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Abstract

We present SpineTrack, the first comprehensive dataset for
2D spine pose estimation in unconstrained settings, ad-
dressing a crucial need in sports analytics, healthcare,
and realistic animation. Existing pose datasets often sim-
plify the spine to a single rigid segment, overlooking the
nuanced articulation required for accurate motion analy-
sis. In contrast, SpineTrack annotates nine detailed spinal
keypoints across two complementary subsets: a synthetic
set comprising 25k annotations created using Unreal En-
gine with biomechanical alignment through OpenSim, and
a real-world set comprising over 33k annotations curated
via an active learning pipeline that iteratively refines au-
tomated annotations with human feedback. This integrated
approach ensures anatomically consistent labels at scale,
even for challenging, in-the-wild images. We further intro-
duce SpinePose, extending state-of-the-art body pose esti-
mators using knowledge distillation and an anatomical reg-
ularization strategy to jointly predict body and spine key-
points. Our experiments in both general and sports-specific
contexts validate the effectiveness of SpineTrack for precise
spine pose estimation, establishing a robust foundation for
future research in advanced biomechanical analysis and 3D
spine reconstruction in the wild.

1. Introduction
Human pose estimation (HPE) has advanced remarkably
over the past decade, driven by deep learning and large-

scale annotated datasets. Yet, most existing approaches
and benchmarks—such as COCO [19], MPII [2], and
Halpe [8]—primarily focus on limb and facial keypoints. In
these datasets, the spine is typically represented by a single
rigid segment or a minimal set of markers (e.g., neck and
pelvis), which fails to capture the curvature and dynamic
articulation of the human spinal column. This simplified
representation limits the utility of pose estimation systems
in applications where detailed spine analysis is critical, such
as sports performance assessment, injury prevention, reha-
bilitation, ergonomic evaluation, and realistic avatars.

Accurate tracking of spinal motion is especially crucial
in sports science, where subtle variations in alignment can
reveal an athlete’s posture, balance, and injury risks. Activi-
ties such as weightlifting, diving, hockey, or archery all rely
on precise spinal control, yet vertebral landmarks are not
directly observable and must be inferred from surrounding
anatomical cues, making annotation subjective and labor-
intensive. A major obstacle to advancing spine pose es-
timation in the wild is therefore the lack of labeled data
with fine-grained vertebral markers that can generalize be-
yond controlled settings. Although Halpe and MPII pro-
vide spine endpoints, and 3D datasets like Human3.6M [12]
and AMASS [22] include some spine keypoints, none offer
detailed annotations for unconstrained environments. This
stems from the high cost of labeling large sets of real-world
images, compounded by the difficulty of consistently iden-
tifying internal joints across diverse poses and anatomies.

To address these limitations, we present SpineTrack, the
first dataset specifically designed for detailed 2D spine pose



estimation. SpineTrack introduces a fine-grained represen-
tation of the spinal column by annotating nine vertebral key-
points, capturing the curvature and dynamic behavior of the
spine across diverse motion states. Our dataset comprises a
real-world set with high-fidelity spine annotations obtained
through an active learning-based annotation process, and a
synthetic set generated via an Unreal Engine-based pipeline
with accurate ground-truth labels under controlled condi-
tions. The real-world images reflect the variability of nat-
ural environments, including occlusions, lighting changes,
and anatomical diversity, while the synthetic images boot-
strap the annotation process and provide a rich source of
training data for rare or challenging poses.

Complementing our dataset, we propose the SpinePose
framework that builds upon traditional body pose mod-
els. SpinePose incorporates precise spine keypoints into the
prediction head of a pre-trained body pose network using
knowledge distillation. A targeted regularization approach
maintains a balance between assimilating new spine anno-
tations and retaining the existing body keypoint information
in varied settings. A major feature of our framework is the
integration of anatomical constraints into the optimization
process using novel body structure and spine smoothing loss
functions. Our contributions are summarized as follows:

• We introduce SpineTrack, a novel dataset for 2D spine
pose estimation, comprising 50,962 images and 58,766
annotated humans across both real-world and synthetic
images with body, feet, and spine annotations.

• We propose SpinePose, a distillation-based framework
with specialized loss functions that seamlessly integrates
detailed spine keypoints into existing body pose estima-
tion architectures, achieving high accuracy across both
standard benchmarks and sports-specific scenarios.

• We use a biomechanical validation framework that lever-
ages OpenSim to assess and ensure the anatomical plau-
sibility of spine annotations.

• Extensive experiments validate our approach, demon-
strating significant advances in spine tracking without
compromising overall pose estimation performance.

2. Related Work

Accurate tracking of human spine motion is a longstanding
challenge in biomechanics, sports science, and medical ap-
plications. Traditional motion capture systems rely on opti-
cal markers or inertial measurement units (IMUs), but these
methods have limitations in real-world deployment. Recent
advancements in markerless vision-based deep learning ap-
proaches have enabled full-body pose tracking, yet exist-
ing models lack explicit spinal articulation. This section re-
views relevant work in spine pose estimation and highlights
the gaps our work aims to bridge.

Traditional Spine Motion Tracking While markerless
spine motion estimation in the wild remains an open
challenge, traditional methods including specialized hard-
ware [4, 14], inertial sensors [10, 24, 30, 34], and reflective
markers [23, 27, 32] have been long used to track spinal
motion in controlled settings. Optical systems (e.g., Vi-
con) remain the gold standard for spine tracking due to their
sub-millimeter accuracy [23]. These systems track reflec-
tive markers placed along the spinous processes and torso.
However, their use is restricted to controlled environments
due to cost, setup complexity, and occlusion issues, particu-
larly during extreme spinal movements [9, 29]. IMU-based
approaches offer a more portable alternative by placing gy-
roscopes and accelerometers along the spine to estimate ori-
entation. Commercial systems achieve reasonable accuracy
for coarse trunk movements but lack fine-grained vertebral
tracking due to sensor drift and soft-tissue artifacts [30].
More specialized multi-IMU configurations [10, 34] im-
prove fidelity but remain cumbersome for daily use.

Markerless Human Pose and Spine Tracking Deep
learning has driven significant advances in markerless pose
estimation from RGB and RGB-D inputs. Methods like
OpenPose [5], AlphaPose [8], and RTMPose [13] achieve
robust 2D pose estimation. This also includes a neck and
hip center point, which can represent the spine as a sin-
gle, rigid segment. To our knowledge, no existing models
directly regress 2D keypoints on the spine from input im-
ages. Some 3D pose estimation works can directly regress
the spine midpoint, but the fidelity remains low [12]. Other
recent 3D works fit parametric models like SMPL [20] to
reconstruct full-body meshes, including the spinal regions.
However, they still treat the spine as a low-flexibility seg-
ment. Multi-camera setups, such as OpenCap [33] and
Pose2Sim [25], improve tracking accuracy by fusing multi-
ple views with biomechanical models [31], enabling near-
lab precision for spino-pelvic motion. Inverse kinematics
(IK) driven estimates of spinal coordinates can also be com-
puted from the biomechanical model [25]. However, these
require controlled capture environments, limiting general-
ization. Some commercial depth cameras, like Microsoft
Kinect [15] and StereoLabs ZED 2i, can predict basic spine
landmarks (e.g., base, mid). However, they provide a coarse
representation and have errors in curvature estimation [6].

3. Methodology
We present the SpineTrack dataset in Sec. 3.1 that captures
detailed anatomical information on the human spine in un-
confined settings. The annotations are created using an ac-
tive learning pipeline [1] where human annotators and a
neural network support each other. We first explain the syn-
thetic set, called SpineTrack-Unreal, which is used to ini-
tialize the automated annotator in our pipeline. Generation



Figure 1. SpineTrack-Unreal Generation. We show the data generation pipeline with Unreal Engine [7] which we use to obtain synthetic
images and ground-truth locations of keypoints roughly corresponding to SpineTrack skeleton. Keypoint positions are refined by scaling
the biomechanical model to each actor and using an inverse kinematics solver to recompute marker positions. Images are augmented with
diverse scenes from OpenImagesV7 dataset [18] using SAM [17] to simulate more realistic backgrounds.

process is illustrated in Fig. 1. The following subsection
then describes SpineTrack-Real, forming the primary com-
ponent of our dataset. This section also describes our proto-
col for validating annotation correctness. Collectively, both
sets form a robust foundation for training our SpinePose
models in Sec. 3.2, which effectively integrate spine key-
points into their predictions while maintaining performance
on benchmark in-the-wild datasets.

3.1. SpineTrack Dataset
Skeleton Configuration In addition to standard body
keypoints [19], we label nine vertebral landmarks for re-
fined modeling of upper body motion. The spinal column
is structured into five regions, as shown in Fig. 2, of which
three majorly contribute to upper body movements: the cer-
vical, thoracic, and lumbar spines. In our design, three key-
points are assigned to the cervical spine to capture neck dy-
namics; five keypoints are placed along the thoracolumbar
region to represent the trunk; and one keypoint marks the
sacral region as the root joint. In addition, we also annotate
the left and right sternoclavicular joints (not illustrated) to
account for independent shoulder movement. Six keypoints
on the feet are also provided, with a total of 35 annotated
keypoints. This configuration is motivated by the need for
accurate biomechanical modeling with downstream appli-
cations in healthcare and sports analysis in mind.

3.1.1. SpineTrack-Unreal
The SpineTrack-Unreal dataset was generated using Un-
real Engine 5 with high-fidelity avatars. Sixteen diverse
3D human models were animated with ten distinct motion
sequences—including walking, running, jumping, stretch-
ing, and twisting—and captured from five calibrated cam-
era views under controlled lighting conditions. The UE5
skeleton system provided precise 3D annotations projected
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Figure 2. Spine Keypoints. We annotate nine keypoints along
the spinal column to capture upper body movement without ex-
cessive overhead. Three are placed on the cervical spine (C1, C4,
C7), two on the thoracic spine (T3, T8), three on the lumbar spine
(L1, L3, L5), and one at the sacrum near the pelvis. This distri-
bution balances anatomical realism and annotation cost, reflecting
the distinct mobility of each spinal region.

into 2D image space. To further enhance realism and di-
versity, the rendered images were blended with 1,000 real-
world indoor and outdoor backgrounds obtained via the
Segment Anything Model (SAM) [17] from the OpenIm-
agesV7 dataset [18]. This synthesis produced approxi-
mately 25k annotated frames covering various human mo-
tions and environmental conditions.
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Figure 3. SpineTrack-Real Creation. On the left, we show an OpenSim [31] model adapted from [3, 25, 28] with all 35 anatomical
markers labeled in our dataset, including 17 COCO keypoints [19], head top, feet (six), spine (nine), and two sternoclavicular joints.
On the right, our iterative pipeline begins with real-world image selection and initial pseudo-labels generated by a pretrained model. A
preliminary spine-aware model is trained on these labels plus SpineTrack-Unreal. Annotations are then refined in batches, where human
annotators correct model predictions, and the improved labels are fed back into the training data to fine-tune the model. This process
repeats for all batches, improving model accuracy and reducing data noise at each step.

3.1.2. SpineTrack-Real

While SpineTrack-Unreal provides precise synthetic an-
notations, it lacks the occlusions, lighting variations, and
scene diversity found in real-world imagery. To bridge
this gap, we construct SpineTrack-Real using an iterative
pipeline (Fig. 3). We select images from multiple sources
(e.g., COCO, YogaPose [26]). Images are selected based
on several criteria designed with annotation ease in mind
(e.g., large people). Where ground-truth annotations are not
available (e.g., feet, yoga images), we apply a pretrained
model (RTMPose-L [13]) to detect visible body and feet
joints. Using shoulder and hip joints as drivers, we fit two
smooth curves around the spinal region, forming a spine-
like structure. Assuming constant inter-vertebral distance,
initial spine guesstimates are sampled from these curves at
predefined intervals. This results in over 33k real-world an-
notations and SpineTrack-format initial pseudo-labels.

Active Learning-Driven Annotation Refinement These
preliminary annotations are combined with SpineTrack-
Unreal to train a spine-aware pose model, establishing a
baseline for in-the-wild spinal keypoint detection. Next, we
split the dataset into batches and iteratively refine annota-
tions. For each new batch, the trained model predicts spine
keypoints; human annotators correct low-confidence or er-
roneous predictions, and the updated labels are merged back
into the training set. The model is fine-tuned at each cycle,
progressively improving annotations. This approach scales
efficiently, requiring minimal human effort while capturing
the anatomical complexity of the spine in real-world scenes.
Fig 4 shows samples from our real-world dataset with both
body and detailed spine annotations.

Figure 4. SpineTrack Dataset. Example images illustrating the
range of human activities, occlusions, and body shapes in Spine-
Track, with detailed spine keypoints and standard body landmarks.

Annotation Quality Validation We validate the anatom-
ical correctness of our spine annotations through a biome-
chanical protocol with an OpenSim model fitted to motion
capture sequences. This model is shown in Fig. 3 (left). A
calibrated multi-camera system records a controlled move-
ment sequence, capturing a range of motions. We estimate
keypoints from each camera view using the 2D pose model,
then reconstruct the 3D pose via triangulation. Next, we
scale the OpenSim model to the subject’s dimensions, and
its inverse kinematics solver computes expected joint posi-
tions across all frames. Accuracy is measured by comput-
ing the root-mean-square error (RMSE) between the trian-
gulated keypoints and these positions.

First, we evaluate a state-of-the-art pose model trained
on diverse in-the-wild datasets, observing an RMSE of 2–4
cm for standard body keypoints. We use this range as a ref-
erence when evaluating SpineTrack annotations. A model



trained only on SpineTrack-Real undergoes the same test-
ing, and any keypoints showing an RMSE above 10 cm are
manually refined in the annotation pipeline. We iterate un-
til spine keypoints match or surpass the baseline’s accuracy,
ensuring that SpineTrack annotations achieve a level of re-
liability comparable to conventional human pose datasets.

3.2. SpinePose Architecture
We propose a distillation-based framework [11] where we
assume access to a body pose expert, T , trained on a large-
scale in-the-wild dataset. As illustrated in Fig. 5, we use
this expert for teaching a student model, S, to predict an
extended skeleton that includes both the teacher’s body
keypoints and additional spine keypoints annotated in our
SpineTrack dataset. This is inspired by [16] who propose
a similar paradigm for retaining generalization when fine-
tuning on smaller datasets. Nonetheless, our experiments
in Sec. 4 show that directly training on SpineTrack alone is
sufficient to achieve competitive in-the-wild performance.
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Figure 5. SpinePose Architecture. Our teacher–student approach
for 2D spine pose estimation integrates knowledge from a pre-
trained body expert with newly introduced spine keypoints. The
student model expands the teacher’s head to predict both body and
spine heatmaps, using a combination of distillation losses, a po-
sitional keypoint loss, and our structure-based losses to achieve
anatomically consistent predictions. The final objective balances
accuracy on existing body joints with the newly added vertebral
keypoints, ensuring robust performance in real-world scenarios.

Following [16], we start with a pretrained teacher net-
work and use it to spawn an identical student. The head
architecture is modified by expanding the output layer(s)
to accommodate new spine keypoints. This involves in-
creasing the channels in the layer(s) responsible for creat-
ing the final heatmaps. The student network is initialized
with weights from the pretrained teacher, including the ex-
panded layers where weights are only copied into original
matrix rows. However, instead of filling new rows with ze-
ros like [16], we initialize them from a normal distribution
with statistics computed from the existing weights.

Problem Definition Let Kbody be the set of body key-
points, and let Kspine be the additional keypoints introduced
in SpineTrack. We define the extended skeleton as:

Kstudent = Kbody ∪ Kspine, (1)

where Kbody ∩ Kspine = ∅ by construction. The student
model S predicts heatmaps for all keypoints in Kstudent,
while the teacher model T only outputs heatmaps for Kbody.
Given an input image x, let

ps = S(x) and pt = T (x)

denote the student’s and teacher’s predicted heatmaps, re-
spectively. For each keypoint k ∈ Kbody, the teacher pro-
vides a probability distribution pt,k over pixel locations,
and the student produces ps,k for the same keypoint. For
k ∈ Kspine, only the student outputs a distribution ps,k,
since the teacher lacks these keypoints. The ground-truth
heatmap gk for each keypoint k is obtained from our dataset.

We aim to train S such that it preserves the teacher’s
expertise on Kbody through distillation, and accurately pre-
dicts Kspine for enhanced anatomical detail. This is achieved
through the combination of loss functions introduced in the
following section.

3.2.1. Loss Functions
We train the student model by combining four key ob-
jectives: a positional loss for accurate keypoint localiza-
tion, a distillation loss to preserve the teacher’s knowledge,
a structure loss to ensure anatomical plausibility, and a
smoothness loss to discourage sharp bends in the spine:

Positional (Keypoint) Loss The primary objective in
standard pose estimation pipelines is to minimize the dis-
tance between predicted and ground-truth keypoint loca-
tions. Following [13], we use KL-divergence as the distance
metric. Specifically, for each k ∈ Kstudent, let ps,k and gk be
the predicted and ground-truth distributions. We define

Lpos =
∑

k∈Kstudent

KL
(
ps,k, gk

)
. (2)

This term ensures the student learns to localize the Spine-
Track keypoints from ground-truth annotations.

Distillation Loss To retain the teacher’s performance on
the original body keypoints and a more general pretrain-
ing data distribution, we introduce a distillation loss for the
overlapping set Kbody. For each keypoint k ∈ Kbody, the
teacher provides a distribution pt,k, and the student pro-
duces ps,k. We define

Ldistill =
∑

k∈Kbody

KL
(
ps,k, pt,k

)
. (3)



This aligns the student’s predictions with the teacher’s
on known body joints, helping the student approximate
teacher’s distribution.

Structure Loss While the positional loss ensures
keypoint-level accuracy, we introduce a structure loss,
Lstructure, to enforce anatomical consistency by minimizing
a bone orientation penalty.

Let B be the set of bone segments in the predicted skele-
ton. For each segment, we compute the orientation differ-
ence between the predicted (ϕp

b ) and ground-truth (ϕg
b ) bone

angles relative to the horizontal axis, and sum to get the
structure loss:

∆ϕb = atan2
(
sin(ϕp

b − ϕg
b), cos(ϕ

p
b − ϕg

b)
)
, (4)

Lstructure =
1

π|B|
∑
b∈B

∣∣∆ϕb

∣∣. (5)

Spine Smoothness Loss Finally, we regularize consecu-
tive vertebral keypoints to form a smooth curve. Let {si}ni=1

denote the ordered spine keypoints extracted from the pre-
dicted pose, where each si ∈ R2. We define a differen-
tiable smoothing operation as follows. For i = 2, . . . , n,
the smoothed keypoint s̃i is computed iteratively:

s̃i = s̃i−1 + wi (si − s̃i−1) , (6)

wi = 1− 0.5σ
(
α
(
∥si − s̃i−1∥ − T

))
, (7)

where σ(·) denotes the sigmoid function, T is a distance
threshold, and α controls the sharpness of the transition.
When the distance ∥si − s̃i−1∥ is below T , σ approximates
0 and wi ≈ 1, meaning little or no adjustment is made.
Conversely, when the distance exceeds T , wi approaches
0.5, effectively dampening abrupt changes.

The spine smoothness loss is then defined as the mean
squared error between si and s̃i:

Lspine = MSE
(
{si}, {s̃i}

)
. (8)

This loss encourages the predicted spine to follow a smooth
trajectory, consistent with anatomical constraints.

The overall minimization objective is given by a
weighted sum of all four losses:

Ltotal = αLpos + β Ldistill + γ1 Lstructure + γ2 Lspine, (9)

where α, β, γ1, γ2 are scalar weights. By tuning these
weights, we balance the primary goal of keypoint accuracy,
the retention of teacher knowledge, and anatomically con-
sistent poses. This integrated framework allows the student
to learn an extended skeleton without sacrificing the robust
generalization acquired by the teacher model.

4. Experiments
This section outlines the experiments conducted to evalu-
ate our SpinePose approach on public human pose estima-
tion benchmarks as well as our SpineTrack dataset. We
describe the baselines, metrics, and training protocol used,
then present our results.

Baselines We compare SpinePose against multiple vari-
ants of RTMPose [13] trained on well-known datasets such
as COCO [19], Halpe26 [8], and Body81. The table groups
methods by model size, allowing us to examine how extend-
ing the RTMPose skeleton with our spine keypoints affects
performance across model scales.

Evaluation Metrics We follow standard COCO-style
keypoint evaluation, reporting average precision (AP) and
average recall (AR) across varying overlap thresholds. For
SpineTrack, we subdivide keypoints into body, feet, and
spine subsets, and additionally provide an overall AP/AR
across all 37 keypoints. Ground-truth bounding boxes are
used for SpineTrack, while a pretrained person detector is
used for COCO and Halpe26.

Training Protocol All SpinePose models begin from
Body8-pretrained RTMPose weights. We fine-tune for
max epochs = 10, using AdamW [21] with an initial learn-
ing rate of 4 × 10−3. A short linear warm-up runs for the
first 1000 iterations, after which a cosine annealing sched-
ule decays the learning rate to 5% of its initial value by the
end of training. We set the batch size to fit within GPU
memory, scaling linearly to maintain a consistent effective
batch size of 1024 across experiments. Unless otherwise
noted, all models are trained and evaluated using an input
size of 256× 192 for a fair comparison.

Results Table 1 highlights the effectiveness of our
SpinePose approach compared to existing top-down meth-
ods of similar architecture and scale. Notably, our
models—fine-tuned for just 10 epochs on the newly in-
troduced spine keypoints—maintain strong performance on
large-scale in-the-wild datasets (COCO and Halpe26) while
achieving superior results on SpineTrack. This outcome
confirms that extending the skeleton to include detailed
spinal landmarks does not compromise the original body
joints; rather, it can enhance the model’s overall representa-
tion of human pose.

Qualitative Discussion Figure 6 shows spine predictions
across a diverse range of athletic and fitness scenarios, rein-

1Body8 is an internal merge from [13] which includes COCO, MPII,
CrowdPose, Halpe, PoseTrack18, JHMDB, AIC, and OCHuman datasets



Table 1. Performance on Benchmark Datasets. We compare our top-down SpinePose approach (gray), which uses a coordinate classi-
fication head introduced in [13], with all existing methods belonging to the same architectural family. Primary evaluations on our novel
SpineTrack dataset show our model outperforming baselines in all cases, while results on large-scale in-the-wild datasets (COCO [19] and
Halpe26 [8]) demonstrate the effectiveness of our framework in retaining the teacher’s performance. In particular, unlike other techniques
trained over several hundred epochs using combinations of multiple datasets, our approach involves fine-tuning a Body8-pretrained model
for just 10 epochs. The methods are grouped according to model size. Bold and underlined values denote the best and second-best perfor-
mance within each group, respectively. All results provided use the flip test. For the COCO and Halpe26 datasets, a detector with 56.4 AP
is used, while GT bounding boxes are used for SpineTrack. Models marked with an asterisk (*) have an input size of 384x288, whereas all
other models use an input size of 256x192.

COCO Halpe26 Body Feet Spine Overall

Method Train Data Kpts AP AR AP AR AP AR AP AR AP AR AP AR Params (M) FLOPs (G)

SimCC-MBV2 COCO 17 62.0 67.8 33.2 43.9 72.1 75.6 0.0 0.0 0.0 0.0 0.0 0.1 2.29 0.31
RTMPose-t Body8 26 65.9 71.3 68.0 73.2 76.9 80.0 74.1 79.7 0.0 0.0 15.8 17.9 3.51 0.37
RTMPose-s Body8 26 69.7 74.7 72.0 76.7 80.9 83.6 78.9 83.5 0.0 0.0 17.2 19.4 5.70 0.70
SpinePose-s SpineTrack 37 68.2 73.1 70.6 75.2 79.1 82.1 77.5 82.9 89.6 90.7 84.2 86.2 5.98 0.72

SimCC-ViPNAS COCO 17 69.5 75.5 36.9 49.7 79.6 83.0 0.0 0.0 0.0 0.0 0.0 0.2 8.65 0.80
RTMPose-m Body8 26 75.1 80.0 76.7 81.3 85.5 87.9 84.1 88.2 0.0 0.0 19.4 21.4 13.93 1.95
SpinePose-m SpineTrack 37 73.0 77.5 75.0 79.2 84.0 86.4 83.5 87.4 91.4 92.5 88.0 89.5 14.34 1.98

RTMPose-l Body8 26 76.9 81.5 78.4 82.9 86.8 89.2 86.9 90.0 0.0 0.0 20.0 22.0 28.11 4.19
RTMW-m Cocktail14 133 73.8 78.7 63.8 68.5 84.3 86.7 83.0 87.2 0.0 0.0 6.2 7.6 32.26 4.31
SimCC-ResNet50 COCO 17 72.1 78.2 38.7 51.6 81.8 85.2 0.0 0.0 0.0 0.0 0.0 0.2 36.75 5.50
SpinePose-l SpineTrack 37 75.2 79.5 77.0 81.1 85.4 87.7 85.5 89.2 91.0 92.2 88.4 90.0 28.66 4.22

SimCC-ResNet50* COCO 17 73.4 79.0 39.8 52.4 83.2 86.2 0.0 0.0 0.0 0.0 0.0 0.3 43.29 12.42
RTMPose-x* Body8 26 78.8 83.4 80.0 84.4 88.6 90.6 88.4 91.4 0.0 0.0 21.0 22.9 50.00 17.29
RTMW-l* Cocktail14 133 75.6 80.4 65.4 70.1 86.0 88.3 85.6 89.2 0.0 0.0 6.5 8.1 57.20 7.91
RTMW-l* Cocktail14 133 77.2 82.3 66.6 71.8 87.3 89.9 88.3 91.3 0.0 0.0 6.9 8.6 57.35 17.69
SpinePose-x* SpineTrack 37 75.9 80.1 77.6 81.8 86.3 88.5 86.3 89.7 89.3 91.0 88.3 89.9 50.69 17.37

forcing the quantitative findings discussed later in the ab-
lation study. The left panel illustrates two hockey play-
ers engaged in a fast-paced tackle, where our model effec-
tively tracks the torsos despite heavy occlusions and non-
traditional poses. In the central images, the spine alignment
of a squatting athlete remains stable throughout the motion,
helping to reveal subtle posture deviations that can be cru-
cial for injury prevention and performance optimization. On
the right, the model accurately locates the spine curvature
during a mid-air diving sequence, capturing pronounced
trunk flexion. The group archery scene similarly demon-
strates consistent trunk keypoint placement, even with high
crowd density and overlapping limbs. These results empha-
size the value of including spine points for analyzing sports
movements that rely heavily on core stability and posture.
By explicitly modeling the spinal column, our approach de-
tects key torsional and flexion angles integral to sports sci-
ence, rehabilitation, and coaching use cases. Beyond sports,
this broader skeletal representation also opens doors for fu-
ture research in clinical assessments where spine alignment
is a critical indicator of musculoskeletal health. This is a
significant advancement over current state-of-the-art meth-
ods that represent the spine with a straight line, and can be
used as a stepping stone towards clinical-grade spine pose
estimation in uncontrolled settings.

Ablations We conduct an ablation study to evaluate the
impact of each loss component in our framework using the
SpinePose-l model. The results are shown in Table 2.

Table 2. Ablations. We study the impact of our distillation-based
training and specialized loss components using SpinePose-l, show-
ing how each contributes to the performance of our system. All
models use a Body8-pretrained teacher and train the student for
10 epochs, with β = 2.5, γ1 = 0.1 and γ2 = 0.5 when Ldistill,
Lstructure, and Lspine are enabled (✓), respectively, and set to zero
when disabled. α = 5 is fixed for the keypoint position loss.

Ldistill Lstructure Lspine COCO
AP

Halpe26
AP

SpineTrack
AP

69.6 72.2 87.0
✓ 70.8 73.2 87.3
✓ ✓ 74.7 76.6 88.7
✓ ✓ 71.2 73.4 87.7
✓ ✓ ✓ 75.2 77.0 88.4

Row 1 represents the baseline where the student model
(initialized with teacher weights) is trained on the Spine-
Track dataset without additional supervision from the
teacher. This can be seen as fine-tuning a pretrained model
on SpineTrack with no specialized mechanisms for retain-
ing generalization on pretraining datasets or boosting learn-
ing. As expected, while the model achieves 87.0 AP on the
SpineTrack validation set, its AP on the benchmark in-the-
wild datasets is the lowest among all tested combinations.
This is remedied by adding a distillation loss between the
teacher and the student (row 2), with a 1.0-1.2 point increase
on validation sets of pretraining datasets. This indicates that
the distillation loss prevents the student from diverging too



Figure 6. Qualitative Results. Our SpinePose model accurately localizes extended spine landmarks in a variety of sporting activities,
including ice hockey, weightlifting, and diving, as well as group training scenarios. The new spine keypoints (shown in pink-to-orange
hues) remain stable under heavy occlusions and extreme poses, aligning well with the existing body keypoints (e.g., shoulders, hips, feet).
This enriched anatomical detail fosters better posture analysis in sports and potential applications in healthcare and rehabilitation. We omit
non-spine keypoints for a cleaner visualization. Further qualitative results are provided in the supplementary materials.

far from the teacher’s data distribution, as intended. Inter-
estingly, the added regularization also results in a slight im-
provement (+0.3 points) on the SpineTrack validation set.
In row 3, we add the spine regularization term, providing
the student a strong signal about the anatomy of the new
keypoints in the extended skeleton. This results in a signif-
icant jump (+1.4 points) on the SpineTrack validation set,
indicating the model could better learn the spine anatomy
without overfitting on the training samples. This anatomi-
cal regularization also benefits performance on pretraining
datasets where performance improves even more drastically
(+3.9 and +3.4 respectively). This can be explained by the
rule-based knowledge the model can learn about the newly
added keypoints, which prevents it from interfering with po-
sitional knowledge previously learned for the base skele-
ton. When used independently (row 4), structure loss also
leads to similar behavior as the spine loss, but on a smaller
scale. We observe performance increases in 0.2-0.4 point
range on all three datasets. We achieve highest performance
gains over the baseline by combining the structure loss and
spine smoothness loss into our integrated pipeline with both
distillation and keypoint losses (row 5). These results con-
firm the design choices made in our SpinePose architecture,
clearly demonstrating the impact of each component.

5. Conclusion
We presented SpineTrack, a comprehensive dataset tailored
for 2D spine pose estimation in unconstrained settings,
combining both real-world and synthetic imagery. Our

active learning annotation pipeline—coupled with biome-
chanical validation—ensures anatomically consistent labels
that capture the nuanced curvature of the spinal column.
Through the proposed SpinePose framework, we demon-
strated how detailed vertebral keypoints can be seamlessly
integrated into existing pose estimation pipelines without
sacrificing overall accuracy. This opens the door to more
precise analyses of posture and movement in sports, where
spinal alignment is often critical to performance and injury
prevention.

Beyond validating the feasibility of high-resolution spine
tracking, our work sets a foundation for future research
in biomechanics, healthcare, and sports science. Possi-
ble extensions include incorporating 3D annotations to bet-
ter capture depth-aware spinal motion and exploring semi-
supervised or self-supervised strategies to reduce manual
labeling requirements. The synergy between anatomically
rich datasets like SpineTrack and cutting-edge models of-
fers new opportunities for real-time monitoring and tech-
nique optimization in athletic training. We believe these
advances will further solidify the role of fine-grained spine
analysis in driving innovation across sports performance as-
sessment and beyond.
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Muccini, Michael Ko, Akshay S Chaudhari, Jennifer L
Hicks, and Scott L Delp. Opencap: Human movement dy-
namics from smartphone videos. PLoS computational biol-
ogy, 19(10):e1011462, 2023. 2

[34] Gheorghe-Daniel Voinea, Silviu Butnariu, and Gheorghe
Mogan. Measurement and geometric modelling of human
spine posture for medical rehabilitation purposes using a
wearable monitoring system based on inertial sensors. Sen-
sors, 17(1):3, 2016. 2


