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Abstract—The construction industry represents a major sector
in terms of resource consumption. Recycled construction material
has high reuse potential, but quality monitoring of the aggregates
is typically still performed with manual methods. Vision-based
machine learning methods could offer a faster and more efficient
solution to this problem, but existing segmentation methods are
by design not directly applicable to images with hundreds of small
particles. In this paper, we propose ParticleSAM, an adaptation
of the segmentation foundation model to images with small and
dense objects such as the ones often encountered in construction
material particles. Moreover, we create a new dense multi-
particle dataset simulated from isolated particle images with the
assistance of an automated data generation and labeling pipeline.
This dataset serves as a benchmark for visual material quality
control automation while our segmentation approach has the
potential to be valuable in application areas beyond construction
where small-particle segmentation is needed. Our experimental
results validate the advantages of our method by comparing to
the original SAM method both in quantitative and qualitative
experiments.

I. INTRODUCTION

The construction industry is known for its high demand for
raw materials, particularly aggregates such as sand, gravel,
and crushed stone. According to the European Aggregates
Association (UEPG) [1], the European aggregates demand is
3 billion tonnes annually. This has led to resource shortages
and environmental impacts that urgently need to be addressed
and resolved.

Increasing the use of recycled (RC) aggregates as a sub-
stitute for primary aggregates, particularly in the construction
industry, is a cornerstone tactic for minimizing the environ-
mental impact and achieving sustainability goals. Traditional
characterization methods of recycled Construction and Demo-
lition Waste (CDW), which often rely on manual sorting and
expert visual inspection, yield delayed results and are prone
to human error. The integration of image-based monitoring
technologies into the production and quality inspection process
of CDW has the potential to replace the labor-intensive and
time-consuming manual analysis methods. This can be applied
in tasks such as the estimation of the Particle Size Distribution
(PSD) to reduce the cycle time of qualified RC aggregates and
enhance their overall quality.

Currently, the development and application of deep learning
models in the field of CDW analysis face challenges due
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to the lack of publicly available open-source RC aggregates
dataset. Such datasets are crucial for the training, validation,
and evaluation of deep learning models. Moreover, while state-
of-the-art deep learning models have demonstrated remarkable
performance in standard instance segmentation tasks, their
effectiveness diminishes when applied to industrial images,
which are typically high resolution and often contain multi-
layers and densely occluded small particles.

To address these challenges, we build upon the Segment
Anything Model (SAM) [2] and propose necessary modifica-
tions to segment large numbers of small-sized particles from
industrial material flow images with improved accuracy and
efficiency. To encourage research in the topic, we build a
benchmark high-resolution multi-layer crushed CDW particle
dataset simulated from isolated particle images. Our proposed
data generation engine automatically segments isolated particle
instances from industrial single-layer images, refines them, and
simulates augmented multi-particle images.

To summarize our main contributions:
• We generate a benchmark image dataset of multi-layer

CDW particles at varying overlap levels and particle size
distributions.

• We propose ParticleSAM, an adaptation of the Seg-
ment Anything Model (SAM) for segmenting images
of densely placed small particles, tested for CDW, but
applicable to any image dataset of similar characteristics.

II. RELATED WORK

A. Sensor-based Characterization of Construction Waste

Recently, sensor-based approaches have gained traction in
CDW recycling, utilizing imaging, spectroscopy, and machine
learning to improve the analysis of material characterization.

Near-Infrared (NIR) camera-based approach can achieve
a real-time monitoring of CDW materials [3], excelling
at material differentiation and performing well in low-light
environments. However, NIR provides very low resolution,
making it incapable of small particle size prediction. 3D
laser triangulation (3DLT) sensor [4] and fusion of RGB and
depth cameras [5] are integrated to acquire additional depth
information except 2D data. They are combined with CNN-
based classification and segmentation models, respectively. By
fusing the depth information, the detection of particle size can
be optimized during monitoring; however, even in a stable
laboratory environment, these systems require highly precise
and complex installation and calibration processes.



Fig. 1. Data Simulation Pipeline: The Particle Segmentor extracts isolated particles from conveyor belt recordings using SAM twice. Segmented particles are
classified by size and stored for the Data Generator. The Data Generator augments particles based on class, layer, and visibility, producing high-resolution
RGB images, ground truth masks, and metadata. The recorded crushed CDW image provided by Lieve Göbbels from the department of Anthropogenic Material
Cycles (ANTS), RWTH Aachen University.

Methods focusing solely on RGB inputs have demonstrated
that competitive performance can also be achieved by combin-
ing deep learning technologies. As in [6], they contributed an
open access CDW dataset as the basis for training classifica-
tion models. In [7] and [8], segmentation models are modified
to provide detailed boundary and shape information, enabling
more precise analysis than object detection. Nevertheless, both
studies focus on initial solid construction waste, with limited
contribution to the recyclability and reusability of aggregates
derived from crushed CDW. In [9], the authors first introduce
a synthetic datasets composed of real brick and sand-lime
samples, and then re-train CNN detection models on this
synthetic data to enhance their accuracy in domain-specific
object detection tasks. Even so, the very low resolution (300
pixels) of their data renders it completely unsuitable for small
particle segmentation.

B. Segmentation Foundation Model

Foundation models have advanced the field of instance seg-
mentation by training on massive large-scale datasets and en-
abling them adaptable to various downstream tasks with mini-
mal fine-tuning. SAM [2] and Mask2Former [10] both employ
the state-of-the-art vision transformer-based encoder-decoder
architecture with attention mechanisms to achieve flexible and
robust instance segmentation. Moreover, SAM is pre-trained
on a vastly larger dataset compared to Mask2Former. Re-
cent works have explored integrating SAM with downstream

segmentation tasks. For example, researchers have fine-tuned
SAM with weak annotations [11], using its output to generate
high-quality pseudo-labels for training lightweight instance
segmentation models. Med-SA [12] is a specialized adaptation
of SAM, fine-tuned on medical imaging datasets, it adapts 2D
SAM to 3D medical images to achieve higher precision in
medical image segmentation.

SAM is the first general foundation model for instance
segmentation, capable of zero-shot transfer to a wide range
of downstream tasks. Our research focuses on adapting the
SAM model to enhance its segmentation capability for CDW
images, addressing a critical challenge in sensor-based analysis
of recycled aggregates.

III. METHODOLOGY

A. Data Simulation Pipeline

Up to now, research conducted on CDW datasets [13] has
mainly focused on raw CDW, which serves as the input
material for processing plants during recycling. In contrast,
our study shifts the focus to processed CDW aggregates,
which undergo particle size sorting before being distributed to
construction industries as RC materials. As mentioned above,
there is currently no such open source dataset. Kronenwett et
al. [9] represents a first step in this direction, but their dataset
is limited in particle size and type diversity and contains low-
resolution synthetic images.



Our idea has been to generate augmented multi-particle
images with varying overlap and size distribution. Fig. 1 shows
the full data simulation pipeline. We first extract isolated
particles from single-layer image recordings with a segmentor,
and then use a generator to automatically output augmented
images after a size classification.

Particle Segmentor: Inspired by SAM’s data engine, we
design a Particle Segmentor (see Fig. 1), which reconfigures
the two encoders and decoders of SAM to achieve automatic
instance segmentation and segments optimization. Initially, we
segment particles from images of crushed CDW, which were
captured while the aggregates were being transported on a
conveyor belt. In industry environments where the lighting
conditions are often suboptimal, segmentation faces significant
challenges due to shadows and motion blur. To address these
issues, we add a refinement module: corner points from
bounding box and curvature points from the mask output are
extracted as negative and positive points, respectively, serving
as input of the prompt encoder. Subsequently, morphological
transformations are applied to optimize segmentation masks by
removing noise, filling gaps, smoothing edges, and connecting
broken regions.

Particle size Classification: According to the manual sieve
analysis defined by DIN 66165-1 suggested by [14], we
classify the obtained particles into 8 classes from 4 mm to
63 mm based on their farthest pair distance (see Table I).

Data Generator: To facilitate the efficient generation of
large-scale, high-resolution annotated RGB images, we de-
veloped an automatic Data Generator. This approach elim-
inates the need for time-consuming manual annotation and
ensuring higher ground truth accuracy. The data generator
performs random augmentations to particles, like flipping,
rotation and colorization, while avoiding scaling to preserve
the authenticity of size and shape. The augmented particles
are then randomly placed onto a 4096×4096 pixels conveyor
belt background, simulating various occlusion conditions to
enhance both robustness and realism. To overcome the storage
bottleneck associated with classical binary masks as ground
truth, we consolidate all mask annotations in a single portable
graymap (PGM) format image.

Multi-stage dataset: We construct our 4096x4096 pixels
image data in 3 stages. The L1 images consist of instances
from a single class, where instances are dropped to cover
the entire conveyor belt background as much as possible
without any overlapping. The L2 images build upon L1 by
introducing occlusion, while ensuring that the visibility of each
individual object remains within the range of [60%, 100%],
effectively simulating real industrial scenarios. The L3 images
further advance to mixed-class, where each image contains
instances from different classes. In CDW crushing processes,
smaller particles tend to settle to the bottom due to conveyor
belt vibrations, while bigger particles remain on the top. To
replicate these real-world conditions, we introduce a multi-
layer structure to L3 (see Table I), while keeping particles
in each layer to maintain a visibility range of [60%, 100%].
Since PSD (Particle Size Distribution) is a key criterion for

TABLE I
CATEGORIZED SEGMENTED INSTANCES AND LAYERS

Class Size Range [mm] # Particles Layer
Class 1 4.0–5.6 486

Layer 0Class 2 5.6–8.0 637
Class 3 8.0–11.2 403
Class 4 11.2–16.0 348

Layer 1
Class 5 16.0–22.4 333
Class 6 22.4–35.0 185 Layer 2
Class 7 35.0–45.0 106 Layer 3
Class 8 45.0–63.0 8 Layer 4

analyzing RC materials, we additionally annotate the PSD for
all stage images to facilitate more precise analysis. To enhance
data diversity and better align with real-world conditions,
we incorporate multiple PSD distributions, including uniform
distribution, Gaussian distribution, and random distribution.
Table II provides an overview of all stages.

B. Adapting SAM for Small Particle Segmentation

Despite SAM’s strong performance in general instance
segmentation, it struggles with complex scenes, especially for
small or overlapping objects. Its reliance on prompt inputs
limits full automation, posing challenges for our application.
By refining its encoder-decoder architecture with multi-stage
simulated data, we enhance its ability to segment dense, small
particles in high-resolution images.

We adopt SAM’s image encoder and mask decoder to
develop a real-time automated segmentation model for aggre-
gates names ParticleSAM. First, unlike the minimum-mask
area merging approach in SAM, we introduce a maximum-
area filtering to remove the impact from the conveyor belt
background and improve inference speed, particularly for
segmenting fine-crushed particles. Next, we focus on two
aspects of adaptation:

Feature Extraction Enhancement: In SAM’s everything
demo, features are extracted using a 32×32 grid of sampling
points. To enhance feature representation of our 4096x4096
pixel images, we increase this to a 64×64 grid. Additionally,
we use the image splitting functionality to split input image
into four crops, allowing the model to extract local features
before final feature fusion. While this approach enriches
features encoding, it also increases inference time by over 5

TABLE II
DETAILS OF DIFFERENT EVALUATION DATASETS

Data # Images Visibility
of Particles

# Particles
per Image Class Layers Occlusion

L1 115a 100% [93, 3525] single single none
L2-l 159a 60%–100% [195, 500] single single low
L2-h 121a 60%–100% [195, 4831] single single heavy
L3-0 79a 0%–100% [162, 1983] mixed single low
L3-m 239a 0%–100% [698, 3125] mixed multi medium
L3-h 640a 0%–100% [698, 6251] mixed multi heavy
aResolution of 4096x4096



times. To achieve real-time monitoring in the application, we
choose the smallest backbone of SAM (ViT-B) and no sub-
crops to form our ParticleSAM.

Postprocessing Optimization: We tune the post-processing
parameters, including Non-Maximum Suppression (NMS),
Intersection over Union (IoU) thresholds, and stability con-
straints, to efficiently remove padding and filter duplicate
masks, thereby enhancing the decoder’s efficiency. This op-
timization improves segmentation precision by reducing false
positives and ensuring greater consistency, making the results
better aligned with our industrial application.

Last, to systematically optimize the model’s performance,
we use a progressive hyperparameter tuning strategy on our
simulated data. An adaptation subset of images is randomly
selected from both the L1 and L2 data. The tuning process be-
gins with the subset of no-occlusion data (L1), and parameters
are optimized in descending order of particle size. Similarly to
the L1 phase, adaptation starts with the largest class in L2 and
gradually moves to smaller classes. Fig. 2 depicts the different
adapted results.

Fig. 2. Overlay of input images with colored segmentation masks shwoing
the improvement of particle segmentation of ParticleSAM compared to SAM
with 4096x4096 image data. Images on the right are zoomed-in crops. The
source conveyor belt background provided by the department of Anthropogenic
Material Cycles (ANTS), RWTH Aachen University.

IV. EXPERIMENTS

Metrics: We report the mean intersection-over-union
(mIoU) metric to quantify the accuracy of particle segmen-
tation. We also use the mean average precision (mAP) metric
with thresholds to evaluate the model’s ability to recognize
particles, e.g. mAP50 considers a segmentation is correct when
the IoU between the predicted and the groundtruth masks is
larger than 50%.

Baseline: Since we are not aware of other particles seg-
mentation research for crushed waste, we leverage SAM’s
Automatic Mask Generator (AMG) as a baseline to compare
our ParticleSAM’s performance. Our ParticleSAM is adapted
from the lightweight backbone of SAM (ViT-B), and the AMG
retains the same ViT-B backbone.

Evaluation Data: Excluding the subset of L1 and L2
images used for adaptation, the remaining images are utilized

TABLE III
PARTICLE SEGMENTATION COMPARISONS BETWEEN SAM AND OUR

PARTICLESAM ON DIFFERENT DATASETS

Data Model mIoU mAP50
a mAP60 mAP70 mAP80 mAP90

(%) (%) (%) (%) (%)

L1
SAM 55.80 53.60 46.53 43.27 42.18 41.23
Ours 68.17 61.12 54.26 50.83 49.51 48.51

L2-l SAM 61.09 73.16 72.50 71.87 70.62 65.53
Ours 85.53 89.64 89.32 88.86 87.98 85.72

L2-h SAM 27.35 38.82 33.39 29.59 25.70 21.22
Ours 45.15 48.10 42.65 38.33 33.97 29.11

L3-0 SAM 18.26 34.23 32.48 31.30 30.33 27.65
Ours 44.13 47.65 45.90 44.70 43.69 41.98

L3-m SAM 18.95 55.23 53.95 52.77 51.31 44.67
Ours 69.25 82.78 82.03 81.26 80.27 76.88

L3-h SAM 8.70 30.06 28.25 26.80 25.32 21.87
Ours 34.79 43.24 41.19 39.46 37.79 34.98

amAP50 represent IoU threshold at 50%

to evaluate the model’s performance. Table II provides an
overview of all the test datasets. Additionally, to assess the
model’s improvement in segmenting extremely small objects,
we generate extra L3-0 data, which contains only layer0 and
layer1 particles with size ranging from 4 to 11.2 mm. More-
over, to compare performance under occlusion, we partition
L2 and L3 data into less occluded and heavily occluded.
Specifically, due to the annotations of PSD per image, the less
occluded image keeps the same PSD as the heavily occluded
images, but the number of stones per class is reduced by 50%.

Discussion: Table III shows segmentation performance of
SAM and our ParticleSAM with various metrics from different
evaluation data. ParticleSAM consistently outperforms SAM
across all datasets. Notably, on the occluded mixed-class L3
data, SAM fails to deliver meaningful results, whereas Parti-
cleSAM demonstrates a remarkable improvement of 26.09%
and 50.30% on mIoU. Moreover, on the L3-0 dataset, which
consists exclusively of particles smaller than 22 mm, by
comparing mAP under different thresholds, we can observe
that our model not only improves accuracy but also exhibits
more stable segmentation performance with less drop from
mAP50 to mAP90.

Although our model achieves a significant improvement
in particle segmentation, its performance declines under oc-
clusion. Comparison in L2-l and L2-h, L3-m and L3-h,
heavily occlusion leads to a noticeable performance drop,
from 85.53% to 45.15% and 69.25% to 34.79%, respectively.
In the most heavily occluded dataset L3-h, ParticleSAM’s
detection capability is limited as the number of particles
increases, failing to recognize more particles (See Fig. 3). As
an alternative, sub-cropping, discussed in Section III-B, can
mitigate this limitation and detect more particles under heavy
occlusion; however, this approach increases inference time
more than 5 times, making real-time monitoring impractical.



Fig. 3. Comparison of SAM and ParticleSAM segmentation across L3 dataset
occlusion levels, with the number of segmented vs. total GT masks shown. The
source conveyor belt background provided by the department of Anthropogenic
Material Cycles (ANTS), RWTH Aachen University.

V. CONCLUSION

We propose ParticleSAM, an adaptation of SAM for particle
segmentation in high-resolution images with numerous small
and dense objects. The challenge is addressed by parameter
adaptation, the encoder of SAM to handle larger images and
extract features on a smaller scale and the decoder to optimize
the segmentation precision. Moreover, to the best of our
knowledge, we are the first to introduce a large-scale simulated
dataset in recycled CDW, specifically designed for crushed
aggregates. This dataset provides a novel benchmark for fine-
tuning and evaluating segmentation models in challenging
scenarios as high-density occlusions or small particle material
analysis, bridging a critical gap in existing datasets. The
results on our dataset demonstrate a significant enhancement
in particle detection and segmentation performance compared
to SAM, especially on images with overlapping particles.
Although our work was intended for the visual quality in-
spection of CDW, our proposed method ParticleSAM can be
applied to other domains, where visual monitoring requires

the segmentation of multiple, small or overlapping objects, in
which case our work can serve as a guideline. Similarly, our
data generation pipeline for multi-layer, overlapping particle
images can be easily adapted to any type of object, e.g. in
medical and agriculture applications.
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