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ABSTRACT 

Photosynthetically Available Radiation (PAR) is a 
crucial parameter in oceanography. This study explores 
the optimization of machine learning models to predict 
PAR in the water column using selected wavelengths of 
downwelling irradiance. By leveraging Genetic 
Algorithms (GA), optimal wavelength combinations 
were identified for two machine learning models: Linear 
Regression (LR) and Regression Trees (RT). The 
models were trained on data from the HE533 expedition 
and validated using datasets from multiple ship 
expeditions across different geolocations. Experimental 
results indicate that the LR model, with an optimal 
wavelength combination of Ed(469), Ed(501), and 
Ed(600), achieved the highest prediction accuracy (R² = 
0.9992, MAE = 5.78). The RT model, using Ed(433), 
Ed(586), and Ed(687), performed slightly worse (R² = 
0.9954, MAE = 16.37). While both models generalised 
well to unseen datasets, significant prediction errors 
were observed for small PAR values at lower water 
depths.  

 
 INTRODUCTION 

Photosynthetically Available Radiation (PAR) is an 
important parameter in modern oceanography. PAR is 
defined as the integrated radiation between 400-700 nm. 
One potential application is modelling vegetation 
growth, because the radiation in this wavelength is a 
requirement for the photosynthesis process (Holinde and 
Zielinski, 2016; Wang et al., 2013).  

Modelling vegetation growth in the water column is 
crucial for understanding ecosystem dynamics (Krause-
Jensen and Duarte, 2016), predicting climate change 
impacts (Dutkiewicz et al., 2019), managing water 
resources (Glibert, 2020) or modelling the oxygen 

production (Field et al., 1998). Therefore, providing 
reliable PAR values for different water bodies is an 
important task. 
 

 
Figure 1 – Freefall profiler  

As proven in previous work, the PAR values can be re-
constructed using only discrete wavelengths from the 
underwater light field and, if necessary, additional 
environmental parameters (Stahl et al., 2022; Kumm et 
al., 2022; Tholen et al., 2024). Predicting PAR has been 
explored in the context of autonomous Argo Float 
devices (Sloyan et al., 2018) in (Stahl et al., 2022) using 
multiple linear regression and regression trees. Kumm 
et. al. (2022) showed that these results can be improved 
by using artificial neural networks-based models and 
further improved by incorporating additional 
environmental parameters, i.e. pressure. Tholen et al. 
(2024) used data from Freefall Profilers (Figure 1) to 



 

 

improve the prediction accuracy of PAR by 
incorporating incoming surface irradiance (Es) 
(Wollschläger et al., 2020d). Most recently Pitarch et al. 
(2025) investigated the accurate estimation of PAR 
based on the different radiance wavelength available on 
different Argo Float configurations. The long term goal 
of this series of research is to make the PAR sensor, 
mounted on the Argo Floats obsolete, to allow the 
replacement with another sensor (Stahl et al., 2022). 
However, even if the models show a good performance 
on the data gathered by Argo Floats (Kumm et al., 2022; 
Stahl et al., 2022). However, most recent research has 
shown a unsatisfactory accuracy of the models relaying 
on the three wavelengths Ed(400), Ed(412), Ed(490) for 
the Freefall Profiler dataset, which covers more 
geolocations and is therefore more complex (Tholen et 
al., 2024).  
In Figure 2 two spectral profiles for a water depth of 
o1 m and 195 m are shown. It can be observed that the 
radiation profile depends on the water depth. 
Furthermore, one can observe that the wavelength 
measured by the Argo Floats might best reflect the 
characteristics of the full spectra. Therefore, in this 
paper Genetic Algorithm (GA) (Holland, 1975) will be 
used to optimise the selection of suitable wavelength for 
PAR predictions on Argo Floats.  
 
DATASETS  

In this research, data from different ship expeditions are 
used. The different models are trained on data from the 
HE533 Expedition (Voß et al., 2020e). As shown in 
Figure 3, this expedition was undertaken near the 
northern coast of Norway. The HE533 dataset contains 
originally 9858 tuples of which 37.77 % had to be 
discarded because of missing values.   
To validate the generalisability of the models developed, 
data from ten other cruises was used in the validation 

process (Friedrichs et al., 2020; Mascarenhas et al., 
2020; Voß et al., 2020f, 2020a, 2020b, 2020c, 2020d; 
Wollschläger et al., 2020a, 2020b, 2020c). As shown in 
Figure 3 these cruises cover different geolocations all 
over the world. The combined dataset for validation 
contains 64,060 tuples. However, only 10,954 tuples can 
be used due to missing values.  All datasets used in this 
research are publicly available on the data portal 
Pangaea1. 
 

 
Figure 2 Example Spectral Irradiance for 1m and 195 
water depth 

 

 

 
Figure 3 Locations of stations from cruise HE 533 (yellow) used for training and all other cruises (red) used for validation 

 
1 www.pangea.de 



 

 

 
MODELLING 

For modelling purposes, data from the HE533 dataset 
was used after pre-processing, i.e. normalisation and 
removal of data records with missing values. Random 
sampling without replacement was applied, to split this 
data into a training set (70 %) and a test set (30 %). The 
training set was used to find optimal wavelength for 
PAR prediction for two different AI based models, i.e. a 
Linear Regression model (LR), and a Regression Tree 
model (RT) utilising GA. 
The test set was then used to validate the models 
generated in terms of accuracy. The outcome of this 
validation serves as a baseline to investigate the 
generalisability of the different models to measurements 
in other geolocations. 
The models generated on HE533 were then applied on 
the other datasets available and evaluated in terms of 
accuracy. This accuracy was then compared with the 
baseline accuracy calculated from the HE533 test data. 
The modelling approach described is visualised in 
Figure 4.  
 

 
Figure 4: Modelling approach used  

 
EXPERIMENTAL SETUP 

All experiments were conducted using the KNIME 
workbench (Berthold et al., 2009). For training the RT 
the procedure described by Breiman et al. (1984) is 
applied with a couple of simplification, for instance no 
pruning, not necessarily binary trees. LR model uses 
standard multiple linear regression (Freedman, 2009).  
During the experiments, GA is used to find an optimal 
subset of wavelengths to model the PAR value. Due to 
the limitations of the Argo Float platforms, a maximum 
number of three wavelengths is chosen during the 
optimization. The optimization was done utilizing the 
KNIME Feature Selection Node applying Genetic 
Algorithm as feature selection strategy. The population 

size was set to 20, while the maximum number of 
iterations was set to 10. The optimal parametrisation of 
the GA is not discussed in this research.  
 
RESULTS  

For the LR the highest accuracy was achieved by the 
combination of Ed(469), Ed(501), and Ed(600), 
achieving an R2 value of  0.9992. For this configuration, 
the accuracy on the validation dataset was 0.9982. A 
scatter plot showing the relation between predictions 
based on the LR-model and the true PAR values is given 
in Figure 5. It can be observed that the model tends to 
underestimate the PAR values, especially for higher 
values.  

 

 
Figure 5 Scatter Plot for Linear Regression Predictions 
of PAR for the validation Datasets 

For RT the highest accuracy was achieved by the 
combination of Ed(433), Ed(586), and Ed(687), 
achieving an R2 value of  0.9954. For this configuration, 
the accuracy on the validation dataset was 0.9603. 
Figure 6 shows the relation between PAR predictions 
and true PAR values utilising the RT model as scatter 
plot. It can be observed that the model performance 
decreases for higher PAR values.  

 
Figure 6 Scatter Plot for Regression Tree Predictions of 
PAR for the validation dataset 

Statistical results of both best found ML models are 
given in Table 1. The mean absolute error (MAE) of the 



 

 

LR is approximately three times smaller than the MAE 
of the RT model.  
 
Table 1 Statistical values for both ML models on the 
validation set 

Statistical Value LR RT 

R2 0.9969 0.9564 

Mean Absolute Error 5.780 16.37 

Mean Squared Error 141.8 1979 
Mean Absolute 

Percentage Error 0.1160 0.2208 

 
DISCUSSION 

Models trained in this research, i.e. based on the 
optimised subset of wavelength, clearly outperform the 
models trained in Tholen et al. (2024). The best 
performing LR model found in previous work achieved 
an R2 of 0.884, trained on Ed(400), Ed(412), Ed(490). 
The best performing RT model achieved an R2 of 0.822 
on six wavelengths, incorporating three wavelengths of 
the surface radiation.  
In Figure 6, depicting the results of the regression tree, 
it can be seen that groups the plotted data points are 
aligned horizontally. This is because a regression tree 
partitions the feature space into distinct regions based on 
decision rules. This is also known as local discretisation 
(Bramer, 2020). Within each region, the model assigns 
a constant predicted value to that region. If predicted 
values (i.e. the predicted PAR values), are plotted on the 
vertical axis against an independent variable on the 
horizontal axis (i.e. the true PAR values), all data points 
within the same leaf node will have the same predicted 
value. This results in horizontally aligned points because 
multiple input values share the same output value. 
Wollschläger et al (2020d) introduced a trimodal 
approach to model the underwater light field, splitting 
the spectral information into three different bands. 
Within the optimisation GA automated chooses one 
wavelength from each of the bands for the LR model, 
while for the RT-model two wavelengths from the third 
band are chosen. For the RT model, two wavelength 
from the third band are chosen, while none of the 
wavelength from the second band is chosen. The 
trimodal approach was motivated by the absorption 
characteristics of the dominant substances affecting the 
underwater light field (Wollschläger et al., 2020d). 
Thus, the wavelength chosen for the RT might not be 
optimal for generalising PAR predictions.  
As summarised in Table 1, the LR model outperforms 
the RT-model. Therefore, further discussions will focus 
on the LR model. To validate the suitability of the ML 
model to replace the PAR sensor, the relative error of 
predictions compared to true values is calculated as 
follows: 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
∙ 100 (1) 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 denotes the true PAR value, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
is the predicted PAR value. In Figure 7 the relative error 
is shown in dependence of the water depth for the LR 
model. One can observe measurements with high 
relative errors for low water depths.  

 
Figure 7 Depth profile of relative prediction error for 
the linear regression model 

In Table 2 the ten highest relative error values are given 
together with the true PAR values and the PAR 
predictions. It can be observed that in all cases the true 
PAR value was smaller than 0.2197.  
 
Table 2 Summary of data tuples with the highest relative 
error values of the validation set for linear regression  

Relative Error (%) True PAR Prediction LR 

-800.08 0.1328 1.195 

-663.74 0.1591 1.215 

-573.67 0.1867 1.258 

-562.72 0.1917 1.270 

-562.05 0.1888 1.250 

-549.95 0.1903 1.237 

-545.66 0.1895 1.224 

-533.03 0.1974 1.250 

-468.04 0.2197 1.248 

-462.45 0.2175 1.223 
 
As shown in Table 2 in all cases of high relative errors 
the true PAR values are small. For further investigation, 
Table 3 summarises statistics of the true PAR values of 
the subset of the validation set with higher relative errors 
than the given threshold, while the relative error over the 
true PAR values is shown in Figure 8. It can be observed 
that high relative errors occur for small true PAR values. 
If the prediction is limited to PAR values greater than 
one the maximum relative error is reduced to 50.04 %. 
Higher thresholds for the maximal relative errors result 
in smaller mean values for true PAR.  
 



 

 

 
Figure 8 Relative error (%) of the linear regression 
model over the true PAR value 

 
Table 3 Summary of statistics of true PAR values for 
tuples of the validation set with specific max. relative 
error values higher than the threshold 

 Max. relative error (threshold) 
Statistics 
true PAR 10 % 50 % 100 % 200 % 

Samples 1930 705 134 57 
Mean 31.745 2.092 0.617 0.322 

Std. dev. 110.7 1.258 0.42 0.096 
Minimum 0.133 0.133 0.133 0.133 
Maximum 900.44 12.538 2.353 0.508 

 
CONCLUSION AND FUTURE WORK 

The paper presented a modelling approach for 
predicting PAR in the water column, which uses 
downwelling irradiance in selected wavelengths. Two 
different AI-based modelling approaches, i.e. linear 
regression and regression tree, were used. The 
wavelength selection was optimised utilising a Genetic 
Algorithm. All experiments were conducted using the 
KNIME workbench.  
It was shown that the linear regression model 
outperforms the regression tree model in terms of R2 and 
mean absolute error. It was also shown that the models 
generalise well on data recorded in other geolocations 
without additional modification or re-training.  
However, further analysis revealed that for small true 
PAR values high relative prediction errors occur, 
especially in lower water depths. It was already shown 
that incorporating additional environmental parameters 
such as e.g. pressure or salinity enhance the accuracy of 
the regression (Kumm et al., 2022). Therefore, the 
incorporation of additional parameters can also make 
the regression more stable and prevent high relative 
errors. This will be investigated in future research. In 
addition, domain experts will be incorporated to decide 
whether the performance of the ML models is high 
enough to replace the PAR sensor on the Argo Floats for 
future missions.  
In addition, methods to improve linear regression 
models, such as regression splines (Friedman, 1991) or 

generalised additive models (Wood et al., 2015), will be 
investigated.  
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