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Abstract
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational 
challenges, with supervised learning emerging as a particularly promising domain for its application. Despite this potential, 
the field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible 
near-term quantum advantage. This paper aims to provide a classical perspective on current quantum algorithms for super-
vised learning, effectively bridging traditional machine learning principles with advancements in quantum machine learning. 
Specifically, this study charts a research trajectory that diverges from the predominant focus of quantum machine learning 
literature, originating from the prerequisites of classical methodologies and elucidating the potential impact of quantum 
approaches. Through this exploration, our objective is to deepen the understanding of the convergence between classical and 
quantum methods, thereby laying the groundwork for future advancements in both domains and fostering the involvement 
of classical practitioners in the field of quantum machine learning.
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1  Introduction

The adoption of machine learning has proliferated in recent 
years, largely due to the capacity for training large neural 
networks, which has significantly impacted various real-
world applications. However, neural networks are compu-
tationally demanding, requiring specialized hardware and 
extensive datasets to learn meaningful representations [1–3]. 
Conversely, traditional machine learning methodologies, 
such as linear regression [4] and Support Vector Machines 
(SVMs) [5, 6] are grounded in assumptions about the data-
generating process and do not typically achieve the state-of-
the-art performance that neural networks can.

With the advent of quantum computing, the question 
arises as to whether quantum approaches can enhance or 
surpass traditional machine learning methodologies. The 
inherent differences between quantum and classical comput-
ing frameworks carry significant implications for their appli-
cation in supervised learning. While classical approaches 

typically rely on nonlinearity assumptions to uncover 
intricate patterns within datasets, with integration varying 
depending on the specific algorithm employed [7, 8], quan-
tum computing leverages the principles of superposition, 
entanglement, and interference, enabling the execution of 
computational tasks that potentially exceed the capabilities 
of classical methods [9]. However, quantum operations are 
governed by unitary and therefore linear transformations, 
which limit the direct translation of classical nonlinear mod-
els into quantum paradigms. Consequently, while quantum 
computing offers unparalleled computational efficiency, 
leveraging these advantages for supervised learning needs a 
reassessment to align with quantum principles.

The continuous advancement of quantum technology has 
motivated researchers to develop innovative strategies for 
applying quantum computing to traditional problems such as 
regression [10, 11], classification [12], and function approxi-
mation [13, 14]. However, Quantum Machine Learning 
(QML) models, still in their embryonic stages, have yet to 
offer a feasible alternative to the entrenched classical meth-
ods. This is partly because current classical methodologies 
are largely driven by extensive experiments, while conduct-
ing such experiments with the existing quantum hardware 
is exceedingly difficult.
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In this paper, we examine the QML literature from a tradi-
tional standpoint, establishing a connection between classi-
cal and quantum supervised learning techniques. The objec-
tive here is to explicate what quantum computing entails for 
the field of machine learning and to identify potential syner-
gies between the two domains. Specifically, we begin by pre-
senting an overview of the problem of supervised learning, 
clarifying the crucial distinction between parametric and 
non-parametric methods for adaptation in quantum settings 
(Sect. 2). Consequently, we outline the QML landscape, 
highlighting how varying assumptions about the capabilities 
of the quantum computer at hand lead to distinct QML strat-
egies and the potential enhancements quantum computing 
may introduce (Sect. 3). In Sect. 4, we delve into the latest 
approaches and trends in QML research, emphasizing their 
potential impact on the field of classical machine learning. 
Following this, we identify several challenges that arise from 
the requirements of contemporary classical methods and dis-
cuss how quantum techniques could address these issues 
(outlined in Sect. 5). The paper concludes with a synthesis 
of our contributions in the concluding section (Sect. 6).

2 � Supervised Learning: A Methodological 
Perspective

Supervised methods [15, 16] aim to learn an unknown target 
function f ∶ X → Y , where X  and Y are respectively the sets 
of features and the target variable. Each learning algorithm 
is associated with a hypothesis class H comprising functions 
h ∶ X → Y . The set X  serves as the domain for H , which 
consists of objects with bounded computational power. For 
instance, H might include all neural networks with specific 
and possibly limited depths and number of nodes, or all 
decision trees of at most a certain depth. It is assumed that 
each function h ∈ H possesses a succinct description, and 
is feasible to evaluate a given h on a given x ∈ X  . The goal 
of the learner1 is to minimize the generalization error of h 
with respect to f:

where D is the probability distribution over X  . Generaliza-
tion error (Eq. (1)) is minimized by the learner over the 
class H . However, since D and f are in general unknown, the 
generalization error is not directly available.

In practice, the learner has access to a limited training 
set S = {(x(i), y(i))}i=1,…,N , where the points x(i) are presumed 
independent and identically distributed, and generated 

(1)err(h, f ,D) = Pr
x∼D

[
h(x) ≠ f (x)

]
,

according to the unknown distribution D on X  . The target 
variable can be computed as f (x(i)) = y(i) and f represents 
the function to learn. A useful metric of error is the training 
error which is computed according to the instances in S:

This is also known as empirical risk [16]. Since the train-
ing set is a snapshot of the D , it makes sense to search for 
solutions that work well on the training data. This learning 
paradigm is called Empirical Risk Minimisation [16] and 
aims to find a predictor h that minimizes ̂err(h, f ,D) , in the 
hope that it will be able to generalize over the unknown D . 
Therefore, in essence, machine learning methods refer to a 
set of approaches for estimating f that can be characterized 
as either parametric or non-parametric [17].

2.1 � Parametric Methods

This class of methods employs a model-based strategy that 
unfolds in two primary phases. Initially, a specific functional 
form for f is posited (Model Specification). A common start-
ing point is to assume a linear relationship with respect to 
x, articulated as:

This presumption of linearity greatly streamlines the model 
estimation process. Rather than deducing a completely 
arbitrary function f(x) in a p-dimensional space, the task is 
reduced to determining the p + 1 coefficients �0, �1,… , �p.

The next phase involves fitting the model with training 
data. For the linear framework described above, the goal is 
to ascertain the values of �0, �1,… , �p . By making specific 
assumptions about f and utilizing the residual sum of squares 
as the loss function, the problem is transformed into a con-
vex optimization task [18, 19]. This allows for the derivation 
of the optimal � coefficients for a given dataset through least 
squares, yielding a closed-form solution. In matrix form, if 
X denotes the N × (p + 1) matrix with each row representing 
an input vector (with a 1 in the first position), and y denotes 
the N-vector of outputs in the training set, the residual sum 
of squares (RSS) can be rewritten as:

This expression represents a quadratic form in the p + 1 
parameters. By differentiating with respect to � and assum-
ing that X has full column rank and hence XTX is positive 
definite, the estimate of � that minimizes the function RSS(�) 
is given by:

(2)̂err(h, f ,D) = Pr
x,y∈S

[
h(x) ≠ f (x)

]
.

(3)f (x) = �0 + �1x1 + �2x2 +⋯ + �pxp.

(4)RSS(�) = (y − X�)T (y − X�).

(5)𝛽 = (XTX)−1XTy.
1  The definition refers to classification, but it can be easily general-
ized to regression.
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Therefore, to fit a linear model following the minimiza-
tion of RSS(�) , it is necessary to solve the linear system 
expressed in Eq. (5). It is important to note that the variables 
X are not necessarily the observed features. For instance, 
the input features can be augmented with basis expansions 
[20] to introduce non-linearity through spline functions [21]. 
Splines divide the sample data into sub-intervals delimited 
by breakpoints. A fixed-degree polynomial is then fitted 
within each segment, resulting in a piecewise polynomial 
regression.

While assuming a parametric form for f simplifies the 
estimation process, selecting a model that deviates signifi-
cantly from the true f can lead to inaccurate estimates. This 
issue can be mitigated by employing more flexible mod-
els capable of accommodating various potential functional 
forms for f. However, employing more complex models 
often entails estimating a greater number of parameters, 
potentially leading to overfitting, where the model exces-
sively conforms to the noise present in the data [19].

2.2 � Non‑parametric Methods

Non-parametric methods eschew explicit assumptions 
regarding the functional form of f, opting instead to seek 
an estimate of f that closely approximates the data points 
while maintaining a balance between smoothness and fidel-
ity. This characteristic endows non-parametric approaches 
with a significant advantage over parametric methods: by 
sidestepping the need to specify a particular functional 
form for f, they possess the capability to accurately capture 
a broader spectrum of potential shapes for f. However, non-
parametric techniques suffer from a notable drawback: due 
to their failure to reduce the task of estimating f to a limited 
number of parameters, they necessitate a substantially larger 
number of observations and imply more complex optimiza-
tion approaches.

Prominent examples of this paradigm are Support Vector 
Machines (SVMs) [6] and Neural Networks [1]. Both can be 
categorized as non-parametric models due to their flexibility 
in capturing complex patterns without relying on predefined 
functional forms. However, there exists a fundamental differ-
ence in their underlying assumptions about f. SVMs, while 
non-parametric, make assumptions about the data’s linear 
separability in a predetermined feature space �(⋅) , leading to 
a convex optimization problem. Mathematically, for a binary 
classification problem, the decision function of SVMs can 
be represented as [6]:

where x represents the input feature vector, �i are the 
Lagrange multipliers associated with the support vectors 

(6)f (x) = sign

(
N∑
i=1

�iy
(i)k(x(i), x) + b

)

corresponding to the target values yi , b is the bias term and 
k(x(i), x) = ⟨�(x(i)),�(x)⟩ is the kernel function that computes 
the similarity, in terms of inner product, between x and x(i) 
in the feature space �(⋅).

SVMs work by implicitly mapping input data into a high-
dimensional feature space where they can be linearly sepa-
rated but without explicitly computing the transformation 
itself. The choice of kernel function determines the shape 
of the decision boundary. According to this interpretation, 
SVMs can be understood and analyzed with respect to the 
reproducing kernel Hilbert space (RKHS) [22] that is a 
mathematical framework characterized by being a vector 
space of functions endowed with an inner product operation.

A specific case of SVMs consists of assuming the least-
squares criterion for the error terms and transforming 
the inequality constraints into equality constraints. This 
approach, known as Least-squares SVMs (LS-SVM) [6], 
leads to an optimization problem that aligns more closely 
with parametric model settings.

Differently from SVMs, neural networks [1] do not 
impose any explicit assumptions on the data’s structure, 
providing more flexibility in modeling complex relation-
ships without necessarily requiring linear separability in 
a predefined feature space. This flexibility comes at the 
cost of increased computational complexity, a non-convex 
optimization landscape, and the need for larger datasets to 
effectively learn the underlying patterns. Over the past dec-
ade, the proliferation of data availability combined with the 
adoption of GPUs has accelerated the development of large 
neural networks. This empirically driven methodology pre-
sents a challenge to the traditional reliance on theoretical 
constructs such as VC dimension [29] or effective dimen-
sion [30] to gauge a model’s generalization capacity [31]. 
This is because classical statistical learning theory does 
not always correspond with the overparameterized regime 
prevalent in deep learning [32], which frequently surpasses 
other methods. These developments prompt questions about 
the suitability of these theoretical frameworks in accurately 
assessing a model’s true effectiveness [31, 33, 34].

3 � Quantum Machine Learning Landscape

The field of Quantum Machine Learning (QML) sits at the 
intersection of machine learning and quantum computation, 
aiming to leverage quantum computational tools for innova-
tive solutions to conventional machine learning problems. 
Within QML, two primary methodologies outline distinct 
approaches based on the nature of the underlying machine 
learning techniques, dictating the computational tasks 
assigned to quantum computers. These approaches share 
similarities with the dichotomy between parametric and non-
parametric classical models discussed in Sect. 2.
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The fault-tolerant approach [35] aims to develop quan-
tum algorithms that can significantly accelerate machine 
learning tasks, with the ambition of achieving demonstrable 
exponential speed-up. These algorithms strive to emulate 
the outcomes of classical processes faster in terms of com-
putational complexity theory. Nevertheless, this approach 
usually requires a fully error-corrected quantum computer 
and the proposed algorithms tend to align with the long-
term prospects of quantum computing rather than immediate 
practical applications. Conversely, the near-term trajectory 
of QML [36, 37] focuses on leveraging capabilities of Noisy 
intermediate-scale quantum computers (NISQ) to develop 
novel models and training algorithms [38, 39]. This para-
digm arises from the need to work with a limited number 
of non-error-corrected qubits and shallow quantum circuits.

A visual description of QML from both machine learn-
ing and quantum computing perspectives is shown in Fig. 1.

3.1 � Fault‑Tolerant Quantum Machine Learning

Fault-tolerant Quantum Machine Learning (FT-QML) 
endeavors to enhance classical computational routines by 
leveraging fault-tolerant quantum devices. In particular, a 
suite of quantum algorithms known as quantum BLAS (Basic 
Linear Algebra Subroutines) [40, 41] aims to facilitate the 
execution of fundamental operations such as matrix multi-
plication, inversion, and singular value decomposition at a 
computational pace surpassing that of classical counterparts. 

Within the FT-QML paradigm, quantum algorithms may 
manifest logarithmic runtime complexity relative to the 
input dimension N and p , contingent upon the complexity 
achieved by the input encoding.

This methodology is particularly advantageous for para-
metric models, wherein the optimization problem simpli-
fies conducting linear algebraic operations to align a given 
model with the data. However, this approach poses several 
challenges, with the primary obstacle being the necessity 
for a fault-tolerant quantum computer equipped with a sub-
stantial number of error-corrected qubits to enable execution 
[42].

Importantly, the primary focus of FT-QML is not to aug-
ment the learning capabilities of models but rather to expe-
dite computational speed in terms of worst-case theoretical 
complexity relative to existing classical algorithms. This 
is achieved by delegating to a quantum computer a single 
heavy computational task that potentially requires a single 
call to a quantum computer (as described in Fig. 2).

3.1.1 � Quantum Linear Systems of Equations

HHL [28] constitutes a quantum algorithm designed to 
approximate the preparation of a quantum superposition 
denoted as �x⟩ , where x denotes the solution to a linear sys-
tem Ax = b , under the assumption of efficient preparation 
of the state �b⟩ and the application of the unitary transfor-
mation e−iAt . Its time complexity scales approximately as 

Fig. 1   Visual representation of the field of Quantum Machine Learn-
ing as the intersection between different paradigms in machine learn-
ing (parametric and non-parametric) and quantum computation capa-
bilities (Fault-tolerant and NISQ). Fault-Tolerant Quantum Machine 
Learning (FT-QML) involves quantum algorithms like Quantum Sup-
port Vector Machines [23] (least-square formulation [24]), Quantum 
Splines [14], and Quantum Linear Regression [25], which require 
error-corrected qubits and the capability to run arbitrarily long 
quantum circuits. Conversely, Hybrid QML incorporates Quantum 
Neural Networks [26] and Quantum Kernels [27], utilizing NISQ 

devices characterized by noisy and shallow quantum circuits. These 
approaches integrate with traditional machine learning methods. In 
particular, parametric models, which assume linearity in the underly-
ing function f and rely on convex optimization procedures, can benefit 
from the HHL algorithm [28] in the FT-QML setting. On the other 
hand, non-parametric models, which do not impose such assump-
tions, can be enhanced by utilizing parametrized quantum circuits 
(PQCs) to introduce a new class of hypotheses in the Hybrid QML 
settings
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O(s2�2 log(N)∕�) , where N represents the system size, � 
denotes the system’s condition number, s indicates its spar-
sity and � signifies the desired error [43]. Mathematically, 
the objective of the HHL algorithm, given an N × N Hermi-
tian matrix A and a unit vector b, is to determine the solution 
vector x that satisfies the equation:

where vectors b and x are translated into the amplitudes of 
the corresponding quantum registers �b⟩ and �x⟩.

Despite its exponential advantage concerning system 
size over state-of-the-art classical alternatives [40, 44–47] 
(a comprehensive description is shown in Table 1), several 
caveats constrain its applicability to practical problems [48]. 
Firstly, it necessitates the matrix A to be sparse due to the 
polynomial dependency on the level of sparsity s. Secondly, 
data loading of the vector b into quantum superposition must 
be achieved efficiently to preserve the computational advan-
tage for inverting A. Thirdly, the output is encoded in a quan-
tum state �x⟩ , where the coefficients’ approximation may be 
prohibitive for large linear systems, as all entries of x are in 
superposition. Fourthly, the condition number and sparsity 
must scale at most sub-linearly with N. Finally, extracting 
all N amplitudes of an N-dimensional quantum state requires 
a number of measurements at least proportional to N. Thus, 
if the goal is a complete reconstruction of a solution x, the 
quantum algorithm cannot possess a significant advantage 

(7)A�x⟩ = �b⟩,

over classical methods [48]. Nevertheless, the exponential 
advantage in the size of the matrix A is something that is not 
achievable classically, paving the way for the development 
of quantum-supported algorithms that meet constraints on 
other parameters and deliver an exponential speedup when 
adopted for optimized parametric models in machine learn-
ing. In the following, we describe two methodologies that 
utilize the HHL algorithm to achieve a computational advan-
tage over classical methods, while also introducing a method 
for incorporating non-linearity using a quantum algorithm.

3.1.2 � Least‑square Support Vector Machines

In the context of least-squares SVMs (LS-SVMs) [24], the 
optimization problem is reformulated into a least squares 
problem, simplifying the solution process but necessitating 
the inversion of the kernel Gram matrix (K). This matrix 
encapsulates pairwise similarities between training samples 
computed by the kernel function. LS-SVMs require solving 
the following linear system of equations:

where � denotes the Lagrange multipliers and w0 represents 
the bias term. Notice that the generation of the matrix K 
implicitly encodes the concept of a kernel, utilizing a spe-
cific feature map that enables the mapping of data from 

(8)K

(
w0

�

)
=

(
0

y

)
,

Fig. 2   Schema for implementing a fault-tolerant quantum machine 
learning approach based on the HHL algorithm. The first step 
involves the model specification, where a preemptive assumption 
is made about the linear relationship between the target variable of 
interest and the basis expansion of the input feature x , such as in the 
case of spline functions. The second step is to formulate a linear sys-
tem of equations of the form A�x⟩ = �b⟩ . It is important to note that in 
this context, the quantum state �x⟩ does not correspond to the input x 
but instead contains information about the classical set of parameters 

� . Once the linear system is established, the task of finding its solu-
tion is assigned to the HHL algorithm, which primarily comprises 
three sub-steps: (i) state preparation, involving the quantum gate eiAt 
and quantum state �b⟩ ; (ii) execution of the HHL quantum circuit; and 
(iii) post-processing of �x⟩ to classically extract the relevant informa-
tion for estimating � , (the swap-test in the case of quantum splines). 
Finally, the parameters obtained through HHL are classically used to 
estimate the function of interest

Table 1   Comparison of algorithms computational costs for solving a linear system of equations

In general, matrix inversion can be accomplished in polynomial time on classical devices [44–46] of size N. However, under several favorable 
assumptions on � (condition number) and s (sparsity), it is possible to reduce computational costs using Conjugate Gradient [40, 47]

Gauss Jordan Strassen Coppersmith Conjugate gradient HHL

O(N3) O(N2.8) O(N2.37) O(sN
√
�∕log(�)) O(s2�2log(N)∕�)
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the input feature space to a higher-dimensional feature 
space where data points become linearly separable (the 
foundational assumption of SVMs), implicitly introducing 
non-linearity.

Thus, training LS-SVMs consists of solving a convex quad-
ratic optimization problem (Eq. (8)) and is typically addressed 
using classical algorithms, with computational complexity 
polynomial in terms of the number of features (p) and train-
ing samples (N), and inversely proportional to the desired 
accuracy ( � ), typically expressed as O(log(�−1)poly(p,N)) 
[49]. The adoption of HHL has been proposed to introduce a 
quantum SVM protocol with time complexity of O(log(pN)) 
for both training and testing, achieved by leveraging principles 
of quantum mechanics [23].

Despite the theoretical advantage, a fully operational quan-
tum SVM applicable to real-world datasets remains unreal-
ized. Nevertheless, the potential for quantum resources to sig-
nificantly reduce the computational burden of training SVMs 
holds promise for expanding their applicability in various 
machine learning tasks, as long as a fault tolerant quantum 
computer for executing the HHL is available.

3.1.3 � Quantum Splines for Non‑linear Approximation

Spline functions [50] are methods for fitting non-linear func-
tions through the basis expansion of input features. Specifi-
cally, spline estimation involves segmenting data into intervals 
defined by knots, with a polynomial fitted within each interval, 
thus forming a piecewise polynomial regression. However, the 
computational efficiency of spline methods based on truncated 
basis functions is often suboptimal, which leads to a preference 
for the B-splines approach in practical applications [51].

B-splines generate a design matrix characterized by a con-
sistent level of sparsity, which is determined by the degree 
of the local polynomials. For a set of knots {�1, �2,… , �T} , 
a polynomial is fitted within each interval [�k, �k+1] for 
k = 1,… , T − 1 , without imposing continuity of derivatives 
across knots. The model can be represented by a linear system:

where ỹk represents function evaluations between �k and �k+1 , 
�k are spline coefficients, and S is a block diagonal matrix 
with each block Sk corresponding to basis functions in the 
k-th interval. Solving this linear system yields spline coef-
ficients approximating the non-linear functions captured 
in ỹ . Therefore, the non-linear approximations through 
spline functions fall within the parametric framework of 
linear regression, enabling the estimation of the optimal 

(9)ỹ = S𝛽 →

⎛⎜⎜⎜⎝

ỹ1
ỹ2
⋮

ỹK

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

S1 0 ⋯ 0

0 S2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ SK

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

𝛽1
𝛽2
⋮

𝛽K

⎞⎟⎟⎟⎠
,

parameters � by solving a linear system of equations (as 
shown in Eq. (5)).

Quantum Splines (QSplines) [14] extend B-splines to 
quantum computing, aiming to leverage quantum algo-
rithms for function approximation. In order to experimen-
tally solve the linear system of equations (Eq. (9)) using 
HHL, QSplines formulation exploits the fact that the inverse 
of a block diagonal matrix remains block diagonal, with 
corresponding inverse matrices in each block. Therefore, 
QSplines implementation solves K 2 × 2 quantum linear 
systems Sk�𝛽k⟩ = �ỹk⟩ instead of a single one for the entire 
function. This approach overcomes the practical limitations 
of available quantum simulators, enabling the calculation of 
spline coefficients through quantum simulations.

The computation of a QSpline involves three steps. First, 
HHL computes spline coefficients for the k-th interval:

Second, ��k⟩ interacts with the quantum state encoding input 
in the k-th interval via quantum interference. The scalar 
product between ��k⟩ and �xi,k⟩ is computed using the swap-
test [52]:

At this point, amplitudes of quantum state �fi,k⟩ embed the 
estimate of the activation function evaluated in xi,k . Third, 
�fi,k⟩ is measured to obtain probability of state �0⟩ , depending 
on dot product between �k and xi,k:

where:

Finally, the non-linear function estimate in correspondence 
of xi,k is retrieved by back-transforming Eq. (13) to get fi,k . 
Notice that, the estimates are intrinsically bounded in the 
interval [0, 1] since they are encoded as the amplitude of a 
quantum state.

The development of QSplines holds significance in sev-
eral key areas. Firstly, the size of the linear system generated 
by spline formulations escalates substantially, being directly 
proportional to both the number of training points (assumed 
to equal the number of knots) and the dataset’s feature count. 
This scalability issue renders traditional spline methods 
impractical for large-scale data problems, where the matrix 
size becomes a critical factor in computational efficiency.

Secondly, when considering B-splines, the resulting lin-
ear system is characteristically sparse, which aligns well 
with the HHL algorithm’s capability to exploit such sparsity 

(10)Sk�𝛽k⟩ = �ỹk⟩
HHL
����������������→ �𝛽k⟩ ≃ S−1

k
�ỹk⟩.

(11)��k⟩�xi,k⟩�0⟩
swap−test
��������������������������������→ �e1⟩�e2⟩�fi,k⟩.

(12)�fi,k⟩ =
√
p0�0⟩ +

√
p1�1⟩,

(13)p0 =
1

2
+

�⟨�k�xi,k⟩�2
2

=
1

2
+

�fi,k�2
2

.
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for efficiency gains, particularly in terms of the parameter s. 
Assuming the practical application of the HHL algorithm on 
quantum hardware, the computational challenges associated 
with spline functions could be significantly reduced. This 
advancement opens the door to introducing non-linearity 
by means of HHL, thus overcoming the constraint about the 
unitarity of quantum computation.

3.2 � Hybrid Quantum‑Classical Machine Learning

The construction of full-scale, error-corrected quantum 
devices still presents numerous technical challenges, and 
implementing algorithms such as the HHL remains unfea-
sible given the current state of quantum technology. At 
the same time, significant progress has been made in the 
development of small-scale quantum computers, thus giv-
ing rise to the so-called Noisy Intermediate-Scale Quan-
tum (NISQ) era [38, 54]. Therefore, many researchers are 
currently focusing on algorithms for NISQ machines that 
may have an immediate impact on real-world applications. 
Such machines, however, are still not sufficiently powerful 
to be a credible alternative to the classical ones. For this rea-
son, hybrid computation was proposed to exploit near-term 
devices to benefit from the performance boost expected from 
quantum technologies. Quantum variational algorithms [55, 
56] represent the most promising attempt in this direction, 
and they are designed to tackle optimization problems using 
both classical and quantum resources. The latter component 
is referred to as variational circuit.

As discussed in Sect. 2, supervised learning problems 
typically involve fitting a parameterized function to a train-
ing dataset. In the context of Hybrid QML, a hybrid compu-
tational approach employs Parametrized Quantum Circuits 
(PQCs) to define a class of hypothesis functions. These 
functions are used to estimate a target variable of interest 
in a supervised learning setting, to achieve representational 
capabilities beyond those of classical methods. The gen-
eral hybrid approach is illustrated in Fig. 3. The data, x, 
are initially pre-processed on a classical device to deter-
mine a normalize input quantum state. Firstly, we consider 
a feature encoding unitary U� ∶ X → F  that maps the input 
vector x ∈ X  to a n-qubit quantum state ��(x)⟩ = U�(x)�0⟩ 
in the Hilbert space F  of 2n × 2n Hermitian operators. Then, 
the quantum hardware prepares a quantum state ��(x)⟩ and 
computes U(�) with randomly initialized parameters � . After 
multiple executions of U(�) (ansatz), the classical compo-
nent post-processes the measurements and generates a pre-
diction f (x;�) . Finally, the parameters are updated, and the 
whole cycle is run multiple times in a closed loop between 
the classical and quantum hardware. The strength of this 
approach is the possibility of learning gate parameters ena-
bles the adaptation of the architecture for different use cases.

The Hybrid QML approach shares significant similarities 
with the training of classical neural networks, notably in 
their reliance on parameterized models, gradient-based opti-
mization techniques, and structured layers for approximating 
complex functions. This common ground has paved the way 
for the development of Quantum Neural Networks (QNNs), 
which are essentially the use PQCs for machine learning 
applications. The primary distinction between QNNs based 
on hybrid computation and classical neural networks lies 
in the execution of function calls to f (x;�) : in the former, 
a PQC is employed, while in the latter, a classical neural 
model is used. This subtle yet fundamental difference aims 
to leverage the unique capabilities of quantum computing, 
potentially offering advantages in processing efficiency and 
learning capabilities for specific tasks.

It is important to note the distinction between FT-QML 
and Hybrid QML based on PQCs. While FT-QML primarily 
leverages the quantum component to expedite the training 
process, the use of PQCs in QML seeks to identify problem 
classes that are intractable for classical approaches from a 
learning perspective. Furthermore, another significant dif-
ference lies in the frequency of calls to a quantum computer 
during the training procedure. In the case of FT-QML, the 
(error-corrected) quantum computer is usually invoked only 
once to solve the linear system of equations encoding the 
training data. In the hybrid approach, the quantum com-
puter is tasked with making (at least) one call to the function 
f (x;�) for each iteration of the training process.

3.2.1 � Quantum Models as Kernel Methods

In the implementation of QNNs, the initial step involves rep-
resenting data in the form of a quantum state, a process for 
which various methodologies have been proposed [57]. Prior 
research has established a link between quantum computa-
tional models and kernel methods from classical machine 
learning [58, 59]. For example, in the context of SVMs, 

Fig. 3   Scheme of a hybrid quantum-classical algorithm for super-
vised learning (adapted from [53]). The quantum variational circuit 
is depicted in green, while the classical component is represented in 
blue
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the objective is to identify the optimal hyperplane that 
can separate data points of differing classes within a high-
dimensional feature space �(⋅) . The kernel trick employed 
by SVMs facilitates the implicit mapping of input features 
to this higher-dimensional space, computing only the inner 
products between the transformed feature vectors explicitly.

Conversely, when encoding data into a quantum state, 
the mapping of the input x is executed explicitly through 
the definition of a series of quantum gates U�(x) . This 
explicit approach contrasts with the implicit nature of the 
kernel trick in classical SVMs, highlighting a fundamental 
difference in how data transformation is achieved in quan-
tum versus classical machine learning paradigms. Still, this 
similarity allows studying quantum kernels using the RKHS 
framework [22], making a strong methodological connection 
between the two approaches.

In concrete terms, quantum kernels offer two dis-
tinct methodologies for enhancing machine learning 
tasks [35]. The first strategy involves utilizing a quantum 
device to estimate the inner products of quantum states 
k(x(i), x) = ⟨�(x(i)),�(x)⟩ in Eq. (6), thereby facilitating the 
computation of a kernel that may be classically intractable. 
This quantum-derived kernel undergoes subsequent classi-
cal post-processing and integrates into traditional machine 
learning frameworks to predict the target variable of interest. 
It is crucial to note that in this scenario, the quantum com-
ponent primarily augments the kernel computation, which 
is subsequently applied within conventional kernel-based 
methods, as illustrated in Eq. 6.

Conversely, the second approach employs a PQC as an 
explicit classifier within the Hilbert space. Here, the PQC 
operates as a linear model, directly classifying data points 
by leveraging the high-dimensional space of quantum states. 
This method stands in contrast to the kernel-based approach 
by providing a more direct utilization of quantum computa-
tional resources for supervised tasks.

In the outlined quantum methodologies, both can be con-
ceptualized as families of hypotheses, wherein the objective 
is to identify a function within the RKHS framework [22] 
that exhibits optimal learning performance. Notably, beyond 
the aforementioned quantum approaches, the technique of 
data re-uploading [60] has recently gained recognition for its 
efficacy in accommodating inputs of varying sizes in relation 
to the number of qubits. This method serves as a univer-
sal approximator and still is theoretically aligned with the 
RKHS framework for quantum kernels [61].

Therefore, when interpreting QML models as kernel-
based methodologies, the objective centers on delineating 
kernel functions that, while challenging to compute via 
classical means, can be adeptly realized through the utiliza-
tion of shallow PQCs. While empirical validation for such 
kernels has been demonstrated in the case of contrived, 
problem-specific scenarios [62], a definitive demonstration 

of quantum advantage through this modality on real applica-
tions remains elusive.

3.2.2 � Classical‑Inspired Quantum Models

An alternative strategy in building hybrid QML models 
based on PQCs involves the development of parameterized 
ansätze inspired by classical machine learning techniques. 
A prime example of this approach are the Quantum Con-
volutional Neural Networks (QCNNs) [63], which draw 
inspiration from its classical counterpart. In a QCNN, an 
unknown quantum state, denoted by �in , is fed as input into 
the circuit. The first stage involves a quantum convolution 
layer that applies a quasi-local unitary operation, Ui , across 
the input in a translationally invariant manner, ensuring a 
finite depth of the network. Subsequent pooling is achieved 
by measuring a subset of qubits, with the outcomes of these 
measurements guiding the application of unitary rotations on 
adjacent qubits. This mechanism aim to introduce nonlinear 
dynamics into the QCNN by reducing the system’s degrees 
of freedom as it progresses through the layers. The process 
of convolution and pooling is iterated until the quantum sys-
tem is reduced to a sufficiently small size. At this juncture, a 
fully connected layer, characterized by a unitary transforma-
tion is applied to the remaining qubits. The QCNN’s output 
is then derived from measurements performed on a specific 
set of output qubits.

Mirroring the design principles of classical Convolutional 
Neural Networks (CNNs), the architecture of a QCNN, 
including the number and arrangement of convolution and 
pooling layers, is predefined. The unitary transformations 
within the network are the variables optimized during the 
learning phase. As a result, a QCNN configured to clas-
sify N-qubit input states is distinguished by a parameter 
complexity of O(log(N)) , indicating a scalable and efficient 
framework for quantum machine learning [63].

Notably, QCNNs have demonstrated good generalization 
performance even when trained on a limited set of training 
data for supervised classification of quantum states [64]. 
Although the application domain is primarily relevant to 
physics, the ability to train a model with a significantly 
small amount of training data is a crucial aspect of classical 
machine learning.

An alternative approach to QCNNs involves constructing 
a quantum ansatz capable of generating a quantum state that 
mirrors the output of classical single-layer neural networks 
[26, 53, 65]. Given the universal approximation capability 
of these networks [66], this strategy is particularly compel-
ling for foundational model development in QML. In this 
vein, a universal and efficient framework has been proposed 
[65] that emulates the outputs of various classical supervised 
algorithms through quantum computation. This framework 
is versatile, supporting a wide array of functions, and could 
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act as the quantum analog to classical models that aggregate 
multiple and diverse functions. From a computational per-
spective, this framework enables the creation of an exponen-
tially large set of parametrized transformations of the input 
data. Importantly, the increase in the quantum circuit’s depth 
that is required for this capability is only linear. Notable 
examples include the quantum versions of the classical sin-
gle-layer perceptron [26, 53] and quantum ensembles [67].

4 � Current Focus in Quantum Machine 
Learning

In the previous section, we explored various strategies for 
applying quantum computing to supervised learning tasks, 
which can be approached through multiple methodologies. 
This section outlines the current areas of focus in QML 
research, which include the challenges related to training 
these models and the complexity of establishing methodo-
logical metrics that can lead to quantum advantage. Particu-
lar attention is given to QNNs and Quantum Kernels, which, 
given the current state of quantum technology, are the most 
promising for finding a potential advantage in the near term.

4.1 � Inductive Bias of Quantum Models

In machine learning, inductive bias plays a crucial role in 
guiding algorithms towards effective generalization from 
training data to unseen instances [68, 69]. Usually, the 
inductive bias of a model is integrated into the functional 
form of f (x;�) which aims to estimate the target variable 
of interest. For instance, the inductive bias of parametric 
models such as those based on linear regression is the linear 
relationship between the input features (or their augmented 
version) and the target variable. In SVMs, the assumption is 
that the data can be separated by a hyperplane in the feature 
space with as wide a margin as possible. Other examples of 
inductive bias are for example local similarity rather than 
global structure in k-nearest neighbors or the layered struc-
ture of Neural Networks, which assume that data can be 
represented in a hierarchy of increasingly abstract features, 
allowing them to capture complex patterns and interactions 
among features. Each of these algorithms’ inductive biases 
influences their approach to learning and their effective-
ness in different problem settings, highlighting the impor-
tance of aligning the chosen model with the underlying data 
structure.

Recently, the exploration of inductive bias in QML mod-
els has been proposed as a promising avenue to achieve 
quantum advantage [70]. Similar to classical approaches, 
inductive bias in QML significantly influences the design 
and application of quantum algorithms for specific tasks. 
In the quantum domain, inductive bias can stem from three 

different sources. First, the method chosen for data embed-
ding, since, as explained in the previous sections, encoding 
classical data into quantum states corresponds to selecting 
a specific kernel [59]. Second, the architecture of the quan-
tum circuit including the choice of quantum gates and their 
configuration, embodies certain presuppositions about the 
data distribution or the nature of the computational problem. 
This structural choice inherently biases the model towards 
specific solutions or interpretations of the data (as discussed 
in Sect. 3.2.2). Third, the approach to measuring qubits, or 
the measurement strategy, both during the training phase 
and inference, can significantly influence the model’s induc-
tive bias. Variations in measurement techniques can provide 
diverse insights into the quantum state, affecting the subse-
quent post-processing steps needed to derive the estimation 
f (x;�) [71]. These differences directly impact the learning 
dynamics and the algorithm’s ability to generalize.

Importantly, indications of a potential quantum advantage 
via inductive bias are primarily found in scenarios where 
knowledge about the problem is integrated into quantum cir-
cuits [70]. Such advantages are more plausible when work-
ing with data generated by quantum processes, yet they tend 
to be less evident in classical datasets.

4.2 � Surrogates Models

Training a quantum model using hybrid computation 
requires access to a quantum computer not only during the 
training phase but also for making predictions on new data. 
This requirement may be impractical for many real-world 
applications, considering that quantum computing resources 
will primarily be accessed through cloud-based services. 
Recently, the concept of a classical surrogate or shadow 
models [72, 73] has been introduced. These are classical 
models derived from quantum models after training, capable 
of mimicking the quantum model’s behavior. This approach 
has been applied to a certain type of QML models based on 
the data-reuploading technique for data embedding, making 
them suitable for classical surrogation [73]. With a classi-
cal surrogate, the need for quantum hardware is limited to 
the training phase, highlighting the importance of achiev-
ing quantum advantages, only with respect to faster learning 
(e.g., the number of iterations in the the optimization) or 
better generalization.

However, the ability to create classical surrogates raises 
questions about the unique benefits of quantum methods. If 
classical surrogates can perform the same tasks, quantum 
models need to offer significant advantages in areas like 
generalization to justify their use. In this respect, recent 
works have shown that combining quantum models with 
classical shadow tomography techniques can tackle certain 
learning challenges that are beyond the reach of purely 
classical models, based on well-established cryptographic 
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assumptions [72]. This indicates that while classical surro-
gates can replicate many aspects of quantum models, there 
may still be unique advantages to quantum approaches, 
particularly for specific types of learning tasks.

4.3 � On Quantum Trainability

The exploration of quantum machine learning algorithms 
as kernel methods or the implementation of surrogate 
models aims to determine the types of problems where 
near-term quantum computing can provide a practical 
advantage in machine learning. A fundamental assumption 
in these approaches is the efficiency in training quantum 
models, positing that it should be comparable to or better 
than that of classical models. However, this assumption 
encounters challenges specifically related to gradient-
based optimization methods used in training quantum 
circuits.

4.3.1 � Barren Plateau Problem

The problem of barren plateau [74] emerges from the 
exponentially decreasing gradients of the cost function 
with respect to the parameters in quantum neural networks 
(QNNs). In the case of a single-qubit QNN, the cost func-
tion C(�) is influenced by the parameters � , and the goal 
during training is to minimize this function. The gradient of 
C(�) with respect to � is represented as ∇�C(�) . The issue 
becomes pronounced when ∇�C(�) is negligibly small across 
a vast area of the parameter space. This is particularly criti-
cal in deep QNNs that contain multiple qubits and layers, 
leading to a substantial increase in the parameter count.

This phenomenon mirrors the vanishing gradient problem 
observed in classical neural networks, where the gradients of 
the cost function relative to the parameters diminish expo-
nentially during backpropagation through several layers. 
Specifically, the vanishing gradient problem impedes the 
learning process as these gradients approach very small val-
ues. Although both issues involve diminishing gradients, the 
barren plateau in QNNs is attributed to the intrinsic proper-
ties of quantum circuits and the optimization landscape’s 
structure. In contrast, the vanishing gradient problem in 
classical neural networks mainly results from the activation 
functions’ characteristics and the network’s depth.

Addressing the barren plateau challenge requires spe-
cialized approaches tailored to quantum systems’ unique 
properties [75, 76]. Furthermore, this issue raises signifi-
cant concerns about the non-classical information process-
ing capabilities of parameterized quantum circuits in barren 

plateau-free landscapes and the potential for superpolyno-
mial advantages when executed on quantum hardware [76].

4.3.2 � Lack of Quantum Backpropagation

In classical deep learning, state-of-the-art models are 
trained using backpropagation, a method that efficiently 
computes gradients with computational and memory 
resources proportional to those required for calculating 
the function f  that the neural network aims to approximate 
[1, 77, 78]. Specifically, the time to calculate gradients 
for all parameters is at most the time to compute f  , scaled 
by a factor logarithmically related to the total number of 
parameters. This efficiency is pivotal for training large 
models, playing a significant role in the success of deep 
learning, especially in highly overparameterized settings 
[32].

For quantum neural networks, the standard training 
approach on real quantum hardware involves the parameter 
shift rule to obtain gradients for parameterized quantum 
circuits [79]. Considering a quantum gate parameterized 
by a scalar � , represented as U(�) = e−i�P , where P is the 
gate’s generator (often a Pauli matrix), the parameter shift 
rule enables computing the gradient of an expectation 
value ⟨�(�)�O��(�)⟩ , which is the classical output from a 
quantum circuit post-measurement, with respect to � . This 
is formally given by:

Here, ⟨O⟩�± �

2

 represents the expectation value of the observ-
able O when the circuit is run with the parameter � adjusted 
by ± �

2
 . Therefore, to estimate the gradient of a single param-

eter using this rule, the quantum circuit must be executed 
twice: once with the parameter incremented by + �

2
 and once 

with it decremented by − �

2
 . For a quantum circuit with M 

parameters, a total of 2M executions are necessary to com-
pute the gradients for all parameters. This computational 
cost associated with the parameter shift rule escalates rap-
idly for quantum circuits that have a large number of param-
eters, posing a significant challenge to the efficiency of train-
ing quantum models [80]. This problem is exacerbated by 
the barren plateau phenomenon, in which the magnitudes of 
gradients become increasingly small, further complicating 
the training process. Although recent studies suggest that 
improved scaling may be achievable through techniques such 
as shadow tomography [80], these scaling challenges indi-
cate that the overparameterization strategy, which has been 
effective in classical neural networks, might not be directly 
applicable to quantum models. This is primarily due to the 
exponential growth in computational and memory demands 

(14)
�⟨O⟩
��

=
1

2

�
⟨O⟩�+ �

2

− ⟨O⟩�− �

2

�
.



287KI - Künstliche Intelligenz (2024) 38:277–291	

required for gradient calculations in extensive quantum 
systems.

5 � Promising Research Trajectories

The current trend in quantum machine learning research 
primarily revolves around theoretical exploration, utilizing 
classical machine learning and quantum information theory 
tools to dissect the intricacies of novel quantum models. 
This interdisciplinary method strives to deepen our grasp of 
quantum models from a learning theory perspective. How-
ever, relying solely on theoretical analysis might not suffice 
to unravel fundamental questions about how quantum com-
puting could enhance learning algorithms.

Historically, machine learning advancements have largely 
stemmed from empirical methods, where training large-scale 
models provides valuable insights. This hands-on approach 
faces challenges in the quantum realm due to the nascent 
state of quantum technologies. Moreover, classical machine 
learning benefits from a robust theoretical foundation that 
aids in choosing specific models for particular problems, an 
aspect of sophistication QML is yet to achieve.

Here we outline two distinct research directions that hold 
promise for advancing the field. Insights gained from quan-
tum investigations in these areas could significantly enhance 
machine learning research and potentially unlock quantum 
advantages.

5.1 � Learn from (Classical) Experience

The core principle of integrating quantum computing into 
supervised learning lies in leveraging computations that 
present exponential challenges in classical settings. This 
integration is facilitated by the relationship between quan-
tum models and kernel methods, enabling the mapping of 
data into the high-dimensional Hilbert spaces that quantum 
computation provides. However, it is important to note that 
classical machine learning also utilizes kernel methods 
to implicitly operate within high- or infinite-dimensional 
function spaces [81]. Moreover, according to classical lit-
erature, neural networks almost systematically outperform 
kernel methods [82]. Thus, identifying a quantum kernel that 
classical approaches find intractable does not necessarily 
mean that it will outperform neural networks. Consequently, 
focusing solely on the expressiveness of quantum machine 
learning models [83, 84] does not fully address the potential 
scenarios where a quantum advantage could be achieved.

In this context, it may be beneficial to look beyond ker-
nel methods and explore the fundamental components of 
the hypothesis classes that parametrized quantum circuits 
offer. For example, the foundational model for modern neu-
ral networks is the single-layer perceptron (SLP). Despite its 

simplicity compared to the complex architectures, the SLP 
model can be highly expressive. According to the universal 
approximation theorem [66], an SLP with a non-constant, 
bounded, and continuous activation function can approxi-
mate any continuous function within a closed and bounded 
subset, assuming a sufficient number of hidden neurons 
are available. However, despite this significant theoretical 
insight, SLPs are seldom used in practice due to the imprac-
ticality of managing large numbers of hidden neurons on 
classical devices. Thus a relevant question in the quantum 
domain needs to be asked, which is:

Is there a quantum universal approximator capable of 
estimating any (classical) function?

Various efforts have been made in this direction; some 
attempt to adapt the SLP concept to quantum settings [26, 
53, 85, 86], while others employ PQCs to devise general 
methods for nonlinear approximations [13, 87]. Yet, a defini-
tive answer remains elusive. Nevertheless, identifying the 
“quantum equivalent”of the perceptron, which can act as a 
core model to build upon, might be a crucial stepping stone, 
just as it was for classical neural networks.

Another domain where QML practitioners might find 
valuable insights from classical literature is optimization. 
As highlighted in Sect. 4.3, the efficiency of current quan-
tum methods for gradient estimation falls short of classical 
backpropagation. Consequently, assessing the capabilities 
of a quantum model by directly comparing it to its classical 
counterpart, based solely on the number of parameters or 
any derived theoretical measure (e.g., effective dimension 
[84]), may not yield a fair evaluation. A more reasonable 
approach would be to compare quantum and classical mod-
els within specific contexts, acknowledging that classical 
models can be trained in an overparameterized regime, a 
luxury that quantum models do not match. This compari-
son could lead to more meaningful insights into the relative 
strengths and limitations of quantum models.

Furthermore, the issue of vanishing gradients did not 
deter the widespread adoption of neural networks; instead, 
it led to the development of various strategies to overcome 
this challenge. These strategies include the selection of acti-
vation functions that are less prone to vanishing gradients, 
careful weight initialization techniques, and the design of 
architectures specifically aimed at mitigating this issue. 
Therefore, rather than solely focusing on scenarios where 
the barren plateau phenomenon is absent [76, 88], it may be 
more pragmatic to acknowledge that the problem of barren 
plateaus is likely to persist and to explore specific mitiga-
tion strategies.

The aforementioned approaches are grounded in a robust 
experimental approach, which seeks to identify specific 
(classical) settings that resonate with the classical machine 
learning community, as opposed to a purely methodological 
perspective.
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5.2 � Building on the Shortcomings of Classical 
Methods

Two of the main drawbacks of modern neural networks are 
their substantial demand for training data and the extensive 
computational resources needed for training. These models 
typically require large datasets to learn effectively, posing a 
considerable challenge in fields where data may be rare, sen-
sitive, or costly to acquire. Additionally, the training process 
is resource-intensive, often necessitating millions of itera-
tions to reach peak performance. In light of these limitations, 
an intriguing question arises:

Can quantum models perform well in scenarios where 
labeled data is scarce, and a less data-intensive approach 
is preferred?

Initial strides in this direction suggest promise. Recent 
studies have initiated exploration in this area [89, 90]. 
One investigation [89], capitalizing on the classical com-
putational complexity associated with discrete logarithms 
has shown that with suitable feature mapping, a quantum 
computer could learn the target function with exponentially 
fewer data points than what would be feasible for any classi-
cal algorithm. Concurrently, another study [91] delved into 
generalization bounds and identified that the high expres-
siveness of quantum models could potentially hamper gen-
eralization. This insight led to the development of a heuristic 
aimed at optimizing dataset labels to enhance the learnabil-
ity of the dataset by quantum computers, thereby challenging 
classical counterparts. Also, evidence indicates that quantum 
models might achieve comparable generalization to classical 
models with far fewer training examples [64]. This potential 
for efficiency in learning from limited data offers a com-
pelling avenue for further exploration in quantum machine 
learning. Thus, instead of generating synthetic data for test-
ing quantum models, or using a small subset from large 
datasets, an alternative approach could be to compare the 
performance of classical and quantum models in scenarios 
characterized by a scarcity of annotated data.

Another strategy might involve restricting the number 
of training iterations. For inference with large models, it 
could prove more practical to train a quantum model with a 
limited number of parameters and then derive classical sur-
rogates from it. All these approaches should be underpinned 
by experimental evidence, which, despite being challenging 
to obtain, remains within the realm of feasibility.

Furthermore, there is a noticeable bias toward physical 
problems in quantum machine learning, stemming from 
its origins in quantum physics rather than as a discipline 
focused on learning. This bias is reflected in the numerous 
theoretical studies and the limited scope of experimental 
approaches. Although simulating quantum systems is chal-
lenging-which is a primary reason for the need for quantum 
computers [92]-current simulation tools can handle a few 

tens of qubits, allowing for training at a scale somewhat 
comparable to classical methods. Yet, the standard practice 
often involves using just a few qubits to demonstrate the 
viability of a proposed method rather than to showcase any 
potential advantage.

6 � Conclusion

In this paper, we have explored quantum machine learning 
through a classical lens. We began with a general overview 
of supervised learning problems, distinguishing between 
parametric and non-parametric methods. This distinction is 
crucial in the quantum context, leading to two distinct QML 
approaches. Parametric methods in quantum computing 
often involve convex optimization procedures that translate 
into solving linear systems of equations, where the Harrow-
Hassidim-Lloyd (HHL) algorithm enables exponentially 
faster quantum routines. This approach, known as Fault-
Tolerant Quantum Machine Learning (FT-QML), hinges on 
the successful execution of the HHL algorithm, requiring 
a fault-tolerant quantum computer. Its key characteristics 
include a single quantum computation for parameter estima-
tion and learning capabilities that mirror classical methods.

With the advent of NISQ devices, a new approach has 
emerged based on hybrid quantum-classical computation. 
Here, a parametrized quantum circuit is treated as a black 
box, with parameters iteratively adjusted through training to 
minimize the cost function and enhance generalization. This 
method leverages the quantum computer for each optimiza-
tion iteration, holding the promise of surpassing classical 
learning capabilities by exploiting QNNs.

We also highlighted the ongoing quest for a quantum 
advantage in QML research, amidst challenges in scaling 
optimization compared to classical neural networks. Discus-
sions included the relationship between quantum models and 
kernel methods, and the use of surrogate models. Our aim 
was to provide a fresh perspective on QML research, advo-
cating for a constructive dialogue with classical machine 
learning principles to address problems of mutual interest, 
and ensuring that advancements are beneficial in the near 
term.

In conclusion, contrary to some assertions in the QML 
literature, the current state of research does not definitively 
favor quantum models over classical ones. The true poten-
tial of quantum advantage may only be realized with the 
availability of fault-tolerant quantum computers. However, 
similar to the evolution of classical machine learning and 
neural networks, where methodological advancements 
often spur hardware developments, we believe a parallel 
trajectory is plausible for QML. It is reasonable to antici-
pate that the maturation of quantum machine learning will 
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not only benefit from concurrent hardware improvements 
but may also influence the direction of these technological 
advancements.
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