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Abstract—The aim of this paper is to identify resource-efficient
stress recognition methods based on prosodic speech features.
Different machine learning classifiers were tested on a two-
class problem to distinguish stressed- from non-stressed speakers.
This is done using subject-dependent and subject-independent
evaluation methods. The resource efficiency was determined by
measuring the virtual RAM usage of the prediction, memory
consumption of the stored classifiers and classification speed.
The best result, a recall of 83.3%, was obtained by Passive
Aggressive- and Stochastic Gradient Descent Classifiers when
a subject-dependent train-test split with balanced data was
used. The results worsened by an average of 28.3 percentage
points when the subject-independent leave-one-subject-out cross-
validation was used, and by 22.2 points when an also subject-
independent balanced GroupKFold evaluation was used. These
effects could not be reduced by using Principal Component
Analysis on the features, while the inclusion of speaker-specific
examples in the previously subject-independent training set
brought benefits. Inclusion of speaker-specific examples in the
Leave-One-Out training set set led to an average improvement
of 6.6 percentage points for three examples, 13.2 percentage
points for six examples and even 19.7 percentage points for
nine additional examples. The peak recall of train-test split could
not be achieved even when nine speaker-specific examples were
added. The best classifier in this case was the Passive Aggressive
Classifier, with a recall of 79.8% and nine additional samples. In
terms of resource efficiency, the RAM consumption per prediction
hardly varies between classifiers and lies between 4.6659GB for
Aggregated Mondrian Forest Classifier and 4.7853 for One-Vs-
Rest SVM, with Dummy Classifier being left out. The space
required to store a model is minimal for a Decision Tree, at
only 0.0034 MB. The fastest classification is achieved by the
Aggregated Mondrian Forest Classifier in 0.0025 seconds. The
best preforming classifier in regards of resources, the Passive
Aggressive Classifier, needed 0.0495MB for storage, 0.0802s and
4.7677GB virtual Memory for a classification.

Index Terms—machine learning, stress detection, stressed
speech

I. INTRODUCTION

The term “Stress” has manifold definitions to consider.
The first, maybe best known, stems from Hans Seyle and
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states that “Stress is the non-specific response of the body
to any demand” [1]. To alleviate understanding of this
definition, it helps to divide types of stress. Therefore Hans
Selye introduced the terms “distress”, meaning damaging
or unpleasant stress, and “eustress”, meaning pleasurable,
satisfying experiences [2]. Stress is studied increasingly and
an identified source of health concerns. Barry et al. found
that distress brought an increased mortality risk among those
reporting high versus low distress [3]. Staufenbiel et al. even
state: “The deleterious effects of chronic stress on health and
its contribution to the development of mental illness attract
broad attention worldwide” [4, p.1].
But there are not only health concerns, stress also impairs
the ability to understand each other, as it affects language
production. Beginning with increased muscle tension in the
vocal cord and tract, the conversion of the linguistic program
into neuromuscular commands and even spanning to speech
production in the brain. This affects voice quality, and the
performance of communication equipment. [5]
Furthermore there is a growing interest in the effects of stress
on emotion-recognition, -expression and group dynamics
in humans. Nitschke et al. state, that there is evidence
of stress-spillover from stressed to unstressed individuals,
that acute stress can block affective empathy and emotion
contagion, but also that most studies find no effects of acute
stress on measures of emotion recognition [6]. It is important
to highlight, that acute stress might affect cognitive empathy
different for men and women [6]. Paulman et al. showed, how
listeners are worse in detecting negative emotions spoken by
stressed speakers and also, how stressed listeners are worse at
recognizing emotions from (non-stressed) speakers [7]. Van
Marle et al. and Li et al. also proved an effect of stress, but on
neural responses, to visual emotional stimuli [8] [9]. Overall,
stress is not only a health issue, but can also affect effective
communication and team dynamics by impairing speech
production, empathy and emotion recognition. Therefore a
robust and easy-to-use stress detection system could benefit
many areas. Detecting stress in speech by using prosodic
features could be an easy, non-invasive and inexpensive



TABLE I
STATE OF THE ART - STRESSED SPEECH RECOGNITION

Author Dataset(s) Best performing Classifier Classes Results
Dhole et al. [10] Own Custom Neuronal Network 5 97.52% Accuracy
Avila et al. [11] SUSAS [12] CNN, DNN 2, 4 and 9 72% Accuracy on Average
Hilmy et al. [13] Own Convoluational Neural Network 2 61% Accuracy
Partila et al. [14] Own (Czech Speech Database) SVM 2 87.9% Accuracy

Yao et al. [15] Fujitsu Corporation owned [16] GMM 2 71.88% Classification rate

solution. The aim of this paper is to examine the ability and
resource consumption of different machine learning (ML)
methods in recognizing stressed and non-stressed speakers.
This should lay the foundation to implement a robust,
subject-independent and resource-efficient stress detection
method.

II. STATE OF THE ART

The detection of stress in speech is not a new topic in ML,
so an overview of some results is presented in Table I. Only
the best results are shown in this table, others are discussed
in the text. Obtained results, used classifiers and the number
of classes differ, so it is necessary to analyze their creation.
Dhole et al. [10] achieved a classification accuracy of 97.52%
with a custom neural network. They classified five differ-
ent types of stress: psychological/high workload and senti-
ments, perceptual/noise, physiological/medical illness, physi-
cal/vibration and physical workload, no stress. They used their
own dataset, the German database of emotional speech (Emo-
DB) [17] and the Toronto Emotional Speech Set (TESS) [18],
but achieved the best classification result on their own dataset.
Unfortunately, it is unclear how their dataset was created.
EMO-DB and TESS are sets of emotional speech, so Dhole et
al. had to sort the emotional speech files into stress categories,
but there is no description of the methodology, which is
also lacking in the case of their own dataset. Furthermore,
they achieved the best result with a neural network (NN)
and a classical train-test split, of which the division was not
explained. Other classifiers such as Support Vector Machine
(SVM) or Multilayer Perceptron (MLP) did not perform as
well, with accuracies of 61.56% and 85.66% respectively. [10]
Avila et al. [11] used the SUSAS-databse (Speech Under
Simulated and Actual Stress), which includes utterances with
varying speaking styles (normal, slow, fast, soft, loud, ques-
tion, clear, angry), different tasks (tracking tasks, motion-fear)
and speech from psychiatric analyses [12]. They reached 72%
accuracy on average with a Convolutional- (CNN) and a Deep
Neuronal Network (DNN). This average was taken from all
classification results, including different number of classes,
with a 3-fold cross-validation and different feature sets. The
CNN achieved the reported accuracy with an individually
created feature set, while the DNN used the Interspeech 2010
feature set [19]. Other tests were done with a SVM where
the best average accuracy was obtained with an OpenSmile
feature set and measured 61%. [11]

Hilmy et al. [13] tested their methods on an own dataset,
which was created by interviewing university students and
taking their Perceived-Stress-Scales (PSS) [20]. With the PSS
audiofiles where sorted as “Stressed” and “Not Stressed”. A
train-test split with a division of 75% and 25% was used. They
obtained an accuracy of 61% with a CNN. [13]
Partila et al. [14] created their own set of stressed speech,
which consists of emergency calls. Callers are automatically
sorted as “Stressed”, while the receiving operators are sorted
to “No Stress”. They used a train-test split of 75% for training
and 25% of testing. A SVM reached the best accuracy with
87.9%, directly followed by CNN with 87.5%. [14]
Yao et al. [15] used an dataset owned by the Fujitsu Cor-
poration [16]. It is comprised of phone calls, in which the
callers had to perform different tasks while taking the call,
which included concentration, time pressure and risk taking.
Tested were Gaussian Mixture Models (GMM) with different
numbers of mixture and an own feature set, on a 4-Fold cross-
validation. They obtained the best results with four Mixtures
and got 71.88% accuracy.
All in all, retained results from the Table I seem promising
at first sight, but much has to be done for implementing a
real world solution. A successful approach would not only
need a ground-truth with a comprehensible method of creation,
but also have a good or at least known subject-independent
performance. Furthermore, a solution which could run in
resource restricted environments would be beneficial, as this
could make the usage on low priced devices possible and
therefore benefit a broader range of communities.

III. METHODOLOGY

The aim of this paper is to take the first steps towards a
solution that could be applied in the real world. For this,
several ML classifiers have been trained on a dataset of
stressed speech. The retained models were evaluated both sub-
ject dependent and subject independent. The models’ memory
consumption, prediction speed and usage of virtual RAM are
also taken into account. This chapter presents not only the
dataset used, but also the preprocessing steps, the classifiers
used and the evaluation methods.

A. Dataset

The used dataset was created by Paulmann et al., to show
how induced psychological stress affects the production and
recognition of vocal emotions [7]. The set consists of nine
female speakers, who were given 15 predefined, neutral sen-
tences. The sentences had to be read in an emotional tone,



TABLE II
STRESSED SPEECH RECOGNITION - EVALUATION RESULTS (RECALL)

Recall Dummy MLP PA SGD SVM-R GNB DT RF SVM-O HAT HT AMF ARF
TTS 50.0 81.0 83.3 83.3 78.6 71.4 78.6 69.0 78.6 73.8 71.4 35.7 45.2
GroupK 42.9 53.9 64.1 60.8 48.8 45.5 31.6 46.6 48.8 44.7 45.7 39.5 54.0
LOSOCV 36.5 43.7 59.5 59.1 34.0 43.9 45.9 36.3 34.0 46.2 44.7 24.4 38.1
LOSOCV + 3 40.6 56.7 66.5 66.1 41.3 48.7 47.8 43.9 41.3 47.7 48.9 41.6 38.0
LOSOCV + 6 39.5 61.6 70.2 67.9 51.2 53.4 54.0 47.0 51.2 51.3 53.6 55.3 51.1
LOSOCV + 9 48.5 75.2 79.8 79.0 58.1 56.9 55.4 54.0 58.1 56.8 56.4 53.0 63.3
LOSOCV + PCA 1 41.4 34.6 39.3 32.3 12.6 44.2 43.4 35.7 12.6 0.0 0.0 33.1 40.9
LOSOCV + PCA 2 47.4 31.6 53.9 38.8 9.3 46.1 42.7 38.3 9.3 11.1 0.0 31.6 32.20

TABLE III
STRESSED SPEECH RECOGNITION - EVALUATION RESULTS (BALANCED ACCURACY)

Bal. Acc. Dummy MLP PA SGD SVM-R GNB DT RF SVM-O HAT HT AMF ARF
TTS 47.6% 84.5% 89.3% 86.9% 76.2% 70.2% 70.2% 83.3% 76.2% 69.0% 69.0% 50% 60.7%

namely angry, disgusted, fearful, happy, pleasantly surprised,
sad, or neutral. In order to achieve an emotional tone, the
speakers were asked to imagine a situation in which they felt
the given emotion. Prior to the reading task, the Trier Social
Stress Test [21] was used to induce stress in the speakers. Five
speakers were randomly allocated into the “Stressed”-Group,
four into “No Stress”. Therefore, all sentences spoken by a
speaker are produced either in a stressed or unstressed state.
The number of spoken sentences ranges from 13 to 47, as can
be seen in Figure 1 and totals 280. The number of unstressed
and stressed samples is balanced, with 140 stressed- and 140
unstressed sentences. The success of the stress induction was
checked by asking the participants to indicate their stress level
before the start, immediately after the Trier Social Stress Test
and after reading the emotional sentences. [7]

B. Preprocessing

Preprocessing steps consist of scaling, as only the features
were provided, and Principal Component Analysis (PCA).

Fig. 1. Number of utterances per speaker

The feature extraction was done by Silke Paulmann from
the raw audio files, which were recorded for the before-
hand mentioned dataset. The Compare 2016-feature set from
OpenSmile-Toolbox [22] was chosen. It consists of energy,
spectral, cepstral (MFCC) and voicing related low-level de-
scriptors (LLDs), also logarithmic harmonic-to-noise ratio
(HNR), spectral harmonicity, and psycho-acoustic spectral
sharpness [23]. It combines 6373 features and is optimized
regarding pitch, jitter extraction and computation of parameter
ratios [24]. An example of features extracted from stressed
and unstressed speech is shown in Figure 2. For Figure 2,
all features were normalized between -1 and 1. To train and
test the models label vectors were extracted from the data,
which allowed the models to be classified as “stressed” and
“unstressed”. This work therefore shows a two-class problem.
Emotions have not yet been analyzed or classified. Scaling was
done using the Standard Scaler from scikit-learn [25], after the
data was parted into training and testing data. This was also
the case for PCA. PCA was not done with every evaluation,

Fig. 2. Features of an utterance with stress and without stress



TABLE IV
STRESSED SPEECH RECOGNITION - STANDARD DEVIATIONS

Standard deviation Dummy MLP PA SGD SVM-R GNB DT RF SVM-O HAT HT AMF ARF
TTS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GroupK 15.2 20.2 8.9 11.7 43.3 29.8 19.0 32.5 43.3 23.1 29.0 37.2 45.0
LOSOCV 8.0 30.9 30.2 31.7 27.2 19.7 22.8 35.2 27.2 20.0 20.6 9.2 24.5
LOSOCV + 3 10.5 28.7 27.9 22.8 28.8 19.5 13.0 41.6 28.8 22.9 19.0 12.8 15.2
LOSOCV + 6 12.1 23.1 21.5 19.7 32.0 24.6 18.5 38.5 32.0 27.3 25.1 23.0 16.3
LOSOCV + 9 17.3 20.4 22.4 26.1 31.5 25.9 15.2 36.6 31.5 27.6 27.9 10.0 17.9
LOSOCV + PCA 1 14.4 22.2 23.3 23.9 16.5 33.6 10.6 9.4 16.5 0.0 0.0 9.5 22.8
LOSOCV + PCA 2 10.0 20.7 20.0 26.3 13.6 34.9 7.7 11.0 13.6 33.3 0.0 15.3 16.5

TABLE V
STRESSED SPEECH RECOGNITION - EVALUATION RESULTS (MEMORY USAGE IN MB)

Dummy MLP PA SGD SVM-R SVM-O GNB RF DT HT HAT AMF ARF
0.0005 14.596 0.0495 0.0495 11.9836 11.9834 0.1951 0.3368 0.0034 47.8473 47.8533 299.2545 24.8498

only in two cases. The decompositional PCA from scikit-learn
[25] was chosen. While the first PCA reduced the feature set
to 3000 features, the second one reduced it to 1500.

C. Machine Learning Methods

Used ML Methods are from scikit-learn [25] and river
[26]. Taken from scikit-learn were Dummy Classifier (DC),
Multilayer Perceptron (MLP), Passive Aggressive Classifier
(PA), Stochastic Gradient Descent Classifier (SGD), two Sup-
port Vector Machines with C-Support and different Ensemble-
Methods, which were One-Vs.-One and One-Vs-Rest (SVM-
O, SVM-R), a Gaussian Naive-Bayes Classificator (GNB),
Random Forest (RF) and Decision Tree (DT). As these Meth-
ods use the “-fit”-method for training, their input vectors were
either size 280x6373, 280x3000, or 280x1500, depending on
whether PCA was used. From River the Hoeffding Tree (HT),
Hoeffding Adaptive Tree (HAT), Aggregated Random Forest
(ARF) and Aggregated Mondrian Forest Classifiers (AMF)
were used. As river classifiers are trained example by example
their input vectors were size 1x6373, 1x3000, or 1x1500,
depending on whether PCA was used. All classifiers were
used with their default settings, except for the DC, which was
used with the ”stratified” prediction strategy because of the
sometimes imbalanced testing data.

D. Evaluation

Different evaluation strategies were used to test robustness
and estimate suitability for usage in the real world, with
the first one being a subject-dependent train-test split (TTS)
and the second one a nested, subject-independent leave-one-
subject-out cross validation (LOSOCV) without finetuning. In
the TTS 30% of the samples were reserved for testing and
70% for training. Training and testing data was stratified, to
avoid bias. After that nested LOSOCV was done, for a subject-
independent testing approach.

As a subject-independent approach produces unbalanced
data, a GroupKFold evaluation was also performed. The data
for GroupKFold was split into three parts, with two speakers

in the test set and four in the training set to avoid subject-
dependency. The speakers were grouped so that there was
always one stressed and one relaxed speaker in the test group,
also taking the number of utterances into account. One speaker,
namely 07P, was excluded from this approach. Recall was
chosen as the evaluation metric for almost all predictions due
to the highly unbalanced LOSOCV data. As speakers are either
stressed or not, the subject-independent test data contains only
one class and there are no true negatives or false positives.
Later, training data from LOSOCV was induced with vary-
ing numbers of statements from the test subject to simulate
calibration. First, three extra samples were included in the
training (LOSOCV + 3), then six (LOSOCV + 6) and finally
nine (LOSOCV + 9). These samples were omitted from the
test set.
In a final approach, a normal LOSOCV was performed with
a feature set reduced py PCA. In the first PCA the number of
features was reduced to 3000, in the second to 1500.
The models’ memory consumption, virtual RAM usage and
the time required to classify a sample were also taken into
account. The basis for calculating these values are the models
created with the first LOSOCV. To calculate the speed and
RAM usage, the models were fed with all samples and the
average of all values obtained was taken across all classifiers
of a type. All prediction speed and RAM usage calculations
were performed on a Raspberry Pi 4 Model B with 8GB of
RAM, and all other tasks were performed on a ThinkPad P15
Gen2.

IV. RESULTS AND DISCUSSION

In this sub-chapter results are shown in Tables II to VII and
discussed. All values shown in Table II are means of all cross-
validations, except for the TTS evaluation. The values shown
in IV represent the standard deviation of the classification
recalls between all test folds. Therefore, there can be no
standard deviation in the first row for TTS. It can be seen that
the best results are obtained by PA and SGD on a TTS, with
a recall of 83.3%. Since PA has a better balanced accuracy
(89.3%), this classifier outperforms the other methods tested,



TABLE VI
STRESSED SPEECH RECOGNITION - EVALUATION RESULTS (PREDICTION SPEED IN SECONDS)

Dummy MLP PA SGD SVM-R SVM-O GNB RF DT HT HAT AMF ARF
0.0067 0.0902 0.0802 0.0670 0.0620 0.0583 0.0058 0.0736 0.0088 0.1026 0.0620 0.0025 0.0127

TABLE VII
STRESSED SPEECH RECOGNITION - EVALUATION RESULTS (RAM USAGE IN GB)

Dummy MLP PA SGD SVM-R SVM-O GNB RF DT HT HAT AMF ARF
4.7150 4.7609 4.7677 4.7781 4.7853 4.7820 4.7125 4.7734 4.7191 4.7521 4.7354 4.6659 4.7273

while SGD comes second with a balanced accuracy of 86.9%.
As a TTS does not necessarily resemble real usage, LOSOCV
and GroupKFold were used. The results are worse here,
with GroupKFold reducing recalls by an average of 22.2
percentage points. The DC was not included in these average
calculations. When LOSOCV was used, the average drop
was 28.3 percentage points. Also the performance loss with
GroupKFold appears to be very sharp. The best classifiers
with these evaluation methods were PA with 64.1% recall in
GroupKFold and 59.1% recall in LOSOCV.
After observing these results, it was theorized that a reduced
feature set or pre-training with subject-specific examples might
be useful. Starting with the pre-training, an average improve-
ment of 6.6 percentage points can be seen, compared to the
classical LOSOCV, with only 3 subject-specific examples.
Performance improved in all cases when more domain-specific
training examples were used, on average by 13.2 percentage
points with 6 additional domain-specific examples and by 19.7
percentage points with 9 additional examples. Even with nine
subject-specific training samples, classification results were
worse than with classical TTS. The loss of recall between TTS
and training with nine extra samples ranged between 8.7 and
21.8 percentage points. Only AMF and ARF performed better
with LOSOCV and extra samples than with TTS. With only six
subject-specific extra examples their performance improved
by 19.6 and 5.9 percentage points, with nine subject-specific
examples by 17.3 and 18.1 percentage points respectively.
PCA did not improve the original LOSOCV results, as with
the first LOSOCV the prediction recalls were generally worse,
sometimes even dropping to 0% recall. For the first PCA,
where the features were reduced to 3000, recalls of the results
dropped between 2.6 and 73.8 percentage points compared to
TTS. For the second PCA results lost between 2.6 and 71.4
percentage points.
Regarding the memory consumption for storing the classifiers,
presented in Table V, the methods from the river library are
more expensive, while the classifiers from scikit-learn are
leaner. AMF uses an exceptionally large amount of memory
with an average of 299.2545 MB, the leanest method is the
DT with an average of only 0.0034 MB. This behavior can not
be translated to processing speed, presented in Table VI. The
river classifiers, especially the AMF, exceed expectations with
an average speed of 0.0025s per sample, the slowest model

is the MLP with 0.0902s. The average virtual RAM usage of
computing one classification is shown in Table VII and does
not vary much. Values are within a range of 4.6 and 4.8 GB
of RAM.
The balanced accuracies of TTS can be compared with the
state of the art. The performance in this paper is similar to
that of Partila et al. [14], beating the results of Yao et al. [15]
and Hilmy et al. [13]. A comparison with Avila et al. [11]
is difficult, because this paper used only two classes, while
Avila et al. used 2, 4 and 9, and no deep learning methods
were tested in this paper. A result that can be compared is
the two class discrimination with SVM and OpenSmile by
Avila et al. where they achieved 68% accuracy [11], which is
worse than the results obtained in this paper. The classification
accuracy of Dhole et al. is still better than the results of this
paper. As they achieved their good accuracy using a custom
neural network, their performance could be explained by the
advantage of deep learning.
Several observations can be made regarding potential real-
world use. Firstly, subject-independent testing ensures a sharp
reduction in the quality of the performance metrics obtained.
This behavior suggests that use with completely unknown data
is not yet realistic. Secondly, the training of test data with
patient-specific samples improves classification recalls. This
suggests that calibration of classifiers may be a way to provide
a higher standard. Thirdly, reducing features with PCA does
not improve performance and suggests that the most important
features for stress prediction from speech may not even be
in the set. Finally, while none of the classifiers produced
prediction speeds that would be a hindrance in a conversational
or diagnostic setting, the relatively high RAM consumption of
all the classifiers may preclude their use in smaller devices
and the memory consumption for storing the classifiers varies
widely and may also be a bottleneck for use in small devices.
In general, the PA seems to be the most promising classifier
at the moment, with comparably high performance for both
subject-dependent and -independent methods, low memory us-
age for the stored model, RAM usage similar to other models,
and only prediction speed at the lower end of performance,
but not in a way that would hinder a diagnostic process or
conversation.



V. CONCLUSION AND OUTLOOK

This paper presents an approach to resource-efficient stress
detection methods based on speech. This could pave the way
for making stress detection accessible in the most remote or
disadvantaged communities. To achieve this goal, different ML
classifiers were trained and tested, starting with a classical
TTS and moving to subject-independent scenarios to get
more realistic results. Resource-related parameters such as
prediction speed, RAM usage and memory consumption when
saving the model were also monitored.
PA outperformed most of the researched state-of-the-art meth-
ods in the classical train-test split, but could not beat the cus-
tom neural network of Dhole et al. [10]. Subject-independent
scoring methods reduced the performance of the tested classi-
fiers, and even calibrating with samples from the test subjects
improved classification results only slowly. Reducing the num-
ber of features with PCA did not increase classification recalls
in most cases, suggesting that the most important features for
stress detection may not be in the used feature set. Results
suggest that stress can be detected in speech without deep
networks, but the performance of the methods still needs
improvement. A larger dataset might improve classification,
as might the use of stress classifiers that are particular to
certain emotional subgroups, i.e. using emotion recognition
beforehand. Although Paulmann et al. describe that mean pitch
and mean amplitude are good predictors for estimating speaker
stress levels, they also write that such features do not always
seem to tend in the same direction [7]. Rather, features behave
differently across sets of emotions, but express more similar
patterns in these sets [7]. It can therefore be theorized that
the expression of stress is not only highly individual but also
dependent on the emotion expressed. Planned future actions in
this area of research are therefore to use emotion recognition
before or together with stress classification, but also feature
importance analysis.
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