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Abstract

3D scene understanding is a key research topic for various

automation areas. Many RGB-D datasets today focus on

reconstruction of entire scenes. However, their scanning

processes are time-consuming, requiring multiple or con-

tinuous recordings using a scanner with a limited angle of

view. Such datasets often contain data affected by stitching

artifacts or poor quality annotation masks projected directly

from 3D to image. In this paper, we present ToF-360. This

is the first RGB-D dataset obtained by a unique Time-of-

Flight (ToF) sensor capable of 360→ omnidirectional RGB-D

scanning within seconds. In addition to the raw data in a

fisheye format and equi-rectangular projection (ERP) images

from the device, we provide manually labeled high-quality,

pixel-level, 2D semantics and room layout annotations and

introduce a benchmark for three practical tasks: 2D se-

mantic segmentation, 3D semantic segmentation, and layout

estimation. We demonstrate that our dataset helps to better

represent real-world scenarios and push the limits of existing

state-of-the-art methods. The dataset is publicly available at

https://doi.org/10.57967/hf/5074.

1. Introduction
In recent years, there has been increased interest in indoor
3D scene understanding for many practical applications in
the domains of augmented- and virtual reality (AR/VR), au-
tonomous driving, scene modeling, and robot navigation
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[8, 32]. Many recent machine learning techniques includ-
ing depth estimation, 3D reconstruction, and semantic seg-
mentation [1, 33, 53] have tackled different parts of this
challenge. Most of these tasks have progressed with the
increased availability of affordable commercial 3D sensing
devices, which enabled a variety of RGB-D datasets. How-
ever, since datasets such as SUN RGB-D [40], ScanNet [12],
and Matterport3D [6] are based on scanning with specific
stationary devices, it is still not trivial to make use of them
for practical applications. Meanwhile, these devices typi-
cally need from tens of seconds up to minutes for capturing
and require a static environment to be maintained during
scanning. Moreover, some of these datasets exhibit image
alignment artifacts or low-quality segmentation mask labels
directly projected from 3D (see Figure 1).

Even though mobile scanning LiDAR devices like Mi-
crosoft Kinect [10], iPhone LiDAR [22], and the RealSense
LiDAR camera [11] facilitate data collection, continuous
scanning is required because of the restriction on the angle
of the view angle to < 120→, which extends the acquisition
time. These limitations while recording data can be a barrier
to adoption to practical applications. Ricoh released a novel
handheld Time-of-Flight (ToF) device capable of capturing
complete colored 3D point clouds omnidirectionally from a
single camera shot in one second [31]. It solves the problem
of portability on conventional stationary devices and restric-
tion of the angle of view on commercial mobile scanners,
which leads to shorter and less cumbersome scanning proce-
dures. We expect this scanner to stimulate the development
of novel algorithms for single-shot reconstruction tasks that
do not require global position alignment and to bridge the
gap between research and actual applications.

Our dataset, ToF-360, consists of 207 spherical RGB-D
images taken in 4 unique environments. We emphasize the
precise annotation and superior data quality of our dataset,
compared to other datasets and 3D scanners in Figure 1
as well as Sections 2, 3 and 5. We provide high-quality
panoramic 2D semantic annotations and 2D layout annota-
tions and demonstrate its usability in the evaluation of three
downstream supervised learning tasks: 3D semantic segmen-
tation based on RGB-D images or point clouds and layout
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Figure 1. Comparison of multiple samples from Stanford-2D-3D-S [3] (top) and ToF-360 (bottom) showing superior quality stitching,
depth, and instance labels in our ToF-360 dataset. (a) Comparison of image and stitching quality. Green boxes mark properly aligned
stitching, while red boxes show misaligned stitches. (b) Qualitative depth comparison shows better depth edges and finer depth in our dataset.
(c) Comparison of instance labels shows better label to object alignment.

estimation. For these tasks, ToF-360 provides the only RGB-
D dataset labeled with building-defining object categories
and image based layout boundaries (ceiling-wall, wall-floor)
and its 3D structure, which are described in Section 4. Fi-
nally, we evaluate the performance of state-of-the-art meth-
ods when evaluated on ToF-360 in Section 6 and emphasize
the challenges they face in generalization to domains unseen
in training data. In summary, the contributions of this paper
are as follows:
• We provide the first dataset created using an omnidirec-

tional one-shot ToF device, the only scanner that can ob-
tain omnidirectional distance information within a second.

• We provide high-quality hand-crafted segmentation and
layout labels free of alignment and 3D-to-image label
projection artifacts.

• We perform a comprehensive task evaluation in semantic
segmentation using different modalities such as panoramic
image based and point cloud based approaches.

• We introduce a benchmark for scene understanding tasks
based on single-shot reconstruction without the need for
global alignment and set a baseline using state-of-the-art
methods.

2. Related Work
Machine learning algorithms for scene understanding are
an active research area of great interest in computer vision,
graphics, and robotics, and there is a growing demand for the
collection of RGB-D images for training and evaluating such
algorithms [17]. A comparison of ToF-360 to commonly
used existing datasets is shown in Table 1. SUNCG [41]
and Structured3D [54] provide large synthetic 3D datasets.

While these can assume ideal conditions with a virtual ren-
derer and can therefore construct diverse datasets with low
noise, it is very difficult to approximate the quality of lighting
and textures of the real world, which can lead to scene under-
standing conditions that deviate significantly from reality for
some tasks. In recent years, several datasets have been pub-
lished that capture real-world spaces with a general-purpose
3D scanner [6, 14]. Most of these datasets were captured
by scanning with stationary terrestrial laser scanners (TLS)
or handheld devices. Another ToF dataset, TIMo [38], com-
bined infrared (IR) and depth for building monitoring and
anomaly detection, while this dataset prioritizes privacy, it
provides fewer annotations and modalities.

Our dataset, on the other hand, differs from the existing
ones, providing 2D semantic annotations and room layouts
in addition to 360→ panoramic RGB images and panoramic
depth images derived from ToF sensors. With this com-
pletely new capturing method and hardware and high data
quality (see Figure 1), we contribute to the advancement of
machine learning models for real-world tasks.

2.1. Panoramic Image Segmentation
Early methods for interpreting a picture holistically focused
on using perspective image based models in conjunction
with distorted-mitigated wide field of view (FoV) images. A
distortion-mitigated locally-planar image grid tangent to a
subdivided icosahedron is proposed by Eder et al. [16] for
a tangent image spherical representation. Lee et al. [29],
on the other hand, use a spherical polyhedron to symbolize
comparable omni-directional perspectives. In contrast to
that, recent studies [34] use distortion-aware modules in the
network architecture to directly operate on equirectangular



representations. Sun et al. [42] suggest a discrete transfor-
mation for predicting dense features after an effective height
compression module for latent feature representation. To im-
prove the receptive field and learn the distortion distribution
beforehand, Zheng et al. [55] combine the complementary
horizontal and vertical representation in the same line of
research. In an encoder-decoder framework, Shen et al. [39]
introduced a brand-new panoramic transformer block to take
the place of the convolutional block. Modern panoramic
distortion-aware and deformable modules [13] have been
added to the state-of-the-art UNet [37] and SegFormer [47]
segmentation architectures to improve their performance in
the spherical domain [19, 20, 34, 49, 50]. Making use of
cross-modal interactions and panoramic perception abilities,
SFSS-MMSI [20] jointly used the information from RGB-
Depth-Normals modalities of equirectangular images and
achieved state-of-the-art mIoU performance.

2.2. Point Cloud Semantic Segmentation
There are three main approaches for learning from 3D point
clouds: projection-based, voxel-based, and point-based net-
works. Projection-based networks project point clouds onto
regular grids and then process them with 2D convolutional
neural networks (CNNs). This approach is intuitive but does
not efficiently utilise the sparsity of point clouds and leads to
loss in geometric information [7, 27]. Voxel-based networks
convert point clouds into 3D voxels and then apply 3D con-
volutions. Those networks are computationally expensive
and result in the loss of geometric detail due to quantisa-
tion [9, 18]. Point-based networks process point clouds
directly as sets using permutation-invariant operators. They
are more flexible and can better capture the geometric re-
lationships between points. Some recent work has focused
on using self-attention mechanisms in point-based networks,
which has shown promise for large-scale 3D scene under-
standing [35, 36, 44]. Point Transformer by Zhao et al. [53]
builds upon the foundations of point-based networks and self-
attention mechanisms, utilising local self-attention [43], vec-
tor attention [52], and appropriate positional encoding. Point
Transformer ushered the beginning of using transformers for
semantic segmentation of point clouds as recent works have
improved upon it to achieve state-of-the-art results [45, 46].

2.3. Room Layout Estimation
Room layout estimation is an important task in the process
of 3D reconstruction and augmented reality (AR) applica-
tions aiming to estimate the boundaries of ceiling, floor, and
walls [28]. As research interest in this task has grown, var-
ious datasets have emerged. Many existing public datasets
(e.g. PanoContext [51] and LayoutNet [56]) assume a simple
box layout for a single room. Matterport layout [57] extends
to room layouts according to the Manhattan world assump-
tion. Structured3D [54] provides more accurate room layouts

based on a designed house model. Our dataset is based on
images taken in the real world and annotated according to the
Manhattan assumption, but unlike other datasets, it includes
extensive public spaces such as offices and hospitals, which
have a more complex structure than a typical room layout.
This unique characteristic can be helpful in improving the
robustness of layout models in real-world applications.

3. Omnidirectional ToF RGB-D Device
3.1. Hardware Configuration
The used 3D spatial sensing device is depicted in Figure 2.
The device’s upper portion includes two built-in fisheye RI-
COH THETA [30] cameras with more than 180→ FoV each
for capturing omnidirectional RGB images. Furthermore,
ToF LiDAR emitters and detectors are installed for the collec-
tion of 360→ depth information. In more detail, two fisheye
lenses that provide RGB information and four fisheye lenses
that gather ToF depth information are used to create the om-
nidirectional image. The circuit board for processing the
acquired data, the battery for the processing system, and the
ToF laser emitter are all located in the lower portion of the
device. The depth information is aligned with the RGB im-
ages using calibration parameters provided from the device
assembly.

3.2. Device Specifications
In Table 1 the device specifications are displayed and con-
trasted with those of currently available, widely-used 3D
capturing devices. In contrast to these conventional scan-
ners, we are able to capture the entire space with a brief
light exposure by using ToF and uniform illumination. The
acquisition speed is nearly 12→ faster than the Matterport
Pro2 [23] and the depth resolution is larger than any other
scanners in the table. High frame rates can be reached with
the portable scanners, however, the point measurement rate
is constrained by the FoV.

4. Dataset Details
In this section, we describe the steps followed to acquire
our ToF-360 dataset from raw data collection in real-world
buildings as well as the manual annotation of semantic labels,
and room layout annotation process.

4.1. RGB-D Panoramas
ToF-360 contains 5792→ 2896 (width→height) color, depth
and XYZ (coordinate) equirectangular images covering ap-
proximately 360 → 300 degrees (horizontal→vertical, the
entire sphere except the bottom area). 207 total panoramas
were collected from real buildings that contain 4 scenes from
an office building, car parking area, and an empty hospital.
The scenes are broken down as: 40 and 44 panoramas from



Table 1. Comparison of 3D scene datasets. ToF-360 provides the widest field of view, the highest density 360→ RGB-D images, and has the
highest scanning speed of any panoramic depth sensor. Depth resolution and field-of-view in this table are indicated as width (horizontal) !
height (vertical). The first section presents captured dataset while the second section presents synthetic datasets.

Datasets Size Classes Sensing type Depth resolution Field-of-View Ideal Range FPS

SUN RGB-D [40] 800 Sequential

628→ 468 87° → 58° 0.6-3.5 m 90
10,335 images 320→ 240 57° → 43° 0.8-4 m 30

47 scenes 512→ 424 70° → 60° 0.5-4.5 m 30
640→ 480 58° → 45° 0.8-3.5 m 30

Stanford-2D-3D-S [3] 1413 images 13 Panorama 4096→ 2048 360° → 300° 0.5-5 m 0.0411 scenes

ScanNet [12] 1,513 scans 40 Sequential 640→ 480 58° → 45° 0.4-3.5 m 60707 venues

Matterport3D [6] 2,056 scans 40 Panorama 2048→ 1024 360° → 300° 0.5-5 m 0.042,056 rooms

ARKitScenes [14] 5048 scans 17 Sequential 256→ 192 122° → 122° 0.5-5 m 60
1661 scenes Panorama 1920→ 1440 360° → 300° 0.6-70 m 0.007

SUNCG [41] 404,058 rooms 84 Sequential 640→ 480 N/A N/A N/A45,622 scenes

Structured3D [54] 196,515 frames 40 Panorama 512→ 1024 N/A N/A N/A3,500 scenes 720→ 1280

ToF-360 (Ours) 207 images 39 Panorama 5792→ 2896 360° → 300° 0.5-5 m 0.54 scenes

two office floors, 43 panoramas from the parking lot, and 52
panoramas from the empty hospital floor. Various examples
of the different scenes are presented in the supplementary
material.

4.2. Raw Data Acquisition Process

We used our device described in Section 3. The data ac-
quisition process uses a tripod-mounted device in a fixed
orientation relative to the scene at approximately the height
of a human observer. All the personally identifiable infor-
mation such as the nameplate in the office area and number
plates in the parking area was blurred manually by the anno-
tators after data recordings. Figure 2 depicts the workflow
for creating panoramic images from the RGB-D photos that
the device has collected. Four fisheye depth images are cre-
ated from the ToF raw data from the LiDAR component.
Since the RGB spatial resolution is higher than that of the
LiDAR, upsampling processing based on nearest neighbor
search [4] and bilinear interpolation is used to fill in the
missing depth region. The RGB data and the collection of
distance measurements are aligned by the intrinsic and ex-
trinsic parameters that were calculated by a checkerboard
calibration using OpenCV [24]. The conversion of fisheye
images to equivalent ERP representation is inspired by [15].
Since the device’s baseline is around 6 cm between the RGB
lenses, naively stitching the border between each lens results
in occlusion along the device’s center line. To avoid this,
each RGB value captured by the first lens was converted
into 3D coordinates with a corresponding depth value and

projected towards the second lens’ focal, and vice versa. As
a result, our method creates a 360→ panoramic RGB–Depth
image of the scene with minimal artifacts.

Figure 2. Our data acquisition pipeline. The quad-fisheye depth im-
ages obtained from the device are converted to a dual-fisheye depth
image aligned with the dual-fisheye RGB image by calibration.
RGB-D dual-fisheye images are converted to an equirectangular
image.

4.3. Semantic Annotation
For the semantic annotation of the data, (see Section 4.1),
we used the COCO Annotator [5] for labelling the RGB data.
We follow ontology-based annotation guidelines developed
for both RGB-D and point cloud data [26]. These guidelines
take into consideration the differences between both image
and point cloud modalities. Due to the unpredictable ways
a depth sensor can interact with glass, both the glass sur-
faces (e.g. windows, doors) and the objects behind them are
annotated.



4.4. Layout Annotation

We used PanoAnnotator [48] as an annotation tool for the
room layout. All inputs are preprocessed by function sets in
PanoAnnotator to generate Manhattan-aligned panoramas.
This deformation is based on a line-detection algorithm and
panorama rotation following [51] and its rotation matrix to
ensure compatibility with the original image. Each layout el-
ement (ceiling, wall, floor, openings) is manually annotated
and stored in json file format which contains the position of
layout corner points, and the plane equation of each layout
element in the 3D world. Elements occluded from the origi-
nal acquisition point have also been annotated by following
the actual building geometry as far as possible.

5. Data Quality
In this section, we compare the quality among our ToF-
360 and other datasets for the four modalities described
in Section 4 - RGB, depth, instances, and room layout.

5.1. RGB images

The main datasets providing panoramic images use the Mat-
terport device [3, 6]. It uses three cameras rotated in six
directions to obtain a 360→ panorama, with stitching be-
tween images occurring in six horizontal and three vertical
locations. In contrast, our device employs two hemispheric
cameras, so stitching between images occurs in only two
places in the horizontal direction. The quality of the stitch-
ing lines is influenced by the calibration accuracy between
the camera lenses and the interpolation algorithm. We use
depth information for the 3D projection of the RGB of each
lens and then convert it to a 2D representation by binocular
integration, which results in less distortion in the stitching
lines and data with good pixel correspondence between RGB
and depth. For qualitative differences, see Figure 1 and the
supplementary material.

5.2. Depth images

A 360→ RGB-D dataset similar to our conditions is Stanford-
2D-3D-S [3]. Their depth images are generated by rendering
the reconstructed 3D meshes from the camera viewpoints.
In contrast, our ToF-360 provides depth images without any
back projection from reconstructed 3D meshes. More specif-
ically, instead of constructing the panoramic depth from
multi-viewpoint measurements, a depth image is obtained
independently for each recording point. This is advanta-
geous for our dataset in terms of recording time, expertise
required by the person recording, and time and specialized
software needed for post-processing the acquired data. Ad-
ditionally, this can make the removal of dynamic objects in
post-processing much simpler and reduce the loss of infor-
mation.

5.3. Instances
Our instance annotation is done manually by annotators di-
rectly on the images. The instances we provide are annotated
on every pixel. In contrast, the masks in the Stanford-2D-
3D-S [3] dataset are generated by projecting the labels from
the 3D meshes onto the 2D images which leads to visible
artifacts as seen in Figure 1.

5.4. Room Layout
Our ToF-360 provides a more complex room geometry rather
than the simple cuboid room layout provided by Stanford-
2D-3D-S [3] and PanoContext [51]. MatterportLayout [57]
assumes the Manhattan hypothesis, which is very similar
to our setup but sometimes contain annotations that do not
reflect the actual room layout. Figure 3 shows a sample of
qualitative results: the MatterportLayout [57] example has
one less annotated plane, which generates unnatural layout
boundaries. We paid close attention to annotations where
the layout boundaries match the real building structure.

6. Evaluation
Our evaluation is primarily meant to demonstrate the chal-
lenges of cross-dataset adaptation of existing scene under-
standing models. Therefore, we evaluate the generaliza-
tion capabilities of state-of-the-art models trained on public
datasets [2, 3, 6, 12, 51, 54] and then tested on our ToF-360
dataset. The evaluation is done on the semantic segmentation
task for both image based, and point cloud based semantic
segmentation as well as for the layout estimation task.

6.1. Task: Semantic Segmentation
The semantic segmentation evaluation of image and point
cloud based methods is presented in Table 2. For the image
based semantic segmentation, we resize the input image to
512→ 1024. We compute evaluation metrics, such as Mean
Region Intersection Over Union (mIoU ), Pixel Accuracy
(aAcc), and Mean Accuracy (mAcc), using the MMSeg-

mentation scripts1. The current state-of-the-art approaches:
HoHoNet [42], PanoFormer [39], and SFSS-MMSI [20]
are used for image based RGB+(D) segmentation experi-
ments. For a detailed description of their implementation
details, please refer to the corresponding works. The mod-
els are trained on the Stanford-2D-3D-S [3] and Struc-
tured3D [54] datasets and are then evaluated on our ToF-360
dataset.

The Stanford-2D-3D-S [3] dataset consists of multi-
modal equirectangular images with 13 object categories and
divided into 6 Areas. We use the fold_1 split for train-
ing and validation as suggested by Armeni et al. [3]. The
Structured3D [54] dataset is a synthetic dataset that offers

1https://mmsegmentation.readthedocs.io/en/0.x/



(a) PanoContext (b) MatterportLayout (c) ToF-360 (Ours)

Figure 3. Examples of annotation failure on (a) PanoContext [51] and (b) MatterportLayout [57]. In contrast, (c) ToF-360 provides correct
room layout annotations. Ground truth boundary is shown as blue line.

40 NYU-Depth-v2 [21] object categories and multi-modal,
equirectangular images with a variety of lighting setups. We
use the train, validation, and test splits as described by Zheng
et al. [54]. The best validation performance checkpoints of
respective models are reported.

As a pre-processing step, the object semantics from
our proposed panoramic dataset (see Section 4.1 and Sec-
tion 4.3) are respectively remapped to 13 object categories
for Stanford-2D-3D-S [3] and 40 NYU-Depth-v2 [21] object
categories for Structured3D [54] dataset experiments. The
mapping is provided with the dataset for the reproducibility
of the results.

In addition to the image based semantic segmentation, we
evaluated on our dataset a state-of-the-art point cloud seg-
mentation model [46] trained on existing public datasets.
The single-scan inputs are first voxel downsampled to
1 point/cm then evaluated using the Point Transformer V3
(PTv3) model [46]. The model was trained on a joint dataset
comprising of ScanNet [12], Structured3D [54], and S3DIS
[2] datasets and validated on the S3DIS validation set. The
training setup is described in detail by Wu et al. [46] and
replicated for this evaluation. The model achieving the best
validation result was chosen for the evaluation of the ToF-
360 point clouds. The S3DIS [2] dataset is the point cloud
version of Stanford-2D-3D-S [3] and follows the same struc-
ture and number of classes.

Similar to the image based semantic segmentation, we
also compute the evaluation using the mIoU , mAcc and
aAcc metrics however over the points instead of pixels. We
used the coordinates, color, and normals as input modalities
and used the same category mapping from our proposed
dataset categories to respective 13 object categories as done
in the image based evaluation.

We carry out comprehensive tests on the proposed RGB-
Depth-Normals panoramic ToF dataset from real-world set-
ting. Figure 4 and Figure 5 present the qualitative results of
the evaluation of the image based and point cloud based seg-
mentation evaluations on the Stanford-2D-3D-S and S3DIS
datasets respectively, and Table 2 presents the quantitative
results for both image based and point cloud based segmen-

Table 2. Evaluation of semantic segmentation performance for
the proposed ToF-360 dataset trained on Stanford-2D-3D-S [3] for
image based approaches and S3DIS [2] for the point cloud based
approach.

Method Modalities
Results

mIoU(%)mAcc(%) aAcc(%)

HoHoNet [42]
RGB

20.76 41.65 66.90

PanoFormer [39] 28.07 51.44 77.75

SFSS-MMSI [20] 29.56 51.53 76.65

HoHoNet [42]
RGB-D

27.46 48.66 76.11

PanoFormer [39] 21.52 39.90 65.30

SFSS-MMSI [20] 24.92 45.88 73.11

SFSS-MMSI [20] RGB-D-N 23.17 46.26 70.39

PTv3 [46] RGB-XYZ-N 18.57 25.08 67.89

tation approaches.
The results in Table 2 are better for the image based ap-

proaches compared to the point based approach. This can be
attributed to the higher similarity in the data representation
in the RGB domain (larger domain gap for point clouds).
While both the train and test data are equirectangular RGB-
D images for the image-based approaches, the point cloud
approach was trained on more complete point clouds unlike
the single shot point clouds generated by our sensor due to
single view occlusions. This means that the image based
methods are more capable of generalizing when applied to
ToF-360.

Another challenge to the generalization of the models is
caused by the differences in recorded areas as well as labeled
classes. Unlike the Stanford-2D-3D-S and S3DIS datasets
which are predominantly recorded in office areas, our dataset
includes scenes from new and challenging settings (parking
lot and hospital).

Figure 5 qualitatively demonstrates that good results are
obtained on structural objects such as walls, floor, and ceil-
ing while the other classes are mostly detected as clutter.



Figure 4. Visualization of RGB-Depth-Normals semantic segmentation results for the proposed ToF-360 dataset. In the above visualization,
SFSS-MMSI [20] is trained with RGB-Depth + Normals while HoHoNet [42] and PanoFormer [39] with RGB-Depth panoramic equirectan-
gular images from Stanford-2D-3D-S [3].

(top-view)
Office_Room1

(top-view)
Office_Room2

(top-view)
Hospital

(side-view)
Parking_Lot

Figure 5. Visualization of the results of the point cloud based semantic segmentation using Point Transformer V3 by Wu et al. [46], the colors
correspond to the same classes as in Figure 4. The ceiling has been removed for the indoor scenes (Office_Room1, Office_Room2,
and Hospital) due to visualization limitations. The outdoor scene is showing the side of the building (cropped in the center in RGB) for
easier understanding. The location of the sensor during recording is marked with a red star ω.

This further supports the argument that incomplete scans
(single-shot) lead to lower detection accuracy on some ob-
jects such as the furniture and doors. When comparing the
results from Figure 4 and Figure 5 we can see that the image

based approaches generalized better on the furniture classes
and both approaches performed similarly for the structural
elements.
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Figure 6. Qualitative comparison of layout estimation methods on ToF-360 produced using LGT-Net[25]. We show the boundaries of room
layout on panorama. The blue lines are ground truth, and the green lines are prediction.

6.2. Task: Layout Estimation

We present the evaluation of our dataset ToF-360 for the
room layout estimation task in Table 3. The input images
are resized to 512→ 1024, and standard evaluation metrics
including intersection over union of floor shapes (2DIoU )
and 3D room layouts (3DIoU ), root mean squared error
(RMSE) of estimated depth, and the ratio between predic-
tion depth and ground truth depth within threshold of 1.25
(ω1) are calculated following [56]. We used the layout esti-
mation models provided by LGTNet [25]. These models are
pre-trained by the authors with public datasets consisting of
Stanford-2D-3D-S [3], PanoContext [51], and Matterport-
Layout [6]. Two images from the hospital scene and all of
the parking lot scene were removed for layout estimation
since they do not adhere to the Manhattan assumption.

We perform tests on our proposed panoramic image
dataset recorded in the real world. We show the quantitative
evaluation in Table 3 and qualitative comparisons in Figure 6.
The results on MatterportLayout are better than others. The
scenes provided by ToF-360 sometimes have large open-
ings in the walls, such as windows and doors, as shown in
the Office_Room2 and Hospital results. The quan-
titative results of our proposed ToF-360 are supported by
the fact that the Stanford-2D-3D-S and PanoContext only
offer cuboid room layouts, whereas the MatterportLayout
provides a Manhattan-aligned structure.

Table 3. Quantitative results of layout estimation methods on
ToF-360 produced using LGT-Net [25]. IoU values are in %,
for RMSE lower values are better.

Trained dataset 2DIoU↑ 3DIoU↑ RMSE↓ ε↑1

Stanford-2D-3D-S [3] 59.66 57.33 0.742 0.831

PanoContext [51] 60.20 57.80 0.770 0.849

MatterportLayout [57] 62.71 62.88 0.730 0.900

7. Conclusion
We introduced ToF-360, a unique RGB-D dataset created us-
ing an omnidirectional one-shot ToF device, the only scanner
that can obtain 360-degree distance information in one sec-
ond. We provide instance-level semantic annotations labeled
with building-defining object categories and image based
layout boundaries. We proposed a comprehensive evaluation
for semantic segmentation using different modalities such as
panoramic image based and point cloud based approaches.
This defines a new benchmark for single-shot reconstruction
without the need for global alignment. As our dataset is con-
fined to a limited number of real-world scenes, it serves as a
challenge to existing works and shows the difficulties in gen-
eralization of models training on existing datasets especially
with regards to non-uniformity of annotation and scene bias.
Future work is planned to extend and generalize the dataset
through continuous data acquisition and additional annota-
tions as well as investigate methods to reduce the domain
gap between 3D semantic segmentation datasets.
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