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Abstract— Sign Language Recognition (SLR) systems pri-
marily focus on manual gestures, but non-manual features such
as mouth movements, specifically mouthing, provide valuable
linguistic information. This work directly classifies mouthing
instances to their corresponding words in the spoken language
while exploring the potential of transfer learning from Visual
Speech Recognition (VSR) to mouthing recognition in German
Sign Language. We leverage three VSR datasets: one in English,
one in German with unrelated words and one in German
containing the same target words as the mouthing dataset, to
investigate the impact of task similarity in this setting. Our
results demonstrate that multi-task learning improves both
mouthing recognition and VSR accuracy as well as model
robustness, suggesting that mouthing recognition should be
treated as a distinct but related task to VSR. This research
contributes to the field of SLR by proposing knowledge transfer
from VSR to SLR datasets with limited mouthing annotations.

I. INTRODUCTION

As sign languages (SLs) are fully-fledged visual-manual
natural languages, they are perceived visually and expressed
using manual gestures (hand movements) as well as non-
manual signals such as facial expressions, body posture and
eye gaze. Therefore, SLs serve as an important communi-
cation method for the deaf and hard-of-hearing community.
Consequently, automatic sign language recognition (ASLR)
has attracted increasing attention from the research commu-
nity to facilitate communication between SL users and non-
users [16].

While ASLR systems primarily work with manual ges-
tures, utilizing the non-manual features has become an
emerging trend. These signals can provide valuable infor-
mation as they are an essential component in SLs, often
compared to intonation in spoken languages [8]. One of these
non-manual markers is mouth movements. Despite only 5%
of the published SLR results from 2015 to 2020 incorporating
the signer mouth characteristics [16], their inclusion in ASLR
models has been shown to lead to greater performance
[21], [27], [24]. In SL, mouth actions can be categorized
into two types: mouth gestures, which are independent of
spoken language, and mouthings, which refers to silently
pronouncing a word of the spoken language or at least its first
syllable. Since mouthings are included in almost all studied
SLs and play a significant role in both the formal structure
and semantic expression of these languages [4], we believe
that mouthings should be integrated in future ASLR systems.
In this work, our aim is to contribute to the advancement of
mouthing recognition.

One of the key challenges in mouthing recognition is the
scarcity of annotated data needed to develop robust models.
This is largely due to the high cost and time-intensive nature
of expert-driven manual annotation, coupled with the limited
number of studies and research efforts dedicated specifically
to mouthing. As mentioned before, mouthings are related
to the articulation of spoken words. Therefore, as a poten-
tial solution to address the scarcity of annotated data for
mouthing recognition, we propose leveraging datasets from
visual speech recognition (VSR), also known as lipreading,
which is more widely studied than automatic mouthing
recognition. VSR datasets focus on capturing the articulation
of words through mouth movements, which aligns closely
with the objectives of mouthing recognition. In this work, we
explore transfer learning from VSR to mouthing recognition
as a strategy to improve performance and mitigate data
limitations. Specifically, we utilize three lipreading datasets:
one in English, one in German with words unrelated to the
target mouthings, and one in German containing the same
target words as the German Sign Language mouthing dataset
we created. This setup allows us to investigate how varying
levels of relatedness between lipreading datasets and the
target mouthing task affect recognition performance. To facil-
itate this analysis, we employ three different transfer learning
approaches: fine-tuning, domain adaptation, and multi-task
learning, providing a comparison of their effectiveness in this
context. To the best of our knowledge, this work represents
the first attempt to: (1) use the corresponding words of
the spoken language as labels for mouthing recognition and
(2) apply transfer learning from visual speech recognition
to mouthing recognition, proposing a novel approach to
improve mouthing recognition and address the challenge
posed by limited annotated data.

II. RELATED WORKS

A limited number of studies have explored the use of VSR
methods to enhance sign language recognition. A very brief
survey on this topic, done in [2], identified two approaches
originating from VSR that could be applied: (a) recognizing
specific words or phrases or (b) recognizing a set of prede-
fined mouth shapes or mouth dynamics to produce words.
One of these two approaches is commonly adopted in most
related works. In [24], a viseme-based mouthing recognizer
was incorporated into a German Sign Language translation
framework, outperforming the baseline system that does
not utilize mouthing as an additional knowledge source.
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Instead of visemes, mouthing annotations describing the
mouth shape were used in [23], running an American Sign
Language (ASL) dataset through OpenPose [6], a pre-trained
CNN-based 2D pose estimator. Examples of these mouthing
annotations include ”open and corners down”, ”raised upper
lip” and ”lips spread and corners down”. In contrast, we
perform mouthing recognition as the task of assigning videos
of mouthings to their corresponding spoken words. Further-
more, the frequency of mouthings varies across SLs, with
mouthings occurring more often in German Sign Language
(DGS) than in ASL [8]. We focus on mouthing recognition
in DGS and use German spoken words as labels in the
experiments. A framework for recognizing mouthings in con-
tinuous DGS in a weakly supervised manner, utilizing speech
transcripts, was proposed in [17]. This represents the first
use of viseme recognition not only in DGS, but also within
the context of sign language recognition. Additionally, [18]
introduced an automated method for annotating mouthings in
DGS, requiring both gloss annotations and speech transcripts.
In [1], mouthing was used to facilitate SL subtitle annotation.

In addition to mouthings, research focusing on mouth
gestures and mouth actions in DGS exists as well. Mouth
gestures were classified by training a model on isolated video
clips in [5]. To address homonym disambiguation in DGS,
[21] examined the impact of including mouth actions as an
input on model performance. Moreover, VSR for isolated
spoken words in German was done in [22] and [25].

III. METHOD
A. DATASETS

1) Mouthing in German Sign Language: In order to
develop and evaluate a model to recognize mouthing, the
creation of a dataset was necessary. For this, the Public DGS
Corpus [19] was identified as a suitable source due to its
extensive collection of SL videos and accompanying anno-
tations. This corpus features videos of signers from various
regions across Germany and provides detailed transcriptions,
including annotations for signs, translations, mouth gestures
and mouthings, along with their corresponding timestamps.
Using this, we determined the number of occurrences of each
mouthing in the whole corpus, selected 15 mouthings with a
sufficient number of instances and extracted all video clips
of these according to the timestamps in the transcripts. In
order to keep the dataset balanced, we randomly selected 500
video clips of each mouthing to be in the dataset and further
split it into training, validation and test sets in an 8:1:1 ratio,
keeping the class distribution the same. In total, the dataset
includes 15 classes, split into 3 sets: the training set includes
400 video clips per class, while the validation and test sets
each contain 50 video clips per class. Before applying the
pre-processing steps described later in this work, each video
had an original resolution of 640x360 pixels at 50 frames per
second, displaying the signer’s entire upper body and face.

2) Visual Speech Recognition: With the goal of investigat-
ing transfer learning from VSR to mouthing recognition, we
created 3 VSR datasets. First, we used the ”Lip Reading in
the Wild” (LRW) dataset [7], a popular English VSR dataset

containing 500 word classes, each with 800-1000 video clips.
We randomly chose 15 words and split them into training,
validation, and test sets, ensuring that each split contained
the exact same number of video clips per class as done for
the mouthing dataset.

Moreover, the dataset “German Lips” (GLips) [25] con-
sists of 500 German word classes with 500 instances each.
It is already split in a training, validation and test set with
the exact same number of instances per class and split as
we have before. For our experiment, we selected 15 random
word classes that are unrelated to the labels in the mouthing
dataset and 15 classes that match the mouthing classes.
In other words, these 15 classes correspond to the spoken
words associated with the mouthings in the mouthing dataset.
Henceforth, we annotate the created datasets as follows:

• M - dataset with mouthings from DGS
• GLipsM - German VSR dataset with words correspond-

ing to the mouthings of M
• GLipsR - German VSR dataset with words unrelated

to M
• LRW - the English VSR dataset
3) Pre-Processing: After manual inspection, we discov-

ered that some video clips in the training split of both
GLipsM and GLipsR datasets contained no visible face.
The class most affected in the training split had 3 such in-
stances, which led us to remove such samples. Additionally,
to maintain consistency across all datasets, we randomly
removed instances from the training splits of the other
datasets. As a result, each of the four datasets now contains
397 instances in the training set per class and 50 instances
each in the validation and test set. Thus, the number of
instances per class and split is equal in all 4 datasets and
all datasets have the same size.

Naturally, the videos differ in the number of frames which
is why we standardize all video clips to 30 frames by repeat-
edly appending the last frame of each video. Furthermore,
we crop all videos to the mouth region with a size of 96 x
96 pixels using the implementation of [20].

B. MODELS

In this section, we explain the architectures of the models
we use for the experiments1. An overview is given in Fig. 1.

1) Baseline: To establish a foundation for comparison,
we first implement a baseline model for the mouthing
recognition task, serving as a reference point for evaluating
the transfer learning approaches. The other models will be
based on this architecture. The baseline is an artificial neural
network consisting of 3D convolutional layers (Conv3D),
bidirectional gated recurrent units (Bi-GRU) and a linear
layer for the classification. To be more specific, the input
video first undergoes batch normalization, followed by three
sequential blocks, each consisting of a Conv3D layer, max
pooling and batch normalization. These blocks are succeeded
by two Bi-GRU layers and a final linear layer. All three

1The code is publicly available: https://github.com/
NPhamDinh/transfer-learning-vsr-mouthing-sign-language
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Fig. 1. Overview of the model architectures with (A) the baseline, (B) the Domain Adversarial Neural Network and (C) the multi-task learning model.

Conv3D layers and max pooling operations use a padding of
(1,2,2), which also serves as the stride for all max pooling
layers. The first two Conv3D layers use 16 channels, while
the third employs 32 filters. The first Conv3D layer applies
a stride of (1,2,2), whereas the remaining two use a stride of
(1,1,1). Each Conv3D layer utilizes a kernel size of (3,5,5),
and the Bi-GRU layers have a hidden size of 256.

This architecture is inspired by previous works [3], [22],
[21], which have demonstrated the effectiveness of similar
designs for English and German automatic lipreading, as well
as for recognizing mouth actions in DGS. The use of Conv3D
layers for feature extraction, combined with recurrent neural
networks like GRUs for classification, is well-established and
widely adopted in visual speech recognition [12], [26]. We
selected this architecture for its strong representation of the
VSR field, its proven effectiveness and its simplicity. The
straightforward implementation and clarity make it a suitable
base to build and compare other approaches upon.

2) Domain Adversarial Neural Network: The Domain
Adversarial Neural Network (DANN), as proposed in [13],
aims to learn a domain-invariant representation through an
adversarial training process. To this end, the model consists
of two classifiers: one predicts the class and one predicts the
domain. During training, the loss for the class prediction
is minimized, while the loss for the domain classifier is
maximized using a gradient reversal layer. In other words, the
model can be seen as learning dataset-independent features
that are valuable for predicting the class. In our case, the
two domains we will use are M and GLipsM , as they share
the same labels. Each batch will consist of samples from
both domains in equal proportions. The DANN approach
is worth exploring to observe the extent to which the shift
between the articulation of a word in spoken language and
in mouthing can be modeled as a domain shift or whether
they should instead be treated as entirely different tasks. This
is particularly relevant since many mouthings only articulate
parts of the word.

3) Multi-Task Learning: In multi-task learning (MTL),
the objective is to learn n tasks jointly to improve the

performance of each task by leveraging shared knowledge
across tasks. Among the numerous different MTL approaches
[28], we chose to implement hard parameter sharing, one of
the most widely adopted approaches due to its simplicity
and effectiveness. The model has shared layers that learn a
common representation across tasks and task-specific layers
that are independently optimized for each task. Hence, a
common feature representation is being learned that gener-
alizes for all tasks, taking advantage of the relatedness of
the tasks. As we will treat each dataset as its own task, we
use MTL to explore the task relatedness between M and
the different VSR datasets as well as the possible benefits of
sharing a feature representation across them. One could argue
that for M , GLipsM is the most similar task with the same
target vocabulary and LRW is the most unrelated task as its
words are from an entirely different language. While shared
representations can improve generalization across datasets,
there is also a risk of performance degradation due to task
conflicts. This can occur when the feature representation
learned for one task interferes with the optimal representation
for another. Through this MTL approach, we aim to explore
whether shared representations can effectively capture the
relationship between mouthing and visual speech recogni-
tion, while experimenting with different sets of tasks with
presumably varying degrees of relatedness to DGS mouthing.

C. EXPERIMENTS

The baseline architecture will be used to train a model
on each of the four datasets individually. Subsequently, the
weights of the models trained on the VSR datasets will be
fine-tuned on the M dataset without freezing any layers and
the final fully connected layer will be re-initialized.

As previously mentioned, DANN will be trained on both
M and GLipsM , treating both as different domains. For
every subset A ⊆ {GLipsM , GLipsR, LRW} with A ̸= ∅,
a MTL model will be jointly trained on A and M .

All experiments use a batch size of 64, cross-entropy loss
as error function and the Adam optimizer with a learning
rate of 10−5. During training, RandAugment [9] is applied
to the video input as a data augmentation method. For DANN



TABLE I
TOP-1 ACCURACIES OF THE MODELS ON THE TEST SETS.

Model M M GLipsM GLipsR LRW

Baseline: M 44.00 34.67 - - -
Baseline: GLipsM - - 38.18 - -
Baseline: GLipsR - - - 41.47 -
Baseline: LRW - - - - 83.87

Baseline: GLipsM → M 45.20 40.53 - - -
Baseline: GLipsR → M 43.60 35.07 - - -
Baseline: LRW → M 44.67 35.47 - - -

DANN: M & GLipsM 43.07 37.87 36.05 - -

MTL: M & GLipsM 45.33 37.60 37.92 - -
MTL: M & GLipsR 46.53 41.07 - 41.60 -
MTL: M & LRW 44.80 38.93 - - 81.60

MTL: M & GLipsM & GLipsR 43.33 37.73 38.85 43.20 -
MTL: M & GLipsM & LRW 45.60 36.27 40.05 - 80.00
MTL: M & GLipsR & LRW 44.13 38.80 - 45.20 80.93

MTL: M & GLipsM & GLipsR
& LRW

42.93 36.53 40.72 43.87 81.60

and MTL models, the total loss is calculated as the sum of
all classifier losses, with equal weighting assigned to each.
Every model is trained for a maximum of 1500 epochs, with
early stopping triggered if the validation accuracy for M
does not improve for over 100 epochs after surpassing 1000
epochs.

For evaluation on the test sets, we use the weights from
the epoch where a model achieved the highest validation
accuracy for M . The evaluation is conducted on the test set of
M as well as on the VSR test sets, depending on the datasets
the model was trained on in the cases of DANN and MTL.
To further assess the models’ generalization capabilities, we
created a perturbed version of the M test set, referred to as
M . It serves to evaluate the models’ robustness - how well
they perform when faced with unseen data under unexpected
or adversarial conditions. The perturbations are generated by
applying Gaussian noise and histogram equalization to the M
test set. These operations are unseen as they are not part of
the RandAugment implementation [11] used during training.

IV. RESULTS AND DISCUSSION

Table I shows the accuracies of the models on the test sets.
It is striking that the models achieve a much higher accuracy
(80% - 83.87%) on LRW , compared to all other datasets,
which was also observed when GLips was first introduced
[25] and is arguably due to the far better video quality.
Although originally from the same source, the accuracy of
the baseline for GLipsR is higher than for GLipsM . This
difference may be due to the fact that its word classes,
which were randomly selected, contain more syllables on
average compared to the words of GLipsM and are thus
easier to visually distinguish. Fine-tuning VSR models on
mouthing provides little benefit on the M test set while
the performance gains are more significant on M . Out of
all fine-tuning experiments, using GLipsM as the source
performed the best. The close relatedness due to the same
word classes might be a reason. However, the DANN model
does not outperform the baseline for M . Yet, as the accuracy

is still on a competitive level, the model seems to have
learned useful domain-invariant features to some extent.
Moreover, it demonstrates improved robustness as it beats
the baseline on the perturbed test set. Nevertheless, as it
achieves a worse accuracy on M than the baseline, domain
adaptation might be ineffective in this case. Although they
have the same vocabulary, the discrepancy between spoken
articulation and mouthing might introduce differences in
visual features, such as the omission of certain phonemes,
extent of lip movement and coarticulation effects. This
suggests that rather than merely treating them as the same
task of different domains, they should be seen as related,
but distinct tasks. DANN could still be a viable option to
explore if the target domain has considerably fewer labelled
samples than the source domain. Having said that, the MTL
model for M and GLipsM outperforms the baseline on both
mouthing test sets, possibly indicating that treating mouthing
and lipreading as entirely different, but related tasks, is the
better approach. Furthermore, the MTL model for M and
GlipsR achieves the highest accuracy overall on M and
M , improving the performance and robustness for mouthing
recognition significantly. In fact, 5 out of the 7 MTL models
outperform the mouthing baseline. While mouthing recogni-
tion is the main focus, the MTL models incidentally achieve
the highest accuracies for the German VSR datasets, meaning
that VSR can benefit from mouthing as well. The MTL
model jointly learning all 4 datasets at once leads to the
lowest accuracy on M out of all models, suggesting that
incorporating too many tasks result in task conflicts and
degrade performance. Overall, the MTL models yield the
highest performance gains for mouthing and German visual
speech recognition, demonstrating their effectiveness, as seen
in cross-language speech recognition as well [14]. Our results
suggest that task relatedness does not greatly impact the
transfer learning benefits in this context. All transfer learn-
ing approaches seemingly improve the robustness as they
outperform the baseline on the unseen perturbations. The
accuracy improvements could become even more significant
if the mouthing dataset were smaller or the VSR datasets
were larger since performance gains in transfer learning tend
to increase when the source dataset is significantly larger than
the target dataset, whereas datasets of similar size often yield
limited benefit [10], [15]. Additionally, exploring alternative
loss weighting strategies for the MTL architecture, along
with different design choices for shared and task-specific
layers, could further improve performance.

V. CONCLUSION

In this paper, we perform mouthing recognition for DGS
and are, to the best of our knowledge, the first to use the
corresponding words of the spoken language as labels. To
this end, we explore different transfer learning approaches
from VSR to mouthing recognition. Fine-tuning of VSR
models provides slight improvements, whereas DANN fails
to outperform the baseline. Multi-task learning significantly
improves both mouthing recognition and German lipreading,
demonstrating the benefit of treating mouthing recognition



and lipreading as distinct tasks. Future work should explore
alternative domain adaptation, MTL, and hybrid methods to
further improve mouthing and sign language recognition.

ETHICAL IMPACT STATEMENT

Given the nature of this research, which involves the
analysis of publicly available datasets and does not involve
human participants, animals, hazardous biological agents or
sensitive data, an ethical review was not required. Nonethe-
less, the research was conducted with careful attention to
ethical principles, including data integrity, transparency, and
respect for privacy. All data used in this study were obtained
from sources that permit their use for research purposes.
Although facial information is visible in the videos from the
datasets, we do not use any identity-specific data or draw
conclusions based on religion, race, or gender. Instead, our
analysis focuses on patterns and features without attributing
findings to any particular group or individual.

However, we acknowledge the existence of ethical con-
cerns and the possibility of misusing the findings of this
work. Bias exists in the datasets, as the vast majority of
the speakers and signers are visibly white adults, potentially
leaving out people of other demographics in this research.
Further research efforts should focus on creating sign lan-
guage and visual speech recognition datasets that are more
diverse, inclusive, and representative of global society, rather
than reflecting a predominantly Eurocentric perspective.
Moreover, it should be noted that we focused on mouthing
in German Sign Language. As such, one should be careful
to not misunderstand the generalizability of this work and
overgeneralize the results for other sign languages. After all,
sign language is not universal and all sign languages can vary
greatly, often being mutually unintelligible. Therefore, these
differences should be respected and it is important to avoid
categorizing all sign language users in one homogeneous
group, overlooking their unique characteristics and perspec-
tives. Additionally, while this research aims to contribute to
accessibility, there is a risk that sign language recognition
and automatic lip reading models could be misused for
surveillance or unauthorized monitoring of individuals. To
mitigate potential risks, our approach focuses solely on
linguistic patterns rather than individual identification, and
our models do not infer personal attributes. As mentioned
before, we use publicly available datasets without identity-
specific annotations. This paper aims to contribute to more
accessible and inclusive sign language recognition systems,
hoping to bridge communication barriers for the Deaf and
hard-of-hearing communities. Hence, we are convinced that
the benefits strongly outweigh the potential risks.
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