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Abstract. A fundamental step in the development of machine learning
models commonly involves the tuning of hyperparameters, often leading
to multiple model training runs to work out the best-performing configu-
ration. As machine learning tasks and models grow in complexity, there is
an escalating need for solutions that not only improve performance but
also address sustainability concerns. Existing strategies predominantly
focus on maximizing the performance of the model without considering
energy efficiency. To bridge this gap, we introduce Spend More to Save
More (SM?), an energy and hardware aware hyperparameter optimiza-
tion implementation based on the widely adopted successive halving algo-
rithm. Unlike conventional approaches including energy-intensive testing
of individual hyperparameter configurations, SM? employs exploratory
pretraining to identify inefficient configurations with minimal energy ex-
penditure. Incorporating hardware characteristics and real-time energy
consumption tracking, SM? identifies an optimal configuration that not
only maximizes the performance of the model but also enables energy-
efficient training. Experimental validations across various datasets, mod-
els, and hardware setups confirm the efficacy of SM? to prevent the waste
of energy during the training of hyperparameter configurations.
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1 Introduction

The rising complexity of Artificial Intelligence (AI) applications solved through
advanced deep-learning models continuously increases the energy demand of
the whole Al sector. It is estimated that large language models like the popu-
lar GPT-4 may require between 52 MWh and 63 MWh of energy for training,
whereas inference may account for even more energy consumption over time
[24]. This trend is driven by the ubiquity of machine learning applications being
present in the majority of our daily lives. Considering the life cycle of an Al
model from initial development towards its final deployment possibilities, there
are multiple stages involved that may be optimized in terms of energy efficiency,
mainly due to the waste of resources [30].



2 D. Geifler et al.

This work accounts for the initial stages of the life cycle, with a focus on
optimizing the training process of machine learning models to generate a more
energy-aware and efficient solution for AI developers. Besides the quality of the
dataset and model architecture fitment to the desired task, hyperparameter op-
timization (HPO) is an integral part of a well-suited model. Two key hyper-
parameters, namely batch size and learning rate, significantly affect training
convergence quality and speed [13]. However, determining the optimal values
for these parameters, often hardware and task-specific, remains a challenging
task requiring selection by experienced developers at the first attempt. Various
strategies have been developed to improve the HPO problem, yet their only aim
is to maximize the model’s prediction performance. Additionally, due to trends
of supporting Al developers’ work with high-performance data centers, usually,
due to economic reasons, it is a simple but energy-intensive process to spawn
multiple training runs to manually explore the hyperparameter space. While
more efficient hardware has continuously been updated to alleviate the training
cost of trial and error, there lacks a holistic method that incorporates hardware
energy footprint into the model training HPO process.

To resolve this issue, this paper presents Spend More to Save More (SM?), a
novel approach combining HPO and energy consumption tracking to generate a
profound strategy to sustainably improve the machine learning training process.
To the best of our knowledge, this work is the first work to optimize the hyper-
parameters while considering energy consumption. Our work makes significant
contributions to the field of sustainable HPO and can be summarized as follows:

e Implementing energy-aware training through hardware-based power moni-
toring.

e Deploying a sequential Successive Halving Algorithm strategy to minimize
energy waste.

e Extending the traditional training regime with exploratory components to
energy-efficiently explore hyperparameter configurations.

e Evaluating the SM? approach across three different scenarios of models and
datasets to validate our hypothesis of equal model performance while im-
proving energy efficiency.

2 Related Works

2.1 Hyperparameter Optimization

The landscape of HPO covers multiple different methodologies from different
areas to explore and manifest the best-performing hyperparameter setting. In
many cases, there is no clear identification of the best-performing strategy pos-
sible because the efficiency of the algorithm depends on the respective machine
learning problem to solve and the user’s preferences. Nevertheless, there is a
trend of different HPO categories being fused to elevate the performance com-
pared to the traditional algorithms. [7]



Spend More to Save More (SM?) 3

Starting with the classic methods, grid search is the most common and sim-
ple strategy next to the manual exploration of hyperparameters. The strategy
is based on an initialized grid that covers the range of each hyperparameter
[20]. Due to its simplicity, it is commonly used but suffers from inefficiencies in
high-dimensional scenarios due to many low-performing training runs and their
independence from each other. Another simple but more efficient strategy in this
scope is random search [4]. Instead of exploring a fixed grid, the hyperparameter
space is randomly sampled to provide a more stochastic exploration. Due to its
ease of implementation, it still serves as a baseline benchmark.

Another category involves evolutionary strategies to work out the best hyper-
parameter setting [6]. Such algorithms explore the hyperparameter space based
on the biological concept of evolution. Throughout a fitness function, a popula-
tion of hyperparameter configurations is evaluated whereas the worst-performing
configurations are removed. Instead of proceeding with the most promising con-
figurations, similar to natural evolution, the next iteration consists of crossovers
and mutations of the previous configurations. Works like [2] and [8] confirm the
usability of evolutionary strategies as state-of-the-art.

Bayesian optimization constitutes another strategy for HPO, introduced in
works such as [29]. Such algorithms can efficiently explore the hyperparameter
space by constructing probabilistic surrogate models and using acquisition func-
tions to guide the search. Introduced by [3], Tree-structured Parzen Estimators
(TPE) is a Bayesian optimization variant that ranks the performance of HPO
configurations. TPE has shown impressive results, especially in high-dimensional
optimization tasks, making it one of the current state-of-the-art HPO algorithms
[12].

Hyperparameter optimization through Reinforcement Learning (RL) was re-
cently introduced through works like [16] and [32]. Instead of systematically ex-
ploring the hyperparameter space, RL consists of a sequential decision-making
process to find the best configuration based on the policy that guides the RL
agent along the desired path. In terms of sustainably and efficiency, this solution
is quite complex and requires many training iterations due to the expensive ex-
ploration and exploitation trade-off in RL. Moreover, instead of optimizing only
the traditional model, also the RL model requires optimization.

Pruning-based methods, such as the common Successive Halving Algorithm
(SHA) [23], aim to efficiently allocate computational resources to promising hy-
perparameter configurations in a parallelized environment. By iteratively termi-
nating less promising configurations, such methods reduce the overall training
time while maintaining a focus on high-performing settings. This bandit-based
algorithm demonstrates a practical approach to balancing exploration and ex-
ploitation, making it well-suited for high-dimensional HPO scenarios. Through-
out extended works like [22], multi-fidelity optimization improves SHA by remov-
ing predefined evaluation timestamps. Instead of training all configurations in a
synchronized, parallel environment, resources can be reallocated asynchronously
to generate a more dynamic training procedure. Works like [21] and [31] are
currently considered state-of-the-art in this field. Due to its benefits in terms of
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efficiency and its overlaps with our ideas to stop less-promising configurations
early in the training process, we utilize the SHA approach as our foundation.

2.2 Energy Consumption Tracking

In the AT sector, energy consumption tools are still a niche, especially when it
comes to generating awareness about the energy expenditure for training ma-
chine learning models. Currently, there is a small but growing list of software
available with most of them utilizing the same approach to gather the power
consumption data from the hardware manufacturers’ utility logging. They are
usually designed to capture energy information by building an additional layer
between the system’s hardware configuration and the user’s model training pro-
cess [15]. Generally speaking, the power consumption of the Graphics Processing
Units (GPU) is considered the largest part of the training process as it performs
the core work with the parallel processing of mathematical tasks [26]. Never-
theless, other hardware components and even secondary power consumers like
the cooling system or the power supply unit (PSU) itself contribute to the over-
all energy consumption. Therefore, there is great interest in tracking the power
consumption of the full system to minimize deviations.

As a general rule, the energy consumption is calculated from the current
power consumption and the polling time interval set in the software. The energy
per epoch, commonly stated in watt per hour (Wh), is a common metric and
follows the calculation of Equation (1).
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Works like Carbontracker [1], eco2Ai [9] and Green Algorithms [19] utilize this ap-
proach to gather data from the hardware. To handle missing elements in the calcula-
tions, software like Carbontracker multiplies its results with an efficiency constant to
incorporate untracked secondary power needs and efficiency losses. With an extended
focus on user experience, projects like Cloud Carbon [11] or CodeCarbon [10] extend
the gathered knowledge and present it in analytic-based dashboards. Based on the
calculated energy consumption and the user’s location, the average local energy mix
from fossil and renewable energy sources is utilized to estimate the carbon emissions in
kilograms or even tons [18]. On top of that, since the carbon emissions are difficult to
visualize or imagine, the conversion into kilometers driven by car, flights with a plane,
or the number of phones charged is a standard practice to make the user aware of the
generated carbon emissions amount.

3 Energy-Aware Training

A major goal of this work is to generate energy awareness within the training process
to finalize a well-performing model trained through hardware operated in an energy-
efficient state. Instead of compromising between performance and sustainability, we
envision SM? as a strategy to prioritize two objectives at the same time. During our
initial tests, we established the energy expenditure per trained epoch as a suitable met-
ric to calculate the efficiency of the current setup. As discussed in Section 2.2, a precise
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solution for tracking the total energy consumption of all involved hardware components
is still missing. Consequently, our work focuses on the energy efficiency of the GPU,
the primary energy consumer for training deep-learning models in a parallelized and
hardware-accelerated environment [26].

To properly monitor the energy consumption of the GPU, we decided to utilize
the Carbontracker library [1]. Due to its technical and data-driven approach compared
to the other available solutions, it provides an appropriate foundation to consciously
track the energy demand of hardware. The library operates as a background service,
tracking the GPU power through the hardware’s System Management Interface (SMI)
over time to calculate the consumed energy. In our implementation, based on version
1.2.5. of Carbontracker, we extended its capabilities to facilitate live tracking of energy
consumption instead of logging the data to files. Throughout a callback function, the
current power consumption and the energy of the current epoch can be obtained. This
integration ensures that SM? can directly benefit from the relevant information.

Since different manufacturers offer their unique interface solutions for measuring
and they may differ in terms of true and measured GPU wattage, we decided to test
SM? on CUDA-supported GPUs to provide reproducibility and comparability of re-
sults. Currently, SMI provides information only about the total power consumption of
the GPU, neglecting the number of processes or threads concurrently running in par-
allel on the GPU. Therefore, Carbontracker is unable to partition the overall energy
consumption to multiple processes, whereas our implementation of SM? is based on a
sequential architecture to ensure proper tracking within these limitations.

In theory, a more comprehensive implementation could include extended hardware
information logging for different manufacturers or other hardware components, such as
the Central Processing Unit (CPU) or the PSU. However, the inclusion of such com-
ponents would necessitate careful validation to ensure the validity of cross-comparable
measurements. To the best of our knowledge, including the discussed restrictions, our
custom implementation of Carbontracker to forward the power and energy information
from the SMI directly into the training loop is currently the first and most promising
solution for SM2.

4 SM?2: Spend More to Save More

HPO algorithms usually form an additional layer throughout a library or framework on
top of the traditional training to optimize selected hyperparameters [5]. With the aim
to maximize the final model’s performance, they usually do not account for the waste
of resources to explore the hyperparameter space. As a result, HPO is often connected
with time-consuming and energy-intensive training of weak models, especially in terms
of rudimentary algorithms like random or grid search. Each setup of hyperparameters
is trained, and the best version is taken as the final model. The unpleasant side, which
is usually not presented in publications or advertisements, contains the number of less-
performing models, trained just for the purpose of exploring the hyperparameter space.
Together with the growing size of datasets and the complexity of machine learning
models, the wasted energy adds up and further supports climate change if fossil energy
resources are utilized [1].

As already introduced in Section 2.1, SHA and its variations like ASHA are promis-
ing solutions and are considered state-of-the-art to the best of our knowledge. To sum-
marize, SHA is an iterative hyperparameter optimization method in which the number
of inspected hyperparameter configurations is pruned exponentially over time until the
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final, best-performing model remains. The idea of terminating less-performing mod-
els early in the training process to decrease the waste of resources supports our idea
for sustainable HPO, wherefore we decided to implement SHA as a general basis for
"Spend More to Save More". As a motivation, we argue that spending slightly more
energy for a single training run is more sustainable than training models
multiple times, considering that such a strategy can find the optimal hyperparameter
configuration satisfactory.

Based on previous research in [13], batch size and learning rate rule the energy
efficiency for training a machine learning model, whereas we focus on those two hy-
perparameters in this work. It is noteworthy that SM? is not limited in this regard,
however, there is not such a strong influence on efficiency by other hyperparameters.
Operating independently of the core training process, custom optimizers, models, and
loss functions can still be utilized and provide evidence for universality.

Identifying a suitable batch size lets the GPU run in an efficient power state based
on the GPU utilization. For SM? we do not utilize the wattage as a metric, the energy
per epoch gathered from Carbontracker serves as an indicator of how efficiently the
current batch size matches the hardware power state. On the other hand, operating
the GPU in its efficiency window may not contribute to the overall efficiency of the
training run if too many epochs are necessary to complete the training. Therefore,
it is essential to work out a well-performing learning rate to speed up the model’s
convergence. To solve this, we implement cyclical learning rate exploration within the
SHA algorithm to identify the optimal setting [27]. With such process, we aim to set
the largest stable learning rate, so that the convergence speed is maximized without
disturbing the training.

To generate a more efficient HPO algorithm compared to existing approaches, we
split up the training into an alternating process of exploratory training and thorough
training. With exploratory training on fewer batches of the dataset and only one epoch
duration, SM? identifies trends of the current selection with less energy waste to nar-
row down the hyperparameter space. The thorough training represents the traditional
training on the full dataset across multiple epochs.

An objective function finally unites the introduced sustainability considerations
with the main aim of the model to maximize its prediction performance.

4.1 Batch Size Optimization

Next to the dataset and model architecture, batch size is a crucial parameter to control
the utilization of the GPU [33]. To efficiently utilize the GPU, one might think that
maximizing the GPU utilization results in less energy consumption due to the improved
training speed. However, depending on the specific hardware, the efficiency window of a
GPU usually lies below the maximum utilization due to bottlenecks like data transfer
or cooling issues [33]. As such information is not available, calculating the optimal
batch size for efficiency beforehand is impossible, wherefore we utilize SHA and the
energy per epoch metric as a solution. Throughout the training, our energy-aware
implementation tracks the average power and duration of each epoch and calculates the
energy consumption for training one epoch. Based on such metrics, energy awareness
can be integrated into the training process. Within the exploratory training, the energy
per epoch for each batch size configuration is monitored and taken into account with
the objective of removing inefficiently trained configurations.
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4.2 Learning Rate Optimization

In addition to measuring the energy per epoch to train the model in an efficient en-
vironment, the number of epochs trained needs to be minimized to keep the overall
energy consumption low. To evaluate the learning rate effectiveness, cyclical learning
rate scheduling is embedded into the exploratory training phase [27]. For each batch
in the exploration phase being passed through the model, a different learning rate is
tested through alternation and the respective loss is documented. As a general rule,
low learning rates tend to unnecessarily extend the training process, whereas larger
learning rates may increase loss fluctuations [28].

As shown in Figure 1, we analyze the inspected learning rates computationally
by calculating the second derivative to receive the curvature of the loss. Through a
sliding window approach, we can identify windows with a low curvature. By sorting
the windows based on the curvature and the mean learning rate of the window, we
can identify the largest learning rate that maintains stability throughout the training
process. In the case of Figure 1, we marked the selected learning rate window with two
dotted lines. Selecting the largest learning rate within the identified window further
maximizes the learning rate selection in terms of shrinking the training time.

Learning Rate Range Plot Loss Curvature Plot
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Fig. 1. Computational analysis of loss curvature (blue) through the sliding window
to select the area with the largest stable learning rate based on the second derivate
(green). The optimal selection range is highlighted in red.

4.3 Objective Function

To include the individual optimization targets in the training process, we introduce an
objective function that determines the best-performing configurations of the current
set during the exploratory phase. Following the general SHA rule, the objective is
necessary to halve the number of configurations until only one configuration remains.
Further, since SM? envisions the hyperparameter optimization as a holistic system,
especially from the sustainability aspect, it is a key necessity to merge the observations
for each hyperparameter to finalize a combination that fulfills the needs.

The introduced objective function in Equation (2) accounts for the performance
metric of the trained model, the consumed energy per epoch, and the selected, stable
learning rate. To compare those attributes, we rescale each list of attributes into the
range between 0 and 1 across all explored configurations. Thus, the calculated objec-
tives as well as the three attributes themselves are independent of any influences from
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the specific model and the utilized hardware. Additionally, depending on the nature of
the attributes, we invert them to either reward higher values, like for the learning rate,
or lower values, for instance, the energy consumption. Two parameters o and 3 allow
the balance between the three attributes. They need to be set beforehand as described
in the following Section 5.1. For each configuration, the objective is calculated whereas
after a full exploratory iteration, the less-performing half is dropped.

fla,f) =axP+(l-a)x(BxE+(1-p)xLR) (2)
P = Performance, ' = Energy, LR = Learning Rate

Once there is only one configuration remaining, the SM? algorithm remains in
thorough training mode, with only a focus on further learning rate optimization. From
this point onwards, it can be assumed that the best possible efficiency per epoch has
been found for the training and hardware combination and that it is now only possible
to optimize the training duration to minimize energy demand.

4.4 Algorithm

The SM? algorithm follows the nature of the introduced SHA approach, implemented
in a sequential manner due to the energy consumption tracking limitations. As shown
in Algorithm 1, SM? consists of multiple loops to handle configurations sequentially.
The outermost while loop represents the stopping criteria, which can be set depending
on the project and the user’s preferences. Afterward, the whole training is split up into
two training modes, exploratory and thorough training. For the thorough training, we
selected the split into test and training data according to the best practices of each
dataset, whereas the exploratory training contains a quarter of the training dataset
as a randomly selected subset of batches to save resources. While thorough training
represents traditional training, the logic and the resulting adaptions to the code of SM?
happen in the exploratory mode. Iterating through each configuration and the number
of epochs to train, exploratory training has the sole benefit of improving training based
on the objective function. Both modes are isolated from each other by backing up the
models after each iteration, wherefore training and testing in exploratory mode does
not contribute to the final model’s performance. After selecting the final configuration
through the alternating process, the algorithm stays in thorough training mode till the
stopping metric is triggered. On the other hand, the independence between SM? and
the thorough training mode enables custom implementations by the user, for instance,
to integrate the desired optimizer or early stopping metric. Even though exploratory
training contributes towards increased energy consumption in the short term, the ben-
efit of exploring batch size and learning rate outperforms the computational overhead
in the long term observations of the total energy of the project. This strategy again
manifests the idea of "Spend More to Save More".

5 Experiments

5.1 Setup

To validate the universality and effectiveness of the proposed SM? approach, we con-
ducted experiments on three different machine learning scenarios, each utilizing a dis-
tinct model architecture and dataset. Starting with a ResNet-18 model trained on the
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Algorithm 1 SM? Algorithm

1: Initialize SM? Setup

2: while not stop do

3 for mode in {expl, thorough} do
4 for config in Configs do

5: Prepare config-related data
6: for epoch in Epochs do
7.
8
9

if mode=expl then
Exploratory Training (1 epoch)
Isolated Environment

10: Dataset Partition (25% random subset)
11: else

12: Thorough Training (5 epochs)

13: Full Dataset (According to best practice split)
14: end if

15: end for

16: end for

17: if mode=expl then

18: Evaluate Exploration

19: Drop less performing configs

20: end if

21: end for

22: Update stopping condition
23: end while

24: return model, energy

CIFAR-10 dataset [17] as an initial validation of our approach, we further added an
LSTM model trained on the Energy-Household dataset [14] and a Transformer model
trained on WikiText2 [25] to check the usefulness of SM? for different complexities.
The model architectures and their respective hyperparameters were selected following
best practices for each scenario. Throughout all experiments, model architectures and
dataset preprocessing procedures were maintained consistently. Additionally, all exper-
iments were run three times on different hardware configurations using Nvidia RTX
A6000, Nvidia Tesla V100-32GB, and Nvidia GeForce RTX 3090, ensuring hardware
independence.

From the implementation side, we utilized PyTorch as the basic framework to
thoroughly execute SM? in the hardware-accelerated GPU environment. To isolate
the energy consumption and overall performance, we added an extended initialization
process. Each spawned training setup was initialized with its own model, optimizer,
and energy tracker instances. By deep-copying the respective instances and fixing the
random seed in PyTorch, we ensured that each configuration could be sequentially
executed throughout the same training loop. That being said, the only connection
between the configuration is the introduced objective function and the shared dataset.

To minimize energy loss and idling of the GPU due to data transfer, we implemented
a flexible batch-size system through a custom data loader. Instead of commonly passing
each batch with its respective size to the device depending on the current configuration,
we preprocessed the data and preloaded batches into the GPU memory. The prepro-
cessed dataset was divided into batches of the smallest configuration. With a custom
iterator, configurations of larger batch sizes were trained on a temporary concatenation
of batch sizes within the GPU memory. If the size of the GPU memory cannot retain
the full dataset, we utilize a queuing strategy based on a first-in-first-out strategy.

Throughout our initial tests, we experimented with the o and 8 parameters of the
objective function to check if they require any dynamic adaptions depending on the
models. Especially for the « value, a balance between performance metrics and sustain-
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Fig. 2. Evaluation of SM?: Each row represents a different model and dataset combi-
nation; Columns represent Performance, Energy, and Learning Rate; Vertical Lines in
the graph highlight exploratory epochs.

ability is crucial to consider. It is up to the user to decide how much weight the user
wants to put into the energy consumption. However, a parameter value below 0.5 usu-
ally tends to prioritize efficiency, whereas the model performance drastically decreases.
To strike a balance for including both objectives while allowing performance to keep
a benefit against the efficiency, an a of 0.75 was found to yield the most promising
results base don initial tests ranging from 0.5 to 0.95. Since multiple configurations
may achieve the desired performance, such a strategy settles the most efficient con-
figuration out of the best-performing models. For 3, controlling the balance between
batch size and learning rate schedule, we kept an equal setting of 0.5 since both have
an equal possibility to improve efficiency. All the following experiments were therefore
conducted with parameters a=0.75 and 5=0.5.

Since SM? is independent of the model architecture or optimizer, users are open
to customize and adapt the setup to their desired project. The range and number of
batch sizes and learning rates need to be set beforehand next to the number of iterations
through exploration and thorough epochs. For our experiments, we set up 8 different
batch-size configurations with 20 inspected learning rates in the range of 0.001 to 1
during exploratory training. The exploratory training phase was set to 1 epoch trained
only on a quarter of the dataset, whereas the thorough training was set to 5 epochs
and extended to 10 epochs after the final configuration was determined.

5.2 SM? Evaluation

The results for evaluating the SM? approach are visualized in Figure 2. Each row rep-
resents a different scenario, with the ResNet model constituting a medium complexity
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task, LSTM a low complexity task, and the Transformer model a high complexity re-
spectively. Each column plots the three acquired attributes, performance, energy, and
learning rate, which are merged into the objective function as introduced in Section 4.3.
Vertical dotted lines highlight the exploratory epochs, whereas the rest were conducted
in thorough training mode. It is worth mentioning that each plot visualizes the infor-
mation gathered before normalization across configurations. Further, we present the
results for training all scenarios on the Nvidia RTX A6000. Across our experiments,
the other two hardware setups shared similar results regarding the objective function
decision process while operating on different energy efficiency levels. Due to the restric-
tion on CUDA-based hardware supporting the SMI, we have not been able to test our
approach on differing setups from other manufacturers.

Starting with the performance, we visualize the common metrics for each scenario.
For the accuracy and R? score of the first two plots, higher values indicate increas-
ing model performance, whereas, for the last scenario, lower perplexity values state
higher performance. Across all three scenarios, the identified, final configuration se-
lected through successive halving was able to converge the training process.

However, a great explanation can be drawn from the charts when considering the
objective function. The large initial range of accuracy in the ResNet scenario from
0.1 for the weakest up to 0.45 for the best-performing scenario rules the decision by
passing the best-performing models to the next round. Due to the small differences in
energy consumption across the configurations, the slightly higher energy consumption
for Batch 64 is tolerated due to the o = 0.75 passing more importance to the per-
formance. On the contrary, even though the R* range for the second scenario shares
similarities to the first scenario, the significantly larger range of the tracked energy,
especially due to poor performing smaller batch sizes, leads to an increased impact
within the objective function. As a decision of SM?, training of batch 4096 is continued
due to the comparable low energy per epoch and finally outperforms the remaining
configurations. For the third, transformer scenario, perplexity does not influence the
beginning of the training. Similar to the second scenario, the energy attribute rules the
decision towards the smaller, more efficiently performing configurations.

Since energy and learning rate contribute to the final objective throughout the same
ratio set with 8 = 0.5, also the learning rate, shown in the third column, contributes
to the decision process. Even though the selection through the cyclical learning rate
process seems coincidental during the first exploratory phase, larger learning rate se-
lections usually support the final configuration decision within later epochs. Therefore,
we assess the learning rate as a decision supporter towards the advanced epochs with
fewer configurations remaining.

To summarize, for large deviations within the performance, SM? neglects efficiency
to a certain extent. As a matter of fact, training a model solely based on sustainability
aspects may result in another training run with additional energy consumption due to
unsatisfactory performance. On the other hand, SM? offers great potential to isolate
efficient configurations if similar performance is present.

5.3 Energy Compensation

Table 1 presents the total energy demand in watt-hours (Wh) for each experiment,
demonstrating the reduction in energy demand between o = 1.0 and o = 0.75, along
with the parity factor. To analyze the results in terms of their sustainability, we ex-
ecuted the scenarios with & = 1.0 and a vanilla training without the SM? approach.
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Table 1. Total energy demand (Wh) of SM? (a = 1.0 and « = 0.75) in comparison to
traditional vanilla training; parity represents the number of manual user HPO explo-
ration trainings in vanilla mode compared to SM?2.

Experiment |[SM?(a = 1)|SM?(a = 0.75) |vanilla (no SM?)|parity

ResNet18 49.7 45.8 (-8%) 26.0 1.76
LSTM 28.0 14.8 (-47%) 16.4 111
Transformer 48.5 40.7(-16%) 69.4 1.70

The o = 1.0 setting signifies a scenario where the objective function only considers
the model performance, whereas the energy efficiency improvement can be calculated
across the measurements. The reduction percentage provides insights into how much
energy consumption can be saved by incorporating sustainability aspects into the ob-
jective function. Parity represents the number of manual HPO explorations, typically
in a classic, iterative exploration by the user, that are needed to compensate for the
energy investment in SM? compared to such vanilla training.

As shown in Table 1, SM? managed to reduce the energy demand across all exper-
iments by incorporating the sustainability aspects into the objective function. For the
second scenario (LSTM), the decrease in energy consumption of 47% reflects the results
depicted in Figure 2, where the energy-based selection of the larger batch size played
a crucial role. In terms of final model performance, the first two scenarios shared the
same final performance, while for the third scenario (Transformer), the perplexity was
reduced by around 15 percent points when setting o = 1.0. Compared to the vanilla
experiment, trained with a traditional training loop while keeping identical parameter
setups and early stopping metrics, each setup requires at minimum two manual HPO
explorations for compensation. An additional run with a doubled amount of 16 con-
figurations and 40 inspected learning rates resulted in parity between 5 and 6 across
the scenarios. Therefore, the parity factor serves as a useful metric to estimate the
energy demand and provides evidence for the "Spend More to Save More" concept,
emphasizing the reduction of energy waste through inefficient HPO.

6 Conclusion and Future Work

In this paper, we presented "Spend More to Save More (SM?)", an energy-aware im-
plementation for sustainable hyperparameter optimization. Our approach enables the
simultaneous optimization of both model performance and efficiency, addressing the
critical need for energy-aware machine learning practices. We presented an objective
function as the core of SM? to beneficially balance model performance and energy con-
sumption. Although we give more weight to performance, energy efficiency can be the
deciding factor, especially in the area of equally performing configurations, to lead the
training to its efficient state. Our experiments prove the idea of decreasing the energy
demand without significant performance loss, especially when considering the whole
development life cycle. As a part of our future work, we envision an improved version
of SM? to include more energy information from other hardware components and man-
ufacturers. We envision a solution that dynamically adapts to the given hardware setup
and fluently scales to parallelized and multi-GPU environments. Extended work should
also adapt to less prominent hyperparameters to further maximize energy efficiency.
As an outlook, SM? can be provided in the form of a library to be integrated to the
traditional training workflows, offering a practical solution for researchers seeking to
incorporate energy-awareness into their machine learning models.
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