches due to Siam CNN-2D GCN + GSL’s superior
erformance. However, their black-box character is a frequent source
f criticism and their explainability is difficult to achieve (Roelofs
t al., 2021; Steenwinckel et al., 2021a). The Siamese neural net-

works with the counterfactual approach outperform MSCRED models
in all metrics. The results from the nearest and second-nearest normal
eighbors indicate potential for improvement by combining multi-
le counterfactuals. Comparing MSCRED and MSCRED AM reveals

that considering only meaningful correlations (MSCRED AM) doubles
its@1 and Hitrate@100% values. Siam CNN-2D GCN + GSL outper-

orms Siam CNN-1D FC, also supporting H2 that expert knowledge
mproves performance in this task. For 25% of the correctly predicted
nomalies, Siam CNN-2D GCN + GSL’s counterfactual approach iden-

tified one of 61 possible causative data streams in the first position,
demonstrating its usefulness.
12 
4.6. Results of finding the data set’s label and affected component

In this section, we present the results of our investigation into the
ffectiveness of various query strategies to identify the correct labels
nd affected components using well-modeled and corrupted knowl-

edge graphs as outlined in Fig. 11, which is a common challenge for
real-world applications (Boschin et al., 2022).

4.6.1. Well-modeled knowledge graph
Table 3 shows the results for finding the correct labels without

constraints. Query strategy Q1-L, iterating over each anomalous data
stream ordered by scores, achieves the lowest (LR) with CBR and
SPARQL, with SPARQL Q1-L achieving the overall lowest (LR) at 8.9.
Based on these findings, there is no support for H3, which expected
improvement by combining multiple anomalous data streams (which
is done by SPARQL Q2-L). An explanation for this is the imperfect
dentification of anomalous data streams (cf. Section 4.5) leading to

numerous queries with inaccurate data stream combinations, result-
ing in a high (QR) for SPARQL Q2-L. Table 2 indicates decreasing
marginal utility as 𝑘 increases in Hits@k, implying more misidenti-
fied streams and unsuccessful combinations. The Oracle, representing
perfect anomaly detection, finds the correct labels with its first query
((QR) = 1), leveraging Q2-L’s restrictiveness to slightly improve its
LR). This improvement is not observed for SPARQL and CBR (cf.

Table 13, Appendix). Furthermore, query strategy 3 (Q3-L), using the
ompositional structure, achieves low (QR) but higher (Cov) (> 0.9 vs.

0.5–0.7 for Q1-L and Q2-L). However, its imprecise labels lead to high
(LR), which requires more manual verification, which is not desirable
see Fig. 11).

Since Q1-L achieves the lowest (LR), it is used to integrate expert
knowledge through constraints considering whether the failure mode
function is actuated and symptoms are present. The results reported
in Table 4 show that (LR) is halved in most cases, with stable (QR)
and (Cov). SPARQL Q1-L + Constr. achieves the lowest (LR) (around
) with Siam CNN-2D GCN + GSL, which is less than double the

Oracle’s performance. SDNR Q1-L + Constr. delivers 1.3 or 2.4 more
false labels than SPARQL Q1-L + Constr., except for Siam CNN-1D
FC. Differences between CBR Q1-L + Constr., SDNR Q1-L + Constr.,
and SPARQL Q1-L + Constr. are attributable to knowledge graph
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Fig. 11. Procedure of the evaluation process for finding a label or affected component for an anomaly event.
Table 4
Results obtained by SPARQL queries and knowledge graph embeddings for finding the label for detected anomalies
under consideration of the logical constraint.

The values of each cell represent the following metrics: (QR) | (LR) | (Cov). The best (LR) value beside the Oracle
is marked in bold. A more detailed overview is provided in the appendix with Table 13.
Table 5
Results obtained by SPARQL queries and knowledge graph embeddings for finding the affected component for detected
anomalies.

The values of each cell represent the following metrics: (QR) | (LR) | (Cov). The best (LR) value beside the Oracle
are marked in bold. A more detailed overview is provided in the appendix with Table 14.
g
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embedding computations’ fuzziness. Table 5 shows results for detecting
affected components, a less demanding task than predicting the correct
labels. Comparing Q1-C with Q1-C + Constr. reveals that the constraint
ntroduction halves (LR). SPARQL Q1-C + Constr. with Siam CNN-

2D GCN + GSL performs best (excluding Oracle), identifying affected
components within 2.3 suggestions versus Oracle’s 1.4. Oracle’s im-
erfect (LR) is due to some sensors being relevant for detecting faults
nd failures occurring at multiple components. A further observation is
hat SDNR Q1-C + Constr. and CBR Q1-C + Constr. outperformed its
ymbolic counterpart (i.e., SPARQL Q1-C + Constr.) in (LR) with the

Oracle, which is caused by a better ranking of the affected component
in the returned set of candidates.

4.6.2. Corrupted knowledge graph
To simulate more likely incomplete knowledge graphs as common

n the real world (Boschin et al., 2022; Li et al., 2023), the semantic
knowledge graph is corrupted by deleting relevant relationships used
in SPARQL Q1-L and required for finding labels or components, as
well as triples necessary for constraint effectiveness (cf. Listing 2 and
3, Appendix). The corruption effects are evident in SPARQL Q1-L and
SPARQL Q1-C + Constr. results with Oracle, which no longer finds all
labels or components ((Cov) wo. adjustment < 1, cf. Table 15). For
comparison, when SPARQL queries fail due to corruption, an effort
equal to a random search on 28 failure labels (average 14 trials)
or 15 components (7.5 trials) is assumed. For (QR), the number of
verage data streams (61/2) is used for missing labels. The results in

Table 6 show that SDNR and CBR outperforming SPARQL significantly
on both levels of corruption for labels and components. While SDNR
and CBR performance deteriorates compared to the uncorrupted knowl-
edge graph, their (LR) remains below (sometimes 50% below) SPARQL
13 
Table 6
Results for the identification of anomalous data streams with a corrupted knowledge
raph.

The values of each cell represent the following metrics: (QR) | (LR)| (Cov) whereas for
ll approaches the reported values are adjusted for not found labels and components
o approach that returned the highest amount. The best (QR) and (LR) value for each

anomaly detection approach are marked in bold. A more detailed overview is provided
in the appendix with Table 15.

with random search. These experimental results confirm H4: symbolic
queries (SPARQL) perform better with perfectly modeled knowledge
graphs, while embedding-based approaches (SDNR and CBR) achieve
tronger performance in imperfect and incomplete real-world scenarios.
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Fig. 12. Comparison of the learned adjacency matrix with the masked version based on the one that is defined based on expert knowledge (i.e., derived from knowledge graph).
4.7. Results of the ablation study on graph structure learning for expert
knowledge integration

An ablation study regarding approaches for learning the graph
structure with respect to expert knowledge integration in the form of
an adjacency matrix derived from the knowledge graph is analyzed
in the following section. Various methods for learning relationships
between data streams are proposed in the literature (cf. Section 2.4).
We apply different graph structure learning modules to the proposed
Siamese neural network encoder (Siam CNN-2D GCN + GSL) with k-
NN reduction, adjacency matrix masking, and preprocessing for graph
convolutional neural networks. The results in Table 7 indicate that all
graph structure learning approaches improve or match performance
compared to the model without such a module. Embedding-based vari-
ants for directed and unidirected graphs (A𝐿

‖𝐸11‖2
(cf. Eq. (9)), A𝐿

‖𝐸12‖2
(cf. Eq. (10)), A𝐿

𝐸11
, cf. Eq. (6)) yield comparable performance and

obtain the best results. Learning the parameters of the adjacency ma-
trix directly (A𝐿

𝑊 ) outperforms replacing the graph structure learning
module with a graph attention network layer. Wu et al.’s uni-directed

variant (A𝐿
𝐸12−𝐸21

) performs worst, suggesting that relationships are best
represented by symmetric or directed graphs.

We investigate the integration of expert knowledge through the
adjacency matrix 𝐴𝐸 derived from the knowledge graph. Masking irrel-
evant relationships (Eq. (12)) yields better results than merging learned
and predefined adjacency matrices via 𝐴⋆ = 𝛽 𝐴𝐸 + (1 − 𝛽)𝐴𝐿 of Zhu
et al. (2021) (Table 8). However, learning the model without masking
the adjacency matrix with the predefined one yielded a comparable per-
formance (second last row of Table 8). For this reason, Fig. 12 compares
two learned adjacency matrices: left without and middle with masking.
On the right is the adjacency matrix derived from the knowledge graph.
The adjacency matrix derived from expert knowledge 𝐴𝐸 exhibits
strong local relationships between components, visible as connections
near the diagonal line in the plot. This preference is absent in the un-
masked learned variant, where the relationships are evenly distributed
throughout the matrix. The difference graph reveals many learned rela-
tionships that do not match expert-defined ones and lack obvious causal
dependency. When masking is applied, the graph structure learning
module appears to focus on expert-identified relationships, learning
their weights, as shown in the middle top plot. Although a different
graph structure is learned, an equivalent performance is achieved. This
might suggest graph structure irrelevance; however, improved results
with graph structure learning and weaker performance when altering
structure (e.g., merging with pre-defined adjacency matrix) indicate
14 
Table 7
Results for different graph structure learning approaches.

Table 8
Results for different parameters/designs of the graph structure learning module.

that coincidental correlations are being learned. Such correlations are
undesirable for the robustness and explainability of the model, which
can be mitigated through the proposed masking.

4.8. Comparison of run times

Runtime is crucial in assessing the efficiency of anomaly detection
and diagnosis approaches. The experiments have been conducted in a
shared GPU environment,7 which may affect computation times. The
used implementation prioritizes experimental ease over speed optimiza-
tion, but assumes equal impact across variants. In our experiments,
OC-SVM requires the longest training time: 12 h using raw data, 10-
11 h using signature matrices, and 3.5 h using ROCKET representation.

7 Each experiment typically uses a dedicated NVIDIA V100 GPU and shares
40 Intel Xeon Gold 6138 CPU @ 2.00 GHz with two cores and 750 GB RAM.
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In contrast, Siam CNN-1D FC and Siam CNN-2D GCN + GSL require
only 5 and 11 min, respectively. Processing times for single examples
are 0.01 and 0.03 s, respectively, for the Siamese networks. The cosine
similarity computation for the entire test set takes less than 10 s,
significantly faster than k-NN on raw data (ca. 10 min). The time
complexity of k-NN is 𝑂(𝑛×𝑚), where 𝑛 is the number of examples and 𝑚
is the number of features (Raschka, 2020). Generating counterfactuals
takes 0.48 s for Siam CNN-1D FC and 0.81 s for Siam CNN-2D GCN +
GSL. Complete anomaly detection with Siam CNN-2D GCN + GSL takes
less than 2 s per example (0.1 s for pre-processing, 0.03 s for encoding,
0.1 s for executing k-NN on an encoded case base plus less than 1 s to
enerate a counterfactual).

SPARQL queries for anomaly diagnosis using OWLReady2 (Lamy,
2017) take 0.000052 s for Q1-L and 0.0002 s for SPARQL Q1-C +
Constr.. SDNR Q1-L + Constr. and SDNR Q1-C + Constr. take nearly
2 s per query, primarily due to implementation prioritizing compre-
hensibility over efficiency. In conclusion, detecting and diagnosing an
anomaly requires approximately 2 s per example using SPARQL queries
and 4 s using SDNR.

5. Related work

First, related work w.r.t. the applied data-driven anomaly detection
pproaches is presented in Section 5.1. Then Section 5.2 discusses

how other work modeled expert knowledge by employing seman-
tic web technologies for knowledge-based PredM approaches. Finally,
Section 5.3 presents approaches that combine data-driven anomaly
etection with knowledge-based approaches.
5.1. Data-driven anomaly detection

Anomaly detection is relevant in domains such as cyber security (Li
t al., 2019; Huong et al., 2021), robotics (Park et al., 2017), man-
facturing (Malburg et al., 2023b), and failure detection (Theusch

et al., 2021; Luo et al., 2021). Due to the diversity, this discussion
ocuses on distance-based approaches, representations obtained by self-

supervised models, and Siamese neural networks. Skvára et al. (2018)
ound that k-NN outperforms generative deep learning models on non-

image data sets, when there are fewer anomalous examples (which
are required for finding optimal hyperparameters). Alimohammadi and

ancy Chen (2022) evaluated eight algorithms for anomaly detection
on time series from oil and gas production, with k-NN performing
best. Combining deep features with k-NN has achieved state-of-the-
art performance (Bergman et al., 2020; Reiss et al., 2021; Roth et al.,
2022). Bergman et al. (2020) demonstrated superior performance using
-NN with a 2056-dimensional feature vector from a ResNet encoder
re-trained on ImageNet (He et al., 2015). Reiss et al. (2021) further

improved this approach using the loss specified in Eq. (2). Roth et al.
(2022) achieved near-perfect performance in industrial image anomaly
etection by concatenating multiple ResNet feature blocks. However,
he use of pre-trained models is debatable and those are scarce for time
eries data (Liznerski et al., 2022), which has led to the exploration

of self-supervised approaches (cf. Section 2.2) that have shown strong
mprovements in image anomaly detection (Golan and El-Yaniv, 2018;

Sohn et al., 2021). Deng and Hooi’s graph deviation network (Deng and
ooi, 2021) targets anomaly detection in multivariate time series for

CPSs. This method learns the structure of the graph using embeddings
and uses a graph neural network to represent each data stream. Siamese
Neural Networks are rarely used for anomaly detection due to the
lack of negative examples (i.e., anomalies) during training. However,
Alaverdyan et al. (2020) integrated an autoencoder architecture into
 Siamese neural network to detect subtle brain lesions in MRI scans.

Castellani et al. (2020) proposed weakly supervised anomaly detection
sing synthetically generated data from a digital twin. Hashemi and
äntylä (2021) trained a Siamese neural network with negative pairs

(i.e., anomalies) and used the learned transformation with k-NN or
a classifier. Masana et al. (2018) utilized images from other datasets
to generate negative pairs, measuring Euclidean distance on encoded
mbeddings as an anomaly detector.
15 
5.2. Semantically modeled expert knowledge for knowledge-based predictive
maintenance approaches

This section presents related work using semantic web technologies
to describe fault and failure knowledge in knowledge-based PredM ap-
proaches. Although some works developed their own concepts (Günel
et al., 2013; Mazzola et al., 2016; Cao et al., 2019), many are based
on the FMEA methodology (Müller et al., 2020; Burge, 2011; Pecht
and Gu, 2009; Guo et al., 2019). Zhou et al. (2015) and Xu et al.
(2018a) modeled relationships between failure modes and components,
effects, and causes through class subsumption. Steenwinckel et al.
(2018) expanded on Zhou’s concepts to build the Folio ontology, which
s aligned with the SSN ontology by defining Folio’s LocalEffect class as
 subclass of SSN’s Observation class, and a property called happenedAt.

Ali and Hong (2018) used specific object properties to relate causes,
effects, and components to failures (and not via subClassOf). Nuñez and
Borsato’s OntoProg (Lira and Borsato, 2018) introduced the concept of
symptoms related to potential failure causes to monitor the condition
f a pump with means of vibration analysis. The recent work by

Ali and Hong (2018) used object properties instead of subsumption
elationships. Failure modes are directly linked to a ManufacturingItem,

with an item’s function modeled as a literal. In conclusion, while Cao
t al.’s model (Cao et al., 2019) initially considers a manufacturing

environment, its implementation and evaluation are presented using
an acceleration sensor of a bearing failure, as well as other works
focusing on wind turbines, loaders, trains, pumps, or video cameras
for surveillance. In summary, most approaches have adopted FMEA
concepts from Zhou et al. (2015), modeling effects and causes as
subclasses of failure modes (instead of disjoint entities) and previous
works lack the aspect that failure modes in FMEA always refer to a com-
onent’s function (Burge, 2011). Including this could provide valuable

information for supervisory control and maintenance planning, ensur-
ing the reliable functioning of important functions. Knowing which
function is affected could provide valuable information for supervisory
control to determine available manufacturing capabilities, as well as
for maintenance planning to ensure reliable functioning of important
capabilities.

5.3. Data-driven anomaly detection combined with knowledge-based ap-
roaches

Research combining data-driven and knowledge-based techniques
for anomaly detection, particularly for time series data with semantic

eb technologies, is scarce (De Paepe et al., 2021). Dalzochio et al.
(2020) found no and Franciosi et al. (2024) mentioned five studies
combining machine learning and ontology reasoning for PredM. The
most similar work is by Steenwinckel et al. (2021a) who proposed
LAGS, a methodology that combines data-driven and knowledge-based

methods for anomaly detection, fault recognition, and root cause anal-
sis. It semantically enriches time series, applies rule matching, and
ses the Matrix Profile algorithm (Yeh et al., 2016) for data-driven

detection. FLAGS has been demonstrated on railway accelerometer
data, while the geographical location and previously stored anomalies
are primarily considered for RCA. It is demonstrated using data from a
1-axis shock pulse accelerometer from a railway company, where the
RCA component can distinguish between anomalies caused by railway
track or bogie faults. Cao et al. (2019) combine a semantic model with
rules learned from a decision tree to reason if instances are in normal
condition or failures occur. Another work by Cao et al. (2022) built a
knowledge-based PredM system by mining a sequential pattern from
vent data to obtain rules that are integrated in a semantic model on
hich ontological reasoning is applied. Nyulászi et al. (2018) combined
ata-driven models with a knowledge-based system using three if-then

rules: if one anomaly is detected, the fault type is a sensor fault; if
three or more are detected, it is an engine fault. Radtke and Bock
(2022) developed a supervised fault classification method for bearings
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using logic tensor networks that combines logical rules with statistical
features (e.g., kurtosis) and constants as thresholds.

In conclusion, there is a lack of research on the combination of
nowledge-based and data-driven methods to detect the cause of an

anomaly in the context of the Internet of Things (IoT) (De Paepe et al.,
2021) to improve PredM (Franciosi et al., 2024) as well as reported in
the application domain of manufacturing to combine machine learning

ith semantic web technologies (Breit et al., 2023). Specifically, there
s a need for further exploration of combinations with deep learning
echniques for processing time series data, such as the commonly used
utoencoder architecture for anomaly detection (Ruff et al., 2020).

Some of the mentioned anomaly detection approaches (e.g., Zhao et al.,
2020b,a; Zhang et al., 2019a; Khoshnevisan and Fan, 2019; Bulla
nd Birje, 2021; Deng and Hooi, 2021) provide commonly used types
f explanations or interpretations (Darban et al., 2022), but those

approaches end at this point and do not consider a knowledge-based
CA. Our paper addresses this research gap by proposing a framework

ocusing on integrating deep learning-based anomaly detection with
emantic web-based knowledge graph for RCA, to advance the field of
redM in IoT and manufacturing contexts.

6. Summary of contributions and discussion of limitations

This paper presents a framework that combines deep learning-
ased anomaly detection with knowledge-based RCA for PredM in
PPSs. Building on data-driven approaches (Section 5.1), we propose

an informed self-supervised one-class learning method that incorpo-
rates domain knowledge from data stream relationships and knowledge
graph embeddings, outperforming several baselines and a deep autoen-
coder. Our work extends related research by integrating deep anomaly
etection with knowledge-based RCA, addressing gaps identified in
ection 5.3, where previous combinations lacked deep learning for
nomaly detection or on the other side, RCA investigation. For RCA,

we utilize a knowledge graph based on semantic web technologies,
proposing query strategies and AI approaches for logical inference using
SPARQL, knowledge graph embeddings with SDNR, and CBR. This
extends previous work which focused mainly on logical inference and
reasoning (cf. Section 5.3) by investigating embedding techniques. We
ontribute a FMEA ontology for modeling fault and failure knowledge,
ddressing the need for domain-specific knowledge representation (Sec-
ion 5.2). This ontology aligns with common FMEA concepts, a domain
ntology, and a data set generated by a smart factory model. In

summary, this comprehensive framework aims to advance PredM ca-
abilities in manufacturing contexts by seamlessly integrating deep
earning-based anomaly detection with semantic web-based knowledge
raphs for robust RCA, thereby filling a significant research gap in IoT
nd manufacturing contexts (cf. Section 5.3).

Our work’s primary limitation is the evaluation on a single instance
time series dataset and corresponding knowledge graph), but this is

consistent with related work (cf. Section 5.3). This constraint is due
o the scarcity of comprehensive publicly accessible datasets with fault
nd failure time series and corresponding expert knowledge (Klein. and
ergmann., 2019; De Paepe et al., 2021), required to evaluate inte-
rated data-driven and knowledge-based approaches in PredM. Studies
ntegrating expert knowledge typically focus on physical knowledge at
he component level (Nunes et al., 2023). However, our data set offers

advantages over those in comparable studies, featuring diverse sensors
and more failure modes. Physical models with small-scale industrial
components have similar characteristics regarding runtime properties
and cyber–physical interactions to real-world production environments
while being easier to operate (Abele et al., 2017). Our knowledge
representation employs established upper ontologies constructed for
eal industrial settings, potentially facilitating transfer to other settings.

While using a single dataset limits generalizability, our framework’s
design, incorporating standard semantic web technologies, and adapt-
ble deep learning architectures, suggests potential applicability to
 b

16 
other industrial contexts. We used two deep learning approaches and
baselines to demonstrate generalizability and compare performance.
As is common for neural networks, applying the proposed approaches
o other data would require hyperparameter tuning (Serradilla et al.,

2020b). However, the general methods for integrating and combining
xpert knowledge (e.g., reasoning from anomalous data streams to
ffected components, applying logical constraints on active operations
nd symptoms) appear logically reasonable and potentially applicable
o other datasets or domains with similar characteristics.

7. Conclusion and future work

This work presents a framework that combines deep data-driven
anomaly detection models with expert knowledge for subsequent RCA
using a knowledge graph. The framework utilizes the commonly used
explainable outputs of deep anomaly detection models (causative data
streams) as entry points to a semantic web-based knowledge graph
for identifying data set labels or affected CPPS components. To ensure
that the data streams that caused the model to make its prediction
orrespond to those an expert would expect, an informed distance-

based deep one-class approach using a specific Siamese neural network
with a counterfactual approach is proposed. The evaluated models
integrate background knowledge through an adjacency matrix derived
from a knowledge graph, and using active functions and symptoms
as diagnostic constraints. The evaluation shows that integrating ex-
pert knowledge about data stream relationships via masking irrelevant
correlations or using graph convolutional networks and knowledge
graph embeddings can improve anomaly detection performance. For
diagnosis, combining the knowledge graph with deep anomaly detec-
tion outputs effectively identifies labels or affected components using
SPARQL queries, SDNR, or CBR with graph embeddings. The latter
two methods demonstrate their ability to infer relations in incomplete
knowledge representations typical of real-world scenarios (Boschin
et al., 2022). Although assessing integration approaches on a single
instance is a limitation, the scarcity of suitable research data (Klein.
and Bergmann., 2019; De Paepe et al., 2021) required this approach.
In general, the results support the usability of the framework for com-
bining data-driven anomaly detection with knowledge-based models
for diagnostics, contributing to research on the integration of expert
knowledge to improve PredM with limited fault and failure data.

Future work could improve the performance of anomaly detection
nd identification of affected data streams, which should enhance
ubsequent RCA. Investigating more expressive knowledge graph em-
edding approaches for SDNR and CBR could be beneficial. Extending
ur CBR approach to incorporate the reuse, revise, and retain phases of
he 4R cycle could further improve the performance and lead to a self-
earning system. Successful identification of anomalous data streams
ould increase the confidence in prediction in terms of eXplainable
rtificial Intelligence (XAI) (Vollert et al., 2021), with user interac-

tion for generating counterfactuals and expert knowledge helping this
process (Beckh et al., 2021). Integrating semantic constraints as an ad-
itional loss function in deep anomaly detection (e.g., Xu et al., 2018b;

von Hahn and Mechefske, 2022) could improve normal state represen-
tations. Interoperability is crucial for integrating the results into other
systems. Sharing results with higher-level systems, such as manufac-
uring execution system and production planning, could enable more
fficient scheduling of production and maintenance tasks. An interface
ould map affected FMEA function instances to the corresponding
anufacturing tasks (expressed as semantic web services Malburg et al.,

2020), guiding process execution planning (Malburg et al., 2023a,b).
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Appendix A. Data set

See Tables 9–11.

Appendix B. Algorithmically deriving an adjacency matrix from a
knowledge graph

The used graph convolutional layer typically requires the graph
structure in the form of an adjacency matrix as well as it was used
to mask irrelevant correlations in MSCRED referred to as MSCRED AM.
As manually defining them for numerous data streams such as sensors
is a complex and time-consuming task, an adjacency matrix can be
generated by using existing semantic knowledge graphs and previously
defined International Resource Identifiers (IRIs). This provides the
advantage over manual definition that algorithmic determination can
be made based on a multitude of relationships modeled in detail, and
each entry of the adjacency matrix can be explained by the relationship
between entries provided by the knowledge graph. The resulting adja-
cency matrix 𝐴 ∈ {0, 1}𝑚×𝑚 for 𝑚 data streams has binary entries 𝐴𝑖𝑗
which indicate whether there is a dependency between data streams 𝑑𝑖
and 𝑑𝑗 or not. All query patterns used to derive the adjacency matrix
are presented in Table 12 (see Fig. 13).
17 
Table 10
Overview of labels and their affected component.

Fig. 13. Derived adjacency matrix depicted as a graph.

Appendix C. MSCRED reconstruction error-based explanation

See Fig. 14.

Appendix D. Counterfactual explanation of a detected anomaly

Two visualizations of the counterfactual approach8 used to identify
anomalous data streams in case of a false positive and a true positive
are shown in Figs. 15 and 16. The example shows the data streams that
are identified as anomalous according the procedure of Section 3.3.

Appendix E. Full results of anomaly diagnosis

See Tables 13–15.

8 A collection with counterfactual explanations for all FaFs of the
whole data set can be found on https://drive.google.com/drive/folders/1-
D-55W1UngpGFu8zpGkQGuZ9DdjE07Fx?usp=sharing (last accessed on
08/09/2022).

https://drive.google.com/drive/folders/1-D-55W1UngpGFu8zpGkQGuZ9DdjE07Fx?usp=sharing
https://drive.google.com/drive/folders/1-D-55W1UngpGFu8zpGkQGuZ9DdjE07Fx?usp=sharing
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Table 11
Relevant features per failure Mode/Label.

For each label, relevant features (i.e., data streams) are selected by a domain expert under consideration of the semantic knowledge graph
and a visual inspection of the data streams. In the end, the relevant features are divided into two categories. The features referred to as direct
contain directly observable patterns, while the contextual features are required to understand in which context the directly observable pattern
appears. Features starting with a are accelerating sensors, containing an i stands for light barriers and position switches, a m stands for a motor,
o for valves and compressors, and hPa indicates a pressure sensor.
Table 12
Overview of SPARQL query patterns used to find pairs (𝑛𝑞 , 𝑛𝑦) between data streams for building an adjacency matrix.

The previous notation 𝑛𝑥 and ?𝑛𝑥 means node 𝑥 and is shortened by removing the 𝑛.
18 
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Table 13
Detailed overview of results for finding the root cause (i.e., Label) of an anomaly with the semantic knowledge graph.
a

Appendix F. Ablation study for siam AD model

An ablation study is conducted on architectural/design changes in
the proposed Siam models for anomaly detection of Section 3.2, as
shown in Table 16. The reported scores are the mean of five consecutive
uns on the test set. These results indicate that the prediction head

(cf. Section 3.2.1) only improves the performance of Siam CNN-1D FC
in terms of AvgPR and PR AUC metrics. Otherwise, a normal Siamese
neural network that maximizes the negative Cosine similarity achieves
comparable results in this setting. Removing the graph structure learn-
ng module from Siam CNN-2D GCN + GSL leads to a significant
erformance drop and highlighting its importance. For this reason, the

following section investigates different aspects of it in detail.

Appendix G. Corrupted semantic models

See Listings 2 and 3.

e

19 
Appendix H. Details of applied anomaly detection approaches

In the following, details how the anomaly detection approaches are
pplied are given so that results are reproducible.

H.1. One class support vector machine

The input of the OC-SVM is flattened to a 1-dimensional vec-
tor and the features are standardized by subtracting the mean and
scaling to unit variance to obtain normally distributed data (i.e., Gaus-
sian with zero mean and unit variance). Unless otherwise specified,
OC-SVM is used with its default hyperparameters, as implemented in
sklearn (Pedregosa et al., 2011).

H.2. Unsupervised Siamese networks

As outlined in Section 3.2, a Siamese network with two distinct
ncoder structures is trained on normal data as part of an approach
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Table 14
Detailed overview of results for finding the affected component of an anomaly with the semantic knowledge graph.
Listing 2: Removed triples from the semantic model to make it more difficult to find the right label.

FM_txt15_m1_t1 i sDe tec t InDS _D i r ec t ADXL345_3_x−Axis
FM_txt15_m1_t1 i sDetec t InDS_Contex t ADXL345_3_x−Axis
FM_txt15_m1_t2 i sDe tec t InDS _D i r ec t ADXL345_3_y−Axis
FM_txt15_m1_t2 i sDetec t InDS_Contex t ADXL345_3_y−Axis
FM_txt16_m3_t1 i sDe tec t InDS _D i r ec t ADXL345_4_z−Axis
FM_txt16_m3_t1 i sDetec t InDS_Contex t ADXL345_4_z−Axis
FM_txt16_m3_t2 i sDe tec t InDS _D i r ec t ADXL345_4_x−Axis
FM_txt16_m3_t2 i sDetec t InDS_Contex t ADXL345_4_x−Axis
FM_txt16_m3_t2 i sDe tec t InDS _D i r ec t ADXL345_4_z−Axis
FM_txt16_m3_t2 i sDetec t InDS_Contex t ADXL345_4_z−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDe tec t InDS _D i r ec t ADXL345_4_z−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDetec t InDS_Context ADXL345_4_z−Axis
FM_ t x t16 _ i 4 _ l i gh tba r r i e r _ fm _1 i s Ind i ca tedBy Symp_Fa l s ePos i t i veS igna l s In t e rmi t t en t
FM_tx t16_con_b ig _gear _ tooth_broken hasLabel FM_tx t16_con_b ig _gear _ tooth_broken
SM_Motor_1 hasFunction Func_SM_M1_Drive_Conveyor_Belt
FM_ t x t15 _ i 1 _ l i gh tba r r i e r _ fm _2 hasLabel L a b e l _ t x t 1 5 _ i 1 _ l i g h t b a r r i e r _ f m _ 2
FM_ t x t15 _ i 3 _ l i gh tba r r i e r _ fm _2 i sDe tec t InDS _D i r ec t SM_L igh t _Bar r i e r _3
FM_ t x t15 _ i 3 _ l i gh tba r r i e r _ fm _2 i sDetec t InDS_Context SM_L igh t _Bar r i e r _3
SM_L igh t _Bar r i e r _3 hasPotent ia lFai lureMode FM_ t x t15 _ i 3 _ l i gh tba r r i e r _ fm _2
SM_L igh t _Bar r i e r _1 hasPotent ia lFai lureMode FM_ t x t15 _ i 1 _ l i gh tba r r i e r _ fm _1
FM_ t x t15 _ i 1 _ l i gh tba r r i e r _ fm _1 i sDe tec t InDS _D i r ec t SM_L igh t _Bar r i e r _1
FM_ t x t15 _ i 1 _ l i gh tba r r i e r _ fm _1 i sDetec t InDS_Context SM_L igh t _Bar r i e r _1
VGR_Compressor_7 hasPotent ia lFai lureMode FM_txt18_pneumatic_ leakage_fm_2
FM_txt18_pneumatic_ leakage_fm_2 i sDe tec t InDS _D i r ec t VGR_Comp_7_SSCMRRN03PD2A3
FM_txt18_pneumatic_ leakage_fm_2 i sDetec t InDS_Context VGR_Comp_7_SSCMRRN03PD2A3
MPS_Motor_3 hasPotent ia lFai lureMode FM_txt16_m3_t2
FM_txt15_m1_t1 hasLabel Label _ tx t15_m1_t1_h igh_wear
SM_Motor_1 hasPotent ia lFai lureMode FM_txt15_m1_t2
for data-driven anomaly detection. Further details can be found in
ection 2.2.
 w

20 
The Siam 1D CNN FC model comprises three convolutional layers
ith 256, 64, and 32 filters, each with a kernel length of 5, 5, and
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Table 15
Detailed overview of results for finding the root cause (i.e., Label or Affected Component) of an anomaly with a
corrupted knowledge graph.
l

n

G
s
a

3 and strides of 2, 2, and 1 respectively. Following each convolution
operation is the application of the ReLU activation function and batch
normalization. Subsequently, a drop-out layer with a rate of 0.05 is
applied before three Fully Connected (FC) layers with 512, 256, and
28 units are implemented. Batch normalization is applied to each FC
ayer followed by the ReLU activation function. The projector head
cf. Section 2.2) consists of two fully connected layers that are followed

by ReLU and batch normalization as well as a final fully connected layer
with 128, 32, and 128 units respectively. Drop-out regularization with
a rate of 0.2 is applied to the projector head’s input.

The Siam 2D CNN GCN + GSL model comprises three blocks of
2D convolutions with 128, 64, and 3 kernels of size (5,1), (5,1), and
21 
(3,1) respectively. Each convolution is followed by batch normalization
and a ReLU activation function. The output of the last convolutional
ayer is then concatenated with the Knowledge Graph embeddings of

each data stream. Batch normalization and fully connected layers with
384 and 256 units are applied data-stream wise. This is followed by
three layers of graph convolutions with a kernel size of 128, batch
ormalization and the ReLU activation function. The input for each

graph convolutional is concatenated with the corresponding Knowledge
raph embeddings, as well as the adjacency matrix derived from the

emantic Knowledge Graph. Global attention pooling with 128 units is
pplied to obtain a vector representation. The projector head consists

of two fully connected layers that are followed by ReLU and batch
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Listing 3: In addition to the triples of Listing 2, the following ones are also removed from the semantic model to make it more
difficult to find the right label.

FM_txt15_m1_t1 hasLabel Label _ txt15_m1_t1_ low_wear
FM_txt15_m1_t2 i sDe tec t InDS _D i r ec t AccSensor_ADXL345_3_x−Axis
FM_txt15_m1_t2 i sDetec t InDS_Contex t AccSensor_ADXL345_3_x−Axis
FM_txt15_m1_t2 i sDe tec t InDS _D i r ec t AccSensor_ADXL345_3_z−Axis
FM_txt15_m1_t2 i sDetec t InDS_Contex t AccSensor_ADXL345_3_z−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDe tec t InDS _D i r ec t ADXL345_4_x−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDetec t InDS_Context ADXL345_4_x−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDe tec t InDS _D i r ec t ADXL345_4_y−Axis
FM_ tx t16 _conveyor _ fm_dr ivesha f t _ s l ippage i sDetec t InDS_Context ADXL345_4_y−Axis
FM_txt16_m3_t2 i sDe tec t InDS _D i r ec t AccSensor_ADXL345_4_y−Axis
FM_txt16_m3_t2 i sDetec t InDS_Contex t AccSensor_ADXL345_4_y−Axis
FM_txt16_m3_t1 hasLabel Label _ tx t16_m3_t1_h igh_wear
FM_txt18_pneumatic_ leakage_fm_1 hasLabel Labe l _ tx t18_pneumat ic _ leakage_ fm_1
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ig. 14. Example of a reconstruction error-based explanation of the test example with
ndex 3385 of used data set which is correctly detected as true positive during the
nomaly detection by MSCRED. The first row is the input of the four signature matrices,
he second row their reconstruction and the last row the reconstruction error. The
xplanation highlights the reconstruction error observed in the correlations of one data
tream, namely txt16_i4 where the light barrier observes an anomalous signal.

able 16
blation study Siam CNN1D FC and Siam CNN2D GCN.

ormalization as a final fully connected layer, with units of 128, 4, and
28 respectively. Drop-out regularization with a rate of 0.2 is applied to
he projector head’s input. The Graph Structure Learning (GSL) module
ses an equation corresponding to an undirected graph, with masking
f the predefined adjacency matrix and a reduction on the outgoing
dges of any node to a maximum of 5 (k-NN). Post-processing adds
 self-loop and applies non-symmetric normalization to 𝐴̂ = 𝐷̃−1𝐴̃in
ase of an asymmetric adjacency matrix that corresponds to a directed
 a

22 
ig. 15. Example of a counterfactual explanation of the test example with index 7 of
he used data set (red lines) employing the healthy training example with index 13,226
green lines) which is detected as false positive during the anomaly detection. An expert
an inspect the data streams and would recognize that only the second and last one
re from the same workstation. The pressure increase measured by an air pressure
ensor in the first data stream is earlier as in the example, but has the same shape.
he third and fourth data stream only show minor divergences to the healthy one and
an theoretically be rejected, whereas for the acceleration data, statistical features such
s Kurtosis would be more appropriate for detecting faults. Finally, the expert has to
ecide if the pattern of the light barrier disruption of 𝑡𝑥𝑡19_𝑖5 and the motor activity of
𝑥𝑡19_𝑚3 has any anomalous signs. If not, the expert can reject the predicted anomaly
nd verify the healthy condition as it is labeled.

raph.9
The gradient stop was removed from both reported models, re-

ulting in an increase in performance (cf. Appendix F). The train-
ng was conducted with a batch size of 64 pairs, a learning rate of
.0001 and the Adam optimizer. Early stopping was employed after
o improvement of the training loss on 100 batches of the train-
ng data, and the model with the lowest training loss was used for
valuation. The hyperparameters were tuned manually against the
alidation split. Both architectures correspond to the best performing
odels known to the author. Hyperparameters of the encoder (exclud-

ng the head) are initialized from previous (Klein et al., 2021) as a
tarting point, with grid search applied for fine-tuning. For further

9 https://github.com/tkipf/gcn/issues/91#issuecomment-469181790, last
ccessed on 03/05/2020.

https://github.com/tkipf/gcn/issues/91#issuecomment-469181790
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Fig. 16. Example of a counterfactual explanation of the test example with index 3386
of the used data set (red line) utilizing the healthy training example with index 18,579
(green line). The explanation presents the anomalous data stream txt16_i4 at the top
and hence most relevant as cause. For an expert, the anomaly is recognizable through
the multiple changes of the signal compared to the normal expected signal in this
situation. The further deviations in data stream txt15_i8, txt19_i6, and a_15_1_x are not
relevant for the anomaly and an expert has to exclude them as causes.

Fig. 17. Schematic depiction of the operations conducted by the graph structure
learning module.

details, please refer to the implementation: https://github.com/PredM/
SimSiamDistanceBasedAnomaly.
23 
Fig. 18. Training and validation loss of the third MSCRED model which
starts with 118.31719970703125 and 13.658352851867676 and is reduced to
0.07308381795883179 and 0.07253975421190262 at epoch 72, which is the state of
the model that is selected for the evaluation in this case.

H.3. Implementation of the graph structure learning component used in siam
CNN2D GCN + GSL

For investigating approaches to learning dependencies between data
streams of an underlying system and integrating expert knowledge
about them effectively (cf. Section 3.2.2), a graph structure learn-
ing (Zhu et al., 2021) component is implemented10 as a custom layer of
the deep learning framework Keras (Chollet et al., 2015). For processing
a sample (i.e., invoke of the call()-function), the sequence of operations
as depicted in Fig. 17 is executed based on the given parameters.
The input of the graph structure learning module consists of a pre-
defined adjacency matrix 𝐴𝐸 , previously learned node embeddings
corresponding to each data stream, or the node features (i.e., time series
data) itself. The graph structure learning module is implemented with
the following variants are presented in Section 2.4 in Eqs. (5)–(10).

H.4. Application of MSCRED

The MSCRED framework (Zhang et al., 2019a) is an example of a
deep learning reconstruction-based anomaly detection approach.

Preparation of input signature matrices
The data set’s example (i.e., a 4-s window of time series) is divided

into four signature matrices, as shown in Fig. 19, with a step size of
1 s or 250 entries and  = {63, 125, 186, 250}. Thus, each example
corresponds to one signature matrix example and makes the results
comparable to other AD approaches that work on raw time series data.

Parameterization of MSCRED and learning procedure
The hyperparameters of the MSCRED model remain unchanged in

the original proposed model (Zhang et al., 2019a) because no param-
eters are found that consistently improved the reconstruction error.
The training process involves mini-batches of 128 examples, and early
stopping is employed when the reconstruction error measured on a
hold-out-split of the failure-free training data does not decrease any
further. The training is terminated after 100 epochs or if there are no
further enhancements after three consecutive epochs. Adam optimizer
with a learning rate of 0.001 and batch size of 128 was selected as it
yielded the best results on the validation set. A plot of the training and
validation loss can be found in Fig. 18.

10 https://github.com/PredM/SimSiamDistanceBasedAnomaly/blob/
c9dbe9b380b064aa1b27cebdd173f3725500267a/neural_network/
BasicNeuralNetworks.py#L1073C59-L1073C59.

https://github.com/PredM/SimSiamDistanceBasedAnomaly
https://github.com/PredM/SimSiamDistanceBasedAnomaly
https://github.com/PredM/SimSiamDistanceBasedAnomaly
https://github.com/PredM/SimSiamDistanceBasedAnomaly/blob/c9dbe9b380b064aa1b27cebdd173f3725500267a/neural_network/BasicNeuralNetworks.py#L1073C59-L1073C59
https://github.com/PredM/SimSiamDistanceBasedAnomaly/blob/c9dbe9b380b064aa1b27cebdd173f3725500267a/neural_network/BasicNeuralNetworks.py#L1073C59-L1073C59
https://github.com/PredM/SimSiamDistanceBasedAnomaly/blob/c9dbe9b380b064aa1b27cebdd173f3725500267a/neural_network/BasicNeuralNetworks.py#L1073C59-L1073C59
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Fig. 19. Conversion of a time series window with 𝑚 data streams to a representation with correlation matrices. Parameters are as used in during the evaluation. The  in the
upper-right corner indicates the different lengths for computing the correlation, which are defined as 63, 125, 186 and 250 time steps and 250 corresponding to 1 s.
p

v
a

s

f
c
T
t
f
S
a
b
m
P
p

Definition of anomaly detection threshold
In Zhang et al. (2019a), the method for determining the appropriate

threshold 𝜃 for defining the anomaly score 𝑠(𝑡) at a time point 𝑡 for a
ingle correlation between two data streams is not specified in detail.
onsequently, the threshold is empirically determined by selecting the

value that yields the highest ROC AUC score on the validation data set.
he threshold 𝜏 for determining whether 𝑠(𝑡) is normal or abnormal is

defined by maximizing the f1-score on the validation data set, as per
he paper (Zhang et al., 2019a).

MSCRED implementation
The MSCRED framework (Zhang et al., 2019a) is re-implemented

using TensorFlow and Keras, as the implementation provided in the
paper is not executable.11 This reconstruction-based anomaly detection
approach is selected due to its superior performance compared to other
aseline approaches on the authors’ data, as well as its innovative en-
oder architecture specifically designed for time series data of technical
ystems and its ability to identify causative data streams. For further
nformation, please refer to the repository of the implementation.12

Appendix I. SPARQL query strategies

The implementation of SPARQL Q3-L is shown in Listing 4. This
query makes use of the compositional structure by providing all labels
that are associated with data streams belonging to the same higher-
level component (cf. Table 10). The SPARQL query SPARQL Q1-C is
presented in Listing 5. The constraint from Section 3.4.2 is incorporated
nto query Q1-L, as illustrated in Listing 6. This query includes two

variables, Func_constraint_part and Symp_constraint_part, which are used
to impose function-based (i.e., component activity) and symptom-based
constraints, respectively, based on the anomalous data stream ds_name.

Listing 4: SPARQL query implementation for SPARQL Q2-L which
retrieves possible labels for an anomalous data stream (here: txt16_i4)
by making use of the component structure modeled in the Knowl-
edge Graph through the properties isHostedBy and hasComponent. The
refixes are similar to those defined in Listing 1.
SELECT DISTINCT ? l a b e l s
WHERE {

{
?component f t on to : i s _ a s s o c i a t e d _ w i t h _ da t a _ s t r e a m " t x t 16 _ i 4 " ̂ ̂ xsd : s t r i n g .
? workstat ion f t on to : hasComponent ?component .

}UNION{
? sensorStream f t on to : i s _ a s s o c i a t ed _ w i t h _ da t a _ s t r e am " t x t 16 _ i 4 " ̂ ̂ xsd : s t r i n g .
? sensor f t on to : hasComponent ? sensorStream .
? sensor sosa : isHostedBy ?component .
? workstat ion f t on to : hasComponent ?component .

}{
{

? workstat ion f t on to : hasComponent ?components .
? fa i lureModes predm : i sDetectable InDataStreamOf_Context ?components .

}UNION{
? fai lureModes predm : i sDetectable InDataStreamOf_Context ?component .

}
}{

? fai lureModes predm : hasLabel ? l a b e l s
}

}

11 https://github.com/7fantasysz/MSCRED/issues, last accessed
04/02/2022

12 https://github.com/PredM/MSCRED-Deep-Autoencoder-Anomaly-
etection, last accessed on 08/08/2023
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Listing 5: The implementation of query strategy Q1-C is used to obtain
the components affected by the anomalous data stream (txt16_i4). The
refixes used in this query are similar to those defined in Listing 1. The

graph pattern modeled in this query is presented in Fig. 7
SELECT DISTINCT ? items
WHERE {

?component f t on to : i s _ a s s o c i a t ed _w i t h _da t a _ s t r e am
" t x t 16 _ i 4 " ̂ ̂ xsd : s t r i n g .

? fa i lureModes predm : i sDe tec tab le InDataS t reamOf_Di rec t
?component .

? i tems fmeca : hasPotent ia lFai lureMode ? fai lureModes .
}

Listing 6: A SPARQL query (Listing 1) is used to obtain labels based
on a given anomalous data (ds_name), which correspond to Q1-L. The
ariable Symp_constraint_part contains a constraint based on symptoms
nd Func_constraint_part contains a constraint for an active function,

both dependent on the processed data stream ds_name. The prefixes are
imilar to those defined in Listing 1.
SELECT DISTINCT ? l a b e l s
WHERE {

{
?component f t on to : i s _ a s s o c i a t ed _w i t h _da t a _ s t r e am

" ds_name " ̂ ̂ xsd : s t r i n g .
?component fmeca : hasPotent ia lFai lureMode ? fai lureModes .
? fa i lureModes predm : hasLabel ? l a b e l s .
Func _ con s t r a in t _ pa r t .
Symp_cons t ra in t _par t .

}
UNION{

?component f t on to : i s _ a s s o c i a t ed _w i t h _da t a _ s t r e am
" ds_name " ̂ ̂ xsd : s t r i n g .

? fa i lureModes fmeca : i sDe tec tab le InDataS t reamOf_Di rec t
?component .

? fa i lureModes predm : hasLabel ? l a b e l s .
Func _ con s t r a in t _ pa r t .
Symp_cons t ra in t _par t .

}
}

I.0.1. Implemented constraint in the SPARQL queries
The constraint from Section 3.4.2 is incorporated into query Q1-

L, as illustrated in Listing 6. This query includes two variables, Func_
constraint_part and Symp_constraint_-part, which are used to impose
unction-based (i.e., component activity) and symptom-based
onstraints, respectively, based on the anomalous data stream ds_name.
he constraint is applied as follows: If the mean of the data stream
xt15_m1.finished is less than 0.2 during a time series window, then the
unctions PredM#Func_SM_M1_Drive_Con-veyor_Belt and PredM#Func_
M_CB_ transport_workpieces are considered as active; otherwise, they
re inactive. The same applies to another conveyor belt monitored
y data streams a_16_3x, a16_3_y, and a16_3_z with actuator txt16-
3.finished and functions PredM#FuncSMM1DriveConvey-orBelt and
redM#Func SMCBtransportworkpieces. If an ano-maly is detected in a
ressure sensor data streams (e.g., hPa15, hPa17, and hPa18) or any of

the valve or compressor data streams, then functions PredM#FuncSMP
neu-maticSystemProvidePressure, PredM#FuncMPSBFPneu-maticSystem
ProvidePressure, and PredM#FuncVGRPneu-maticSystemProvidePressure
are considered as active only if the compressor’s mean value is higher

https://github.com/7fantasysz/MSCRED/issues
https://github.com/PredM/MSCRED-Deep-Autoencoder-Anomaly-Detection
https://github.com/PredM/MSCRED-Deep-Autoencoder-Anomaly-Detection
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than 0.8; otherwise, they are inactive. This suggests that anomalies
related to the pneumatic system can only be detected when it is active
and pressure has been generated. The symptom Symp_constraint_part is
generated by considering only the light barriers and position switches.

he symptom is applied as follows: If the absolute sum of changes13

is equal to or less than 1, then PredM#Symp_ContinuousSignal is ob-
served; otherwise, PredM#Symp_IntermittentSignal is observed due to the
presence of at least two changes in the signal.

If the function PredM#Func_SM_M1_Drive_Conveyor_-Belt is active
during the time series window, then the Func_con-straint_part of Listing
6 should include the part shown in Listing 7. Conversely, if it is not
active, it should be negated by FILTER NOT EXISTS {Func_constraint_-
part}. If the symptom PredM#Symp_FalsePositiveSignal-Continuous is de-
tected in the input data, Listing 8 should be included in Listing
Func_constraint_part ; however, if it is not identified by the simple
feature, it should not be negated.

Listing 7: Example for Func_constraint_part of Listing 6
{

predm : Func_SM_M1_Drive_Conveyor_Belt fmeca : def inesFai lureMode
? fai lureModes .

} UNION {
predm : Func_SM_CB_transport_workpieces fmeca : def inesFai lureMode

? fai lureModes .
}

Listing 8: Example for Symp_constraint_part of Listing 6
? fai lureModes fmeca : i s Ind i ca tedBy

predm : Symp_FalsePos i t iveSignalCont inuous .

Appendix J. Formulas for anomalous data stream identification
measures

For the diagnosis of an anomaly, a ranked list 𝑐 ∈ R𝑚 is typically
rovided by the AD model (e.g., Su et al., 2019b; Zhao et al., 2020b;

Zhang et al., 2019a). The most relevant data stream is given by 𝑐𝑖
here 𝑖 = 0. To evaluate the quality of the information contained in

𝑟, two metrics, namely 𝐻 𝑖𝑡𝑅𝑎𝑡𝑒%@𝑃 and 𝐻 𝑖𝑡𝑠@𝑘, are commonly used
(e.g., Su et al., 2019b; Zhao et al., 2020b; Zhang et al., 2019a). These
metrics require that for each anomalous example 𝑥𝑗 , there is a specific
set of data streams 𝑗 with a variable number of elements |𝑗

| that are
selected manually by expert knowledge as relevant and are dependent
on the class label as shown in Table 11. The metric 𝐻 𝑖𝑡𝑠@𝑘 counts the
number of examples 𝑥𝑗 ∈ 𝑡𝑒𝑠𝑡 for which any of the first 𝑘 entries of 𝑐𝑖
is included in the set 𝑗 . More formally that can be written as

Hits@k =

|

|

|

|

|

{

𝑥𝑗 ∈ 𝑡𝑒𝑠𝑡 ∣ ∃𝑖≤𝑘𝑐
𝑗
𝑖 ∈ 𝑗

}

|

|

|

|

|

|

|

𝑡𝑒𝑠𝑡
|

|

(18)

For instance, for 𝑘 = 3, a hit would be counted if any of the first three
entries of 𝑐 is contained in the set .

The 𝐻 𝑖𝑡𝑅𝑎𝑡𝑒@𝑝% metric is another measure employed in this con-
text (e.g., Su et al., 2019b; Zhao et al., 2020b). The parameter 𝑘 is
adjusted based on the number of attributes || of the example being
examined and the parameter 𝑝. Therefore, for each example 𝑥𝑗 ∈ 𝑡𝑒𝑠𝑡,
the number of 𝑘𝑗 = |𝑗

| ∗ 𝑝% is used instead of a fixed value for 𝑘 as
in the case of 𝐻 𝑖𝑡𝑠@𝑘.

HitRate@p% =

|

|

|

|

|

{

𝑥𝑗 ∈ 𝑡𝑒𝑠𝑡 ∣ ∃
𝑖≤𝑘𝑗

𝑐𝑗𝑖 ∈ 𝑗
}

|

|

|

|

|

|

|

𝑡𝑒𝑠𝑡
|

|

(19)

13 Formula found on https://tsfresh.readthedocs.io/en/latest/api/tsfresh.
feature_extraction.html#tsfresh.feature_extraction.feature_calculators.absolute_
sum_of_changes, last accessed on 06/15/2022.
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If 𝑝 = 100, the value of 𝑘𝑗 is equivalent to the gold standard number
given in |𝑗

|. Increasing 𝑝% increases the number of entries considered
in 𝑐, as well as a higher |𝑗

| increases the likelihood of a hit since a
arger portion of 𝑐𝑗 is considered. For both 𝐻 𝑖𝑡𝑠@𝑘 and 𝐻 𝑖𝑡𝑅𝑎𝑡𝑒@𝑝%,
 value of 1 indicates optimal performance, with higher values being
referable.

Data availability

I have shared the link to the data in the footnote.
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