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Abstract
Advancements in generative Artificial Intelligence (AI) hold great
promise for automating radiology workflows, yet challenges in
interpretability and reliability hinder clinical adoption. This paper
presents an automated radiology report generation framework that
combines Concept Bottleneck Models (CBMs) with a Multi-Agent
Retrieval-Augmented Generation (RAG) system to bridge AI perfor-
mance with clinical explainability. CBMs map chest X-ray features
to human-understandable clinical concepts, enabling transparent
disease classification. Meanwhile, the RAG system integrates multi-
agent collaboration and external knowledge to produce contextu-
ally rich, evidence-based reports. Our demonstration showcases
the system’s ability to deliver interpretable predictions, mitigate
hallucinations, and generate high-quality, tailored reports with an
interactive interface addressing accuracy, trust, and usability chal-
lenges. This framework provides a pathway to improving diagnostic
consistency and empowering radiologists with actionable insights.

CCS Concepts
• Applied computing → Health informatics; • Computing
methodologies→ Information extraction;Multi-agent sys-
tems; • Human-centered computing → Heat maps; • Informa-
tion systems→ Multimedia and multimodal retrieval.
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1 Introduction
Recent advancements in generativemodels have accelerated computer-
aided interpretation for chest X-ray (CXR) images [2, 15, 18]. These
end-to-end architectures not only predict specific findings but also
generate comprehensive radiological reports by integrating a lan-
guage module [9, 14]. A system that can classify diseases from
CXR images and produce coherent reports can reduce radiologists’
workload and improve diagnostic consistency. However, since large
language models (LLMs) are prone to hallucinations [12], such gen-
erators face reliability issues. To address similar challenges in other
domains, researchers have introduced Retrieval-Augmented Gen-
eration (RAG) [8], which leverages external resources to produce
more accurate and reliable conclusions. However, the black-box
nature of LLMs remains a significant limitation [10], as they fail to
provide explanations or interpretable relationships between inputs
and outputs, leading to a system that may be perceived as unreliable
and untrustworthy. Trust in these systems requires transparency
[4], interpretability [6], and integration of additional data such as
patient history and recent research.
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To address these challenges, we propose a conversational tool
integrating Concept Bottleneck Models (CBMs) [7] with a multi-
agent RAG framework to enhance accuracy, interpretability, and
reliability in CXR report generation. CBMs map visual features
to human-understandable clinical concepts and use saliency tech-
niques to highlight relevant image regions, while RAG dynamically
incorporates external knowledge, including patient history, prior
studies, and current research, to produce evidence-based reports.
In this paper, we demonstrate an end-to-end implementation that
combines interpretable disease classification with robust report gen-
eration, mitigating issues of hallucination and opacity, and thereby
enhancing AI-driven CXR interpretation for clinical practice to
empower radiologists with actionable insights to improve their di-
agnostic consistency and trust in our system. Our code1 and demo2
are publicly available online.

2 Methodology
Our approach starts with a concept bottleneck mechanism [7] to
identify and quantify medically relevant concepts in a CXR image.
Building on prior works [1, 11, 16], we use LLMs to automatically
acquire a set of concepts for classification, rather than relying on
manual identification. As shown in Fig. 1, we obtain image em-
bedding and text embeddings for the uploaded image and concept
set, respectively, from ChexAgent [2], a VLM fine-tuned for CXR
interpretation, and the Mistral embed model[5]. We calculate cosine
similarity between image embeddings and each text embedding in
the concept set to form a similarity matrix. To focus on the most sig-
nificant features, max pooling is applied to the similarity matrix to
form a concept vector. This concept vector is normalized to a scale
between 0 and 1 for interpretability and fed into a fully connected
layer. A classification model uses this vector as input to predict
the disease class. We used the COVID-QU dataset [3], comprising
33, 920 CXR images with three classes: Pneumonia, COVID-19, and
Normal. Finally, the cross-product of the model’s weight matrix and
the concept vector provides contribution scores, quantifying the
influence of each concept on the classification decision. Saliency re-
gions for each concept in the image are derived from the similarity
matrix. These heatmaps serve as direct visual indications of how
the system localizes concepts such as “pulmonary consolidation”
or “nodule” within the CXR image, thereby offering a clear route
to interpretability.

In addition, we used a multi-agent RAG with five specialized
agents for report generation. The Pneumonia, COVID-19, and Nor-
mal Agents are implemented as Reasoning and Acting (ReAct)
agents [17]. Additionally, the Radiologist Agent interprets clini-
cal concepts using the ReAct agents and queries a pre-configured
database from the National Institutes of Health (NIH), while the
Report Writer Agent synthesizes the final report. The system also
accepts user-provided files (e.g., PDFs, PPTs, text, MP3, MP4), with
media transcribed via OpenAI’s Whisper model [13] and embedded
and indexed for retrieval. This integration enriches reports with up-
dated clinical guidelines, patient histories, and multimedia sources.
The framework is implemented using CrewAI and LlamaIndex for
efficient retrieval and high-quality report generation.

1Code: https://github.com/tifat58/enhanced-interpretable-report-generation-demo.git
2Online Demo: https://cxr-cbm-rag-dfki-iml-demo.streamlit.app/

Figure 1: Workflow of the CBM-RAG Framework for Radi-
ology Report Generation. The upper section processes chest
X-rays via a VLM to generate clinical concepts, heatmaps, and
contribution scores. The lower section uses multi-agent RAG.
A Radiologist Agent synthesizes findings, a Report Writer
Agent creates detailed reports, and a Chat Agent enables real-
time interaction.

3 User Interface
The user interface (UI) for the CXR analysis system comprises three
components: concept generation, report generation, and a conver-
sational chat interface. Upon uploading a CXR image, the concept
generation module identifies relevant clinical concepts, computes
contribution scores, and predicts disease classes using the CBM.
Identified concepts are displayed in an editable list sorted by the
absolute values of their contribution scores, each with a toggle for
visualizing associated saliency heatmaps. Users can adjust scores
to refine model predictions, thereby linking outputs to clinically
meaningful features. After finalizing concept scores, users can gen-
erate a comprehensive radiology report. The report generation
module integrates clinical documents from trusted sources (e.g.,
NIH) and accepts additional inputs (text, audio, video, images). The
generated report details findings, diagnosis, and guidelines, and
an optional chain-of-thought dropdown reveals the multi-agent
RAG’s sequential reasoning. A conversational chat interface further
enables real-time, context-aware queries regarding the CXR image,
report details, or clinical conditions.

4 Conclusion and Future Work
In this paper, we presented a tool that bridges AI performance
with clinical explainability by linking visual features to human-
understandable clinical concepts and integrating external knowl-
edge for context-rich, evidence-based radiology reports. Our frame-
work produces transparent disease classifications and tailored re-
ports while mitigating hallucination and opacity issues. Its inter-
active UI—with explainable outputs and conversational capabil-
ities—facilitates dynamic clinician engagement, enhancing trust
in AI-assisted decision-making. Although technically promising,
formal usability studies in real clinical settings are yet to be con-
ducted. Future work will include comprehensive user evaluations,
extension to other imaging modalities, and exploration of broader
healthcare applications.
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