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Abstract

The integration of Artificial Intelligence (AI) into mobile networks has led to significant improvements in operational
efficiency, resource optimization, and security monitoring. However, the increasing reliance on AI has also introduced
vulnerabilities to Adversarial Machine Learning (AML) threats, which are expected to become even more critical with the
advent of 6G networks. While numerous AML techniques have been identified, not all pose substantial risks to mobile
communication systems. Implementing defenses against all possible attacks can be computationally expensive and may degrade
system performance. This study critically examines adversarial threats in AI-driven mobile networks, and attacks are categorized
based on their feasibility and real-world impact. A risk-based framework is presented to assist in efficiently prioritizing security
investments. The most critical AML threats to mobile networks are identified, and targeted mitigation strategies that ensure a
balance between security, computational efficiency, and system reliability are provided. The findings of this research serve as
a guideline for AI security implementation in future networks, promoting a strategic approach to adversarial defense while
maintaining high network performance.

This is a preprint of the publication which has been presented at the Eighth International Balkan Conference on Communications
and Networking

Index Terms

Adversarial Machine Learning, Mobile Networks, 6G security, AI risk mitigation, 5G, 6G

I. INTRODUCTION

Artificial Intelligence (AI) is a transformative technology
revolutionizing a myriad of domains, including healthcare,
finance, and transportation. Mobile communication systems
have also embraced this trend, leveraging AI to enhance
operational efficiency, optimize resource allocation, and enable
advanced features such as real-time anomaly detection and
predictive maintenance. With the advent of 6G networks, the
role of AI in mobile networks is poised to become even more
critical, enabling ultrafast data transfer, seamless connectivity,
and intelligent automation across applications such as aug-
mented reality, autonomous systems, and interconnected smart
infrastructures [1].

However, the integration of AI into mobile networks in-
troduces significant security challenges. These risks can be
categorized into two broad areas: inherent AI risks and ad-
versarial risks. Inherent risks stem from issues like model
hallucinations, biases, and flawed implementations, which can
lead to erroneous decision-making, inaccurate outputs, or
exploitation vulnerabilities. Addressing these requires secure
development practices and adherence to frameworks such as
the Secure Software Development Framework (SSDF), empha-
sizing robust and ethical AI deployment across organizational
infrastructures.

The second type of risk is adversarial risks, which arise
from deliberate, malicious actions by adversaries aiming to
compromise, disrupt, or manipulate AI systems for their gain.
Adversarial machine learning (AML) is a key concern in

this context. AML exploits vulnerabilities in AI models by
subtly altering input data to produce incorrect or misleading
predictions. In mobile networks, adversarial attacks could
compromise authentication systems, disrupt security moni-
toring, or undermine anomaly detection, potentially causing
widespread operational failures and security breaches.

One of the fundamental challenges in addressing these
adversarial risks is the lack of information-theoretic security
guarantees for AI systems. Unlike cryptographic algorithms
that can theoretically offer unbreakable security under ideal
conditions, AI systems inherently lack such guarantees. In
fact, theoretical results indicate that achieving information-
theoretic security for existing AI paradigms is impossible [2].
This highlights a critical gap in the security landscape of
AI systems, where vulnerabilities are not just a consequence
of flawed implementation but an intrinsic limitation of the
technology itself.

Despite advancements in adversarial defenses, current miti-
gation strategies—such as adversarial training, gradient mask-
ing, and robust optimization—often come with trade-offs.
These include increased computational costs, reduced model
accuracy, and limited scalability in real-world applications. In
the high-demand environment of 6G mobile networks, where
performance and efficiency are paramount, these trade-offs are
particularly challenging to navigate.

This paper aims to differentiate between adversarial attacks
that pose real threats to mobile networks and those that have
limited practical impact. Instead of treating all AML threats
as equally harmful, we conduct a critical assessment of attack
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feasibility and impact in the context of mobile networks. The
key contributions of this study are:

• Identification of High-Risk Adversarial Attacks: We eval-
uate the wide range of adversarial attacks in AI-driven
mobile networks and determine which ones present real-
istic, high-impact threats.

• Risk-Based Prioritization for Defenses: By analyzing
attack feasibility, we provide a framework to help or-
ganizations focus on cost-effective security investments,
avoiding unnecessary mitigation strategies for low-risk
threats.

• Guidelines for AI Security in Mobile Networks: We
outline practical recommendations to ensure robust yet ef-
ficient AML defenses, balancing security, computational
efficiency, and system performance in 6G networks.

The structure of this paper is as follows: Section II provides
an overview of the related work on adversarial machine
learning and its application to mobile networks. Section III
delves into the foundational concepts of adversarial machine
learning, describing attack vectors and vulnerabilities in ML
models. In Section IV, we discuss the role and challenges of
integrating ML into mobile network systems, focusing on 6G
technologies. Section V analyzes adversarial attacks specifi-
cally targeting ML-powered systems within mobile networks,
offering an in-depth understanding of the threats. Section VI
presents practical mitigation techniques, evaluating their effec-
tiveness and feasibility for real-world deployment, and Section
VII provides a discussion and recommendations for addressing
adversarial risks in mobile networks. Finally, Section VIII
concludes the paper with a discussion on implications, key
takeaways, and future research directions.

II. RELATED WORK

Recent research on adversarial attacks in mobile and wire-
less networks has expanded as ML integration within 5G and
emerging 6G infrastructures grows. Aminov [3] highlights
vulnerabilities in ML models used for 5G network slicing,
showing how adversarial attacks—such as FGSM, CW, BIM,
and PGD—target models like CNNs, LSTMs, and MLPs. They
propose a three-phase defense strategy that incorporates tech-
nical robustness and considers societal impacts, underscoring
ecological and ethical factors. Likewise, Rifa-Pous et al. [4]
discuss AI-driven 6G networks’ heightened risks from trust
and privacy vulnerabilities due to the disaggregated nature of
6G, calling for specialized defenses to secure these systems.

Sun et al. [5] examine privacy challenges within adversarial
machine learning for 6G, noting that while ML can enhance
privacy, it also introduces risks of adversarial misuse. They
advocate for privacy-centered defenses, such as differential
privacy and federated learning, as essential safeguards for 6G
networks. Meanwhile, Flowers et al. [6] and Sagduyu et al. [7]
explore adversarial attacks on RFML systems and cognitive
radio applications. Flowers et al. focus on evasion attacks in
spectrum sensing, while Sagduyu et al. investigate interference
attacks in 5G functionalities like spectrum sharing, showing
that current protocols are vulnerable to spectrum manipulation.

Ajayi et al. [8] provide a broader analysis across wireless
communication systems, emphasizing that adversarial attacks
exploit ML parameters in adaptive networks, stressing the need
for robust defenses in self-organizing environments.

This paper proposes an approach to assessing and prior-
itizing AML threats in AI-driven mobile networks. Unlike
previous work, it evaluates adversarial threats based on their
real-world feasibility and potential impact.

III. ADVERSARIAL MACHINE LEARNING

Adversarial attacks in Machine Learning (ML) involve de-
liberately manipulating input data to cause a model to produce
incorrect predictions. The core idea revolves around perturbing
an input feature vector x within a constrained norm ε such that
the model f(·) produces a misclassification or more generally,
an undesired output y′. Formally, the adversary aims to find a
perturbation A(x) such that:

∥A(x)− x∥p ≤ ε and f(A(x)) = y′ ̸= y,

where ∥·∥p represents the p-norm distance metric (typically
L1, L2, or L∞), ε is the maximum allowable perturbation
magnitude, y is the true class or label, and y′ is the adversar-
ially targeted class or label.

The implications of such attacks are far-reaching. For in-
stance, adversarial examples can enable spam or phishing
emails to bypass ML-based detection systems, exacerbating
cybersecurity risks. Similarly, financial systems relying on ML
for fraud detection could be manipulated to classify fraudulent
transactions as legitimate, resulting in significant financial
losses. Other scenarios include the leakage of personally
identifiable information (PII) or the theft of proprietary data,
such as labeled datasets or trained models, which represent
substantial investments for organizations.

Adversarial attacks can be broadly categorized into three
types, each posing distinct risks, namely Poisoning, Inversion
and Evasion.

The effectiveness of adversarial attacks depends on the
threat model, which defines the attacker’s knowledge and
capabilities. White-box attacks, the most severe but least prac-
tical, assume full access to the model, while grey-box attacks
involve partial knowledge, making them a more realistic threat.
Black-box attacks, despite limited access, remain effective by
refining inputs through iterative queries.

IV. MACHINE LEARNING IN MOBILE NETWORKS

The rollout of 5G mobile networks has marked a significant
technological milestone, offering enhanced bandwidth, ultra-
low latency, and connectivity for billions of devices world-
wide. As the development of 6G networks gains momentum,
the nearly 50-year evolution of mobile networks provides
invaluable engineering insights. These include advancements
in infrastructure design, protocol standards, and algorithmic
efficiency, which form a solid foundation for the next gen-
eration of mobile technology. Historically, mobile networks
have relied on human-designed algorithms which are based



on explicit models of the physics governing network behavior,
ensuring optimal performance under predictable conditions.

A. The Shift Towards ML in Mobile Networks

ML and AI represent a paradigm shift in algorithmic design.
Unlike traditional methods, which rely on human-crafted logic,
ML enables networks to autonomously learn input-output
relationships from data. This adaptive approach is particu-
larly valuable in complex, data-driven systems like mobile
networks, where conventional methods may face limitations.
The adoption of AI is driven by two key motivations:

1) Model Deficiencies: Detecting patterns in noisy, in-
complete, or highly variable data is challenging for human-
designed algorithms. ML can adapt to evolving network be-
haviors and diverse user interactions, improving adaptability.

2) Algorithmic Deficiencies: Traditional algorithms often
struggle to balance computational speed and decision accuracy.
ML enhances real-time decision-making and performance un-
der dynamic conditions, offering a more efficient alternative.

B. Applications and Benefits of ML in 6G Networks

ML introduces new possibilities for optimization, adapt-
ability, and resilience in 6G networks by enhancing perfor-
mance across various aspects. Hardware acceleration allows
for universal hardware designs that support multiple neural
networks, reducing the need for reconfiguration and increasing
system flexibility. Anomaly detection enables ML algorithms
to identify network irregularities, such as security breaches
or sudden traffic changes, allowing for proactive responses to
maintain network integrity. Additionally, multi-vendor network
optimization facilitates seamless cooperation between compo-
nents from different vendors, improving operational flexibility
and integration in increasingly complex telecom ecosystems.

C. Challenges and Risks of ML in Mobile Networks

While ML offers significant potential, several challenges
and risks must be addressed to ensure robust and reliable per-
formance. Technical debt arises as AI and ML solutions, while
providing immediate benefits, can introduce hidden costs and
vulnerabilities over time, including unexpected dependencies
that complicate network maintenance and stability. Extrapola-
tion risks occur because ML models rely on historical data and
may fail in novel situations, leading to unpredictable behavior.
Data collection and processing overhead presents another chal-
lenge, as effective ML models require vast amounts of data,
necessitating robust infrastructure for seamless collection and
real-time processing. Additionally, adversarial machine learn-
ing poses a growing threat, where malicious actors manipulate
inputs to deceive ML models, potentially causing network
disruptions or security breaches. Defenses against such threats
include training on diverse datasets, real-time monitoring, and
implementing cryptographic security measures.

V. ADVERSARIAL ATTACKS ON MOBILE SYSTEMS

Mobile networks face a diverse range of security threats,
from traditional attack vectors to sophisticated ML-based

exploits, see for example, Table I. Traditional attacks include
Side Channel Attacks that exploit hardware vulnerabilities,
Man-in-the-middle (MitM) attacks intercepting communica-
tions, Jamming Attacks disrupting signal transmission, Cross-
slice Attacks compromising network isolation, hardware-level
vulnerabilities through Untrusted Hardware, Denial of Service
(DoS) attacks overwhelming network resources, and Brute-
force attacks attempting to break encryption. As mobile net-
works increasingly incorporate ML systems, they become
vulnerable to a new class of AML attacks, including Data
Poisoning that corrupts training data, Oracle Attacks exploit-
ing model predictions, Gradient-free Attacks that manipulate
model behavior without internal knowledge, Evasion Attacks
that fool trained models, and Backdoor Attacks that embed
hidden vulnerabilities, making the security landscape signifi-
cantly more complex.

A. AML Attacks and Impact on Mobile Networks

AML poses a major threat to AI-driven 6G networks,
targeting key functions like resource allocation, modulation
classification, and network security [9]. The L-BFGS method,
combined with Generative Adversarial Networks (GANs),
generates adversarial datasets that attack AI-based resource
management, disrupting intrusion detection and service or-
chestration. Similarly, the Fast Gradient Sign Method (FGSM)
manipulates machine learning outputs in network slicing and
resource allocation, affecting network analytics and access
management.

Other attacks exploit AI vulnerabilities in different ways.
The Jacobian-based Saliency Map Attack (JSMA) manipulates
AI transferability to compromise network resource allocation
[10], while DeepFool, despite its high complexity, threatens
beamforming and signal quality in AI-powered applications.
The Zeroth Order Optimization (ZOO) attack disrupts OFDM-
based signal detection, increasing bit errors in radio resource
allocation [11]. Similarly, Universal Adversarial Perturbation
(UAP) degrades Automatic Speech Recognition (ASR) with
high success rates, impacting semantic communication [12].

Advanced techniques like adversarial GANs (advGAN)
can mislead modulation classifiers, degrading communication
reliability [13]. Adversarial Transformation Networks (ATNs)
threaten spectrum management in real-time AI applications,
while UPSET and ANGRI attacks compromise communi-
cation hardware without prior system knowledge. Transfer

TABLE I: Attack Vectors

Generic Attack Vectors Attack Vectors from ML Mod-
els

• Side Channel Attacks
• Man in the Middle (MitM)
• Jamming Attacks
• Cross-slice Attacks
• Untrusted Hardware
• Denial of Service (DoS)
• Brute-force attacks on encryption

• L-BFGS, FGSM
• JSMA, Deepfool
• ZOO, UAP
• advGAN, ATNs
• UPSET, ANGRI
• DaST, GAP++
• CG-ES



learning models in 6G networks face vulnerabilities from
methods like GAP++ and CG-ES, which manipulate coop-
erative learning, posing risks to applications such as digital
twins and autonomous driving. Additionally, the Decision-
based Adversarial Sample Transfer (DaST) method highlights
the threat of adversarial transferability, allowing attacks even
without access to training data.

As AI becomes central to 6G networks, addressing adver-
sarial threats is crucial to ensuring security and stability in
future communication systems.

B. Adversarial Defense

To mitigate adversarial risks, a common approach is to
develop robust machine learning models that are resistant
to manipulation. Robustness in ML refers to the model’s
ability to maintain accurate predictions even when subjected
to adversarial inputs. However, achieving robustness is not
without challenges. First, robust models require significant
computational resources and expertise to develop. While train-
ing a conventional ML model can cost between 40, 000 and
100, 000 [14], robust models can be 100 to 1, 000 times more
expensive due to the need for extensive adversarial training and
regularization techniques. Additionally, frequent retraining,
such as on a quarterly basis, further amplifies these costs.
Second, robust models often exhibit lower accuracy on non-
adversarial data compared to their non-robust counterparts.
This is because non-robust models tend to rely on correlative
features that, while useful for prediction, are vulnerable to
exploitation. In contrast, robust models sacrifice some predic-
tive power to reduce susceptibility to adversarial manipulation
[15].

Given these trade-offs, the pursuit of robustness may only be
justified in specific scenarios. For most organizations, the costs
of developing and maintaining robust models may outweigh
the benefits, particularly when alternative mitigation strategies
are available. This leads to the conclusion that maximizing the
accuracy of ML models, rather than their robustness, is often
the more practical approach for real-world deployments.

VI. PRACTICAL MITIGATION TECHNIQUES

Assessing the risks of AML in mobile networks requires
a structured approach to differentiate between realistic threats
and theoretical concerns. The lack of real-world datasets and
the limited operational deployment of ML models in mobile
networks make it difficult to accurately evaluate the impact
of AML attacks. Simulated and experimental data often fail
to capture the inherent complexity and randomness of real-
world mobile environments, while ML models tested under
controlled conditions may not fully reflect their vulnerabilities
in live deployments. Despite these challenges, it remains cru-
cial to evaluate the risk and impact of AML attacks, ensuring
that security efforts are aligned with practical threats rather
than hypothetical scenarios. One approach to navigate these
limitations, is through the stylized model proposed by Raff et
al. [16], which quantifies risk exposure (RE) as the product of
an attack’s probability and its potential cost. This analytical

framework provides a systematic means of evaluating trade-
offs between robust and non-robust ML models, allowing
security investments to be prioritized based on realistic attack
scenarios. By adopting this structured methodology, AML
risks can be assessed more objectively, identifying which
threats warrant defensive measures and which pose minimal
practical risk in mobile networks.

Through their study they found for example, if a model is
95% accurate and 1% of predictions are adversarial, the robust
model must maintain at least 94.05% accuracy to justify its
use. Their analysis indicates that if the accuracy loss is large,
the cost may become negative, making robustness impractical.
The analysis suggests that robust models are not cost-effective
for most organizations. Robustness is most beneficial when the
base model is highly inaccurate, but this also means the robust
model will be less effective. Therefore, the decision to adopt
robust models should be based on a careful assessment.

Another key consideration is the cost associated with ad-
versarial errors. In certain applications, adversarial errors are
significantly more damaging than normal errors. For instance,
in financial fraud detection, a model misclassifying a fraudu-
lent loan application as legitimate could lead to severe finan-
cial losses, making robust models a worthwhile investment.
Furthermore, the frequency of attacks varies across different
ML applications. Models trained on publicly available datasets
or used internally are generally less exposed to adversarial
manipulation than those directly interacting with malicious
actors, such as fraud detection or network intrusion systems.
This variation in exposure levels underscores the need for a
targeted approach to AML security, where defensive strategies
are tailored to specific risks rather than applied universally.

A. Risk Analysis Framework

Adversarial attacks can be categorized into four types based
on their feasibility and impact [16]. Realistic attacks have
a reasonable chance of success and can be carried out with
measurable impact, making a robust model an essential de-
fense. Unrealistic attacks, on the other hand, are unlikely to
occur unless due to negligence, and the cost of developing a
robust model is not justified. Solvable attacks are practical but
can be effectively mitigated using existing techniques, without
needing a robust model. Finally, Impractical attacks may be
possible but require such significant information or resources
that the cost to the attacker would be unreasonable, meaning
the probability of occurrence is low and a robust model is
unnecessary.

B. 6G: Risk Assessment of AML Attack

The adversarial attacks considered in this study were care-
fully selected based on their prevalence in recent research
on AI-driven security threats in 6G networks. We use the
attacks categorization from [9] as presented in Table II. While
previous studies have identified numerous AML attack vectors
in mobile networks [9], our novel contribution is the develop-
ment of a practical risk assessment framework that categorizes
threats based on real-world feasibility rather than theoretical



impact. Building on Raff et al.’s approach [16], we extend their
general adversarial risk categorization (Realistic, Unrealistic,
Solvable, Impractical) by specifically mapping these categories
to 6G network functions and vulnerabilities. Unlike reference
[16], which focuses on broad managerial decision-making
across all ML domains, our work provides a technical analysis
of how each attack type impacts specific mobile network
components such as resource allocation, service orchestration,
and network slicing.

Our analysis reveals that not all theoretically powerful
attacks pose practical threats to mobile networks. Through
extensive evaluation of attack vectors against representative
6G network functions. Table II presents our key findings and
synthesis at the intersection of adversarial machine learning
(AML) and 6G, building upon the current literature, in partic-
ular, recent work such as [16]. Furthermore, this categorization
is a slight advancement over existing work [9] by highlighting
a research gap in existing approaches and evaluating the
practicality of each attack tailored to the field of cellular 6G
reality and providing targeted mitigation strategies.

1) Realistic: Realistic attacks pose the most immediate
danger to AI-driven 6G networks due to their computational
efficiency and ability to disrupt essential functions such as
resource allocation, service orchestration, and mobility pre-
diction. FGSM and JSMA are particularly concerning, as
they can easily mislead CNN-based security frameworks and
IoT detection systems, leading to vulnerabilities in network
resource management. UAP is highly adaptable, generating
perturbations that generalize across different models, making

it a severe threat to radio resource allocation and slicing
management. Similarly, ATNs and GAP++ can effectively
deceive multi-RAT systems and mobility prediction mod-
els, undermining AI-based decision-making in next-generation
wireless networks. Given their feasibility and impact, these
attacks require immediate security interventions to prevent
large-scale adversarial exploitation in 6G infrastructure.

2) Unrealistic: Unrealistic attacks, while theoretically pow-
erful, are limited in real-world scenarios due to their extensive
resource demands, strict white-box requirements, or lack of
targeted precision. DeepFool, for example, is highly effective
in controlled environments but lacks the specificity needed for
adversarial manipulation in live mobile networks. Similarly,
DaST, despite its potential to compromise data analytics and
service orchestration, is computationally expensive, making
it impractical for large-scale adversaries. These attacks high-
light vulnerabilities in AI-driven models but do not represent
immediate threats to mobile networks due to their cost and
complexity.

3) Solvable: Solvable attacks present a manageable security
risk as they can be effectively mitigated using existing AI
defense techniques. ZOO, a black-box attack on radio source
allocation and load prediction, relies on iterative queries but
can be neutralized through query detection and rate limiting.
UPSET and ANGRI, which target communication protocols
and hardware components, can be mitigated by reinforcing
network security protocols. Similarly, CG-ES, which exploits
federated learning models, can be countered using secure
aggregation and differential privacy techniques [17]. While

TABLE II: Categorization of adversarial attacks based on feasibility and impact in 6G networks.

Attack Method Category Attack Type Affected Functions in 6G Networks Reasoning

L-BFGS Impractical White-box Source management, Service orchestration Requires full model access and high computational
cost, making it difficult to execute at scale.

FGSM Realistic White-box Network access management, Data analytics Fast and computationally cheap, making it a practical
attack against CNN-based access control systems.

JSMA Realistic White-box Network resource allocation Efficient targeted attacks on IoT detection, disrupting
network resource allocation.

Deepfool Unrealistic White-box Resource allocation decisions Despite being efficient, it is non-targeted and requires
model access, limiting its real-world impact.

ZOO Solvable Black-box Radio source allocation, Load prediction Black-box attack that can be mitigated using query
monitoring, reducing its overall effectiveness.

UAP Realistic White-box Radio resource block allocation, Slicing management Generates broad non-targeted attacks that can effi-
ciently disrupt radio resource allocation.

advGAN Impractical White-box Load prediction, Channel estimation Requires significant computational resources, mak-
ing large-scale execution impractical.

ATNs Realistic White-box Service orchestration, Mobility prediction Computationally feasible targeted attacks that pose a
risk to ML-based mobility prediction and orchestra-
tion services.

UPSET & ANGRI Solvable Black-box Communication protocols, Hardware components Security protocols can mitigate these attacks, making
them less of an urgent threat.

DaST Unrealistic Black-box Service orchestration, Data analytics Expensive and complex to execute, making it an un-
likely large-scale threat despite its impact on service
orchestration.

GAP++ Realistic White-box Multi-RAT resource allocation, ML multimodal models Cheap, fast, and effective at disrupting multimodal
ML models used for radio resource allocation.

CG-ES Solvable Black-box Network slicing, Federated learning Targets federated learning but can be addressed with
secure aggregation techniques, reducing its impact.



these attacks can disrupt 6G networks, they can be effectively
contained with robust security mechanisms, making them less
critical than realistic threats.

4) Impractical: Impractical attacks, despite their theoretical
effectiveness, are rarely deployed in real-world adversarial
settings due to their excessive computational requirements or
reliance on complete model access. L-BFGS, for instance,
requires full model knowledge and high processing power,
making it unrealistic for adversarial exploitation in dynamic
6G environments. Similarly, AdvGAN, though capable of
attacking load prediction and channel estimation models, is
highly computationally intensive, limiting its practical use
outside of controlled research settings. Given their high cost
and complexity, these attacks pose minimal immediate risk
to mobile networks, as adversaries would likely opt for more
efficient attack vectors.

VII. DISCUSSION AND RECOMMENDATION

The classification of adversarial attacks on AI-driven 6G
networks reveals varying degrees of feasibility and impact
across different attack methodologies. As adversarial threats
grow more sophisticated, AI risk management is becoming
increasingly crucial, particularly with the rise of global reg-
ulatory frameworks like the EU AI Act, the NIST AI Risk
Management Framework (RMF), and ISO/IEC 42001:2023.
These frameworks emphasize the need for robust, transparent,
and accountable AI systems.

Strategic security efforts should focus on defending against
realistic evasion attacks through adversarial training and
anomaly detection. Solvable black-box threats can be miti-
gated with access control, query restrictions, differential pri-
vacy, multi-party computation, and federated learning tech-
niques. However, to optimize resource allocation and achieve
economic sustainability in AI-driven 6G networks, organiza-
tions must avoid excessive investments in robust AI models
designed for unrealistic or impractical threats. Effective risk
mitigation must strike a balance between security investments
and operational efficiency. While implementing AI security
mechanisms incurs costs, these must be justified by the po-
tential risks they address. Investments in adversarial training,
model robustness, and secure AI governance must align with
long-term economic priorities, avoiding unnecessary financial
or computational burdens.

As 6G networks become integral to industries such as smart
manufacturing, autonomous transport, and immersive digital
services, AI security is critical not only for technical robust-
ness but also for maintaining business competitiveness. Enter-
prises that proactively implement AI security while ensuring
compliance with global regulations will gain a competitive
edge, reduce liability risks, and strengthen consumer trust.

VIII. CONCLUSION AND OUTLOOK

This study presents a practical framework for assessing and
mitigating AML threats in AI-driven 6G networks. While AI
has significantly enhanced operational efficiency and security,
it has also introduced vulnerabilities that could compromise

network reliability. By categorizing AML attacks based on
their feasibility and impact, we identify which threats warrant
defensive measures and which pose minimal practical risk. Our
findings emphasize that not all theoretically powerful attacks
present equal risks in real-world mobile networks. Organiza-
tions should prioritize defenses against realistic threats such
as FGSM, JSMA, and UAP, which can effectively disrupt
resource allocation and service orchestration in 6G systems.
For solvable attacks, targeted mitigation strategies like query
monitoring and differential privacy offer effective protection
without the computational burden of robust models. This
risk-based approach to AML defense ensures that security
investments are aligned with practical threats rather than
hypothetical scenarios, promoting a balanced strategy that
maintains both security and performance in next-generation
mobile networks.
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