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Abstract

Mobile eye tracking is an important tool in psychology and human-centered interaction
design for understanding how people process visual scenes and user interfaces. However,
analyzing recordings from head-mounted eye trackers, which typically include an egocen-
tric video of the scene and a gaze signal, is a time-consuming and largely manual process.
To address this challenge, we develop eyeNotate, a web-based annotation tool that enables
semi-automatic data annotation and learns to improve from corrective user feedback. Users
can manually map fixation events to areas of interest (AOIs) in a video-editing-style inter-
face (baseline version). Further, our tool can generate fixation-to-AOI mapping suggestions
based on a few-shot image classification model (IML-support version). We conduct an
expert study with trained annotators (n = 3) to compare the baseline and IML-support
versions. We measure the perceived usability, annotations’ validity and reliability, and
efficiency during a data annotation task. We asked our participants to re-annotate data
from a single individual using an existing dataset (n = 48). Further, we conducted a semi-
structured interview to understand how participants used the provided IML features and
assessed our design decisions. In a post hoc experiment, we investigate the performance of
three image classification models in annotating data of the remaining 47 individuals.

Keywords: eye tracking; interactive machine learning; area of interest (AOI); mobile eye
tracking; visual attention; eye tracking data analysis; fixation-to-AOI mapping

1. Introduction
Eye tracking studies often consider visual attention to specific areas of interest (AOIs)

to analyze and understand how people process visual information. AOIs are specific
regions in a scene or interface that are defined by researchers [1]. Visual attention refers
to the time a person pays attention to these regions. By measuring visual attention to and
transitions between AOIs during a study, researchers can gain insights into which elements
of a scene are relevant to an activity and how interventions of an experiment influence the
participant’s eye movement behavior. This is usually performed based on fixation events
as they are assumed to approximate a person’s allocation of cognitive resources through
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the time they spend processing a visual scene [2]. Further, advances in modern head-worn
eye tracking technology [3] can enable attention-aware mobile human–computer interfaces.
In remote eye tracking with static stimuli such as images, an AOI can be defined once
and reused for every participant. Dynamic AOIs in video-based stimuli can be annotated
using keyframe-based annotation techniques; i.e., AOIs are marked via bounding boxes for
keyframes, and interpolation is used to annotate intermediate frames [4]. However, these
efficient fixation-to-AOI mapping techniques from remote eye tracking do not scale for
mobile eye tracking applications. Accurately annotating mobile eye tracking data remains
a challenging and time-consuming task because scene videos taken with a head-mounted
eye tracking device are unique for every participant. In mobile eye tracking practice, one
or more annotators decide per fixation whether an AOI was hit or not [5,6]. This fixation-
wise annotation approach reduces the annotation effort compared to a video frame-based
annotation because fixations last around 200–400 ms [1], which corresponds to 2–2.5 events
per second. Videos are typically recorded with a sampling rate of at least 30 Hz. Still,
it does not remedy the need to annotate AOIs in every single recording and hinders the
development of attention-aware mobile interfaces.

Attaching fiducial markers to target stimuli was proposed as a solution in re-
search [7–9] and was adopted in modern commercial software solutions like Pupil Cloud
(https://pupil-labs.com/blog/pupil-cloud-projects-enrichments/; accessed on 2 Febru-
ary 2024). However, markers are obtrusive and may impact visual scanning behavior.
Therefore, the present research aims at a solution for non-instrumented environments. Ex-
isting approaches for automatic or semi-automatic analysis of head-mounted eye tracking
data use computer vision models to map fixations to AOIs. Most of these approaches
rely on pre-trained computer vision models that do not allow for adapting the underlying
model to a certain target domain [5,10–13]. These can be applied in very constrained
settings only, i.e., if the dataset used for training the machine learning model matches the
target domain. Some approaches support a single, a priori model training or fine-tuning
step for adaptation to a target domain [14–16]. These approaches offer no possibility of
adapting the model during the annotation process and, hence, suffer from a lack of flexibil-
ity. Further, not all methods are evaluated quantitatively [17–19] or evaluation metrics are
not properly described [11,20] or inadequate, e.g., ignoring temporal aspects [16]. Some
commercial tools offer automatic mapping of the gaze signal in world video coordinates
to a reference frame that defines AOIs, such as the assisted mapping function of Tobii
Pro (https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping;
accessed on 12 December 2024). However, this is only possible for a limited number of
reference frames.

We aim to develop a method for semi-automatic mapping of fixations to AOIs, which
enables efficient analysis and interpretation of humans’ complex interaction behavior. This
bears the potential to boost the efficiency in research based on eye tracking by automating
the time-consuming and expensive data annotation process [16] and to facilitate novel
real-time adaptive human–computer interaction [21,22]. Further, we aim to break the
limitations of using pre-trained models, i.e., the issue of lacking flexibility and quality
assurance through humans-in-the-loop. In this work, we implement and evaluate eyeNo-
tate, a user interface that enables semi-automatic annotation of mobile eye tracking data.
Our tool allows mobile eye tracking practitioners to manually annotate their recordings
fixation-wise, reflecting the current state of the art and representing our baseline approach.
Further, we implement an extension offering fixation-to-AOI mapping suggestions using
a few-shot image classification model, which was shown to be successful in another use
case [23]. This model can learn from user feedback, i.e., when users accept or reject/correct
suggestions, following the interactive machine learning (IML) paradigm. IML combines

https://pupil-labs.com/blog/pupil-cloud-projects-enrichments/
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frequent human input and feedback with machine learning technologies without requiring
background knowledge in machine learning [24,25]. Domain knowledge from end-users,
like eye tracking practitioners, can be integrated more effectively into complex applica-
tions. However, it is important to thoroughly design such systems to achieve better user
experiences and more effective learning systems [26]. We conduct a case study with n = 3
trained annotators to compare the baseline version and the IML-supported approach. We
measure the perceived usability, annotation validity and reliability, and efficiency during
a data annotation task using an existing mobile eye tracking dataset with ground-truth
annotations (n = 48). We ask participants to re-annotate data for one individual in this
dataset. After task completion, we conducted a semi-structured interview (SSI) to under-
stand how participants used the provided IML features. In addition, we investigate the
performance in automatically annotating the remainder of the dataset using our resulting
machine learning models.

To address the challenges in annotating data from head-mounted eye trackings, we
implement eyeNotate, a user interface that enables semi-automatic annotation. Our tool
allows mobile eye tracking practitioners to manually annotate their recordings fixation-wise
(baseline) and semi-automatically using fixation-to-AOI mapping suggestions based on a
few-shot image classification model (IML-support). We contribute by (i) implementing the
eyeNotate tool for semi-automatic annotation of head-mounted eye tracking data based
on few-shot image classification, (ii) evaluating our eyeNotate in a case study with n = 3
trained annotators to compare the baseline version and the IML-supported approach,
measuring the perceived usability, annotation validity and reliability, and efficiency during
a data annotation task, and (iii) conducting a post hoc machine learning experiment to
assess the performance of the considered models in automatically annotating data from
head-mounted eye trackers.

2. Related Work
We aim to improve the annotation process for mobile eye tracking data from diagnostic

user studies, i.e., assigning each fixation in a set of recordings to an AOI based on the
corresponding video frame from the front-facing scene camera and the fixation position.
Here, we provide an overview of existing approaches for the annotation of mobile eye
tracking data and video annotation in general. Further, we provide a brief overview of
methods for real-time interpretation of eye tracking data that can be used to develop
wearable attention-aware user interfaces [27]. Using unobtrusive modern eye tracking
head-gear (see, e.g., Tonsen et al. [3], Lander et al. [28]) or augmented reality headsets like
Microsoft’s HoloLens 2 that come with integrated eye tracking sensors, our system for
interactive annotation and model training can enable developers to easily create custom
computer vision models for attention-aware mobile interaction.

2.1. Annotation of Data from Mobile Eye Trackers

Head-mounted eye trackers allow researchers to investigate human behavior in mo-
bile settings. However, efficient methods for mapping fixations to AOIs from remote eye
tracking cannot be used because the video of the front-facing scene camera differs for each
participant. Instrumenting the experiment scene with fiducial markers is an option to
cope with this issue [7,8]. Software that accompanies modern head-mounted eye track-
ers typically integrates marker tracking, like the marker-based surface tracking in Pupil
Capture [29]. However, the instrumentation of the experiment area comes with certain
limitations. Marker tracking might be lost due to low camera quality or due to occlusion
through other objects in the scene. In augmented reality (AR) settings, which allow learners
to see digital objects embedded in reality by looking through the camera of smartphones or
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tablets, supposedly unique markers might appear twice, causing ambiguity. Consequently,
objects can no longer be distinctly identified by markers. Another disadvantage of marker-
based surface tracking is that the numerous markers needed to reliably recognize objects in
information-rich learning environments might impair the instructional design by claim-
ing cognitive resources for the marker processing and distracting from learning-relevant
visual stimuli. Therefore, this work focuses on an approach to facilitate and support the
time-consuming and challenging procedure of mapping human gaze or fixations to ob-
jects or AOIs in non-instrumented environments. Commercial tools like Tobii Pro Lab
(https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping (ac-
cessed on 12 December 2024)) exist that offer automatic mapping of the gaze signal to AOIs
defined in a reference image. However, the assisted mapping function works for static
scenes only, is error-prone in cases of fast head movements and distorted image frames, and,
hence, requires additional manual effort for correcting wrong assignments or annotating
missing samples [15]. Further, the software is very expensive and does not support the
annotation of eye tracking data from other devices like Pupil Core head-worn device that
we used. Previous research also addressed this problem in the context of data analysis for
diagnostic eye tracking studies. However, these approaches come with certain limitations.

Most approaches rely on pre-trained computer vision models that do not support an
adaptation of the underlying models to the target domain. Sümer et al. [10] investigated
the problem of automatic attention detection in a teaching scenario. They extract image
patches for all student faces in the egocentric video feed and cluster them using a ResNet-
50 model [30] trained on VGGFace2 data [31]. They assign student IDs to each cluster,
allowing them to map the teacher’s gaze to individual students. Chong et al. [32] developed
a system for measuring eye contact in adult–child social interactions using mobile eye
trackers. Callemein et al. [33] presented a system for detecting when the participant’s gaze
focuses on the head or hands of another person without the possibility of differentiating
between interlocutors. Machado et al. [11] matched fixations with bounding boxes from
an object detection algorithm. They used a sliding-window approach with a MobileNet
model [34], pre-trained on ImageNet data [35]. Venuprasad et al. [13] used unsupervised
clustering with gaze and object locations to detect visual attention to an object or a face.
They used a Faster-RCNN model [36], pre-trained using the MS COCO dataset [37]. Barz
and Sonntag [38] compared two approaches for automatic fixation-to-AOI mapping using
pre-trained deep learning models: two ResNet models pre-trained with ImageNet data
and a Mask R-CNN model pre-trained using MS COCO data. In an evaluation based
on the VISUS dataset [6], they found that pre-trained models have severe drawbacks in
realistic scenarios like AOIs not being represented by the training data. Deane et al. [12]
also presented an annotation system based on a pre-trained Mask R-CNN model [39]. They
found high agreements between manual and automatic annotations for AOIs that match
the MS COCO classes. These can be applied in very constrained settings only, i.e., if the
dataset used for training the machine learning model matches the target domain.

Other approaches suffer from a lack of flexibility. Wolf et al. [14] developed an
algorithm that maps fixations to object-based AOIs using the Mask R-CNN object detection
model [39]. They conducted a controlled lab study to record data in a healthcare setting with
two AOIs: a bottle and five syringes. An evaluation has shown that using 72 training images
with 264 annotated object masks, their system can closely approximate the AOI-based
metrics compared to manual fixation-wise annotations as a baseline. Batliner et al. [40]
presented a similar system for simplifying usability research with mobile eye trackers
for medical screen-based devices. Kumari et al. [15] investigate the effectiveness and
efficiency of three object detection models for annotating mobile eye tracking data from
students participating in STEM lab courses. These methods are based on a single, a priori
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model training or fine-tuning step with no possibility of adapting the model during the
annotation process.

Some approaches include promising interaction concepts but use outdated computer
vision methods. Pontillo et al. [20] presented SemantiCode, an interactive tool for post hoc
fixation-based annotation of egocentric eye tracking videos. It supports semi-automatic
labeling using a distance function over color histograms of manually annotated fixations.
Brône et al. [19] proposed to use object recognition with mobile eye tracking to enhance the
analysis of customer journeys. In follow-up work, they compared different feature extrac-
tion methods [41] and evaluated their approach in a museum setting [42]. Evans et al. [43]
reviewed methods for mobile eye tracking in outdoor scenes ranging from pupil detec-
tion and calibration to data analysis. They presented an early overview of methods for
automating the process of analyzing mobile eye tracking data. Fong et al. [44] presented
a semi-automatic data annotation approach. An annotator assigns video frames with a
gaze overlay to AOIs, and as the annotation process advances, the system learns to classify
AOIs via instance-based learning. Kurzhals et al. [18] used bag-of-SIFT features and color
histograms with unsupervised clustering to sort fixation-based image patches by their ap-
pearance. They offer an interactive visualization for manual corrections. Panetta et al. [16]
presented an annotation method based on bag-of-visual words as features and a support
vector classification model (SVC) that is trained a priori. In follow-up work, they present
a system that automatically segments objects of interest using two state-of-the-art neural
segmentation models [45]. They used pre-trained models to showcase and evaluate new
data visualization methods, but they did not assess the performance of their automatic
annotation approach.

Recently, Kurzhals et al. [46] described an interactive approach for annotating and
interpreting egocentric eye tracking data for activity and behavior analysis. They implement
an iterative time sequence search based on eye movements and visual features. They aim
to annotate high-level activity events instead of AOI-hit events like we do. In follow-up
work, Kurzhals [47] presented an approach for annotating the objects viewed by study
participants wearing mobile eye trackers. They propose to crop image patches around each
point of gaze, segment the resulting image patches similar to the fixation detection method
by Steil et al. [48], and present representative gaze thumbnails to annotators as image
clusters in 2D. Annotators interact with this cluster representation to annotate and analyze
the mobile eye tracking data. In contrast, our method is based on interactive few-shot
image classification. Our system learns to recognize the type of fixated objects or regions
based on human feedback during the interaction.

This work aims to accelerate and objectify research on visual attention with mobile eye
tracking using technologies from the field of computer vision and interactive machine learning.

2.2. Video Annotation in General

The annotation of mobile eye tracking data requires the interpretation of the video
feed from the front-facing scene camera. Hence, systems and methods for video annota-
tion are closely related to our approach. An important difference is that general tools for
video annotation do not take the gaze signal or fixation events into account. In fact, video
annotation based on the definition of bounding boxes around relevant objects, a respective
interpolation for intermediate frames, and a mapping of gaze or fixation points to these
areas is the state of the art for annotating video stimuli used with remote eye tracking
devices [4]. Even though these methods do not scale when it comes to the annotation of mo-
bile eye tracking with individual video feeds for each participant, we briefly review recent
approaches and tools for video annotation, as they can provide guidance for the design of
similar systems. With LabelMovie, Palotai et al. [49] presented a tool for collaborative video



J. Eye Mov. Res. 2025, 18, 27 6 of 35

annotation. They proposed machine learning-based quality assurance and automation of
the annotation process. In more recent work, the research group presented a method for the
semi-automatic annotation of videos for analyzing the behavior of laboratory animals [50].
The Multimodal Multisensor Activity Annotation Tool (MMAAT) offers similar function-
alities for multichannel data streams from multiple sensors, like depth channels from 3D
cameras and accelerometers from wrist-worn devices [51]. The VGG Image Annotator (VIA)
(https://www.robots.ox.ac.uk/~vgg/software/via/ (accessed on 12 December 2024)) is
a stand-alone tool that enables manual annotation of images, audio, and video data in a
web browser [52]. The Computer Vision Annotation Tool (CVAT) is an open-source system
for interactive image and video annotation (https://github.com/opencv/cvat (accessed
on 12 December 2024)). It integrates functionalities for scaling video annotation, like
automatic pre-annotation based on computer vision models and keyframe-based inter-
polation of manual annotations, in an easily deployable online platform for large-scale
projects. A general overview of interaction methods for video content was presented by
Schoeffmann et al. [53].

2.3. Methods for Attention-Aware Interfaces

Human gaze can be considered a proxy for human visual attention and thus can
enhance gaze-based multimodal interaction [54]. We provide a brief overview of such
real-time interactive systems because they can benefit from our presented approach for
interactive annotation of mobile eye tracking data. Related work includes approaches for
building user interfaces that are aware of the current context or situation [55], including
conversational interfaces [56]. For instance, Bulling et al. [57] presented an approach for
inferring high-level contextual cues from eye movements to facilitate behavioral monitoring
and life-logging. Similarly, Steil and Bulling [58] used topic modeling to detect everyday
activities from eye movements in an unsupervised fashion. In a later work, the authors
presented an approach for visual attention forecasting in mobile interaction settings, which
takes the visual scene and device usage data as additional inputs [59]. Toyama et al. [60] im-
plemented a Museum Guide that uses SIFT (scale-invariant feature transform) features [61]
with the nearest neighbor algorithm and a threshold-based event detection to recognize
user attention to one of 12 exhibits. They extended their approach to detecting read texts
and fixated faces with the goal of building artificial episodic memories to support dementia
patients [62]. Other approaches combine visual features of a scene with gaze information
to detect actions recently performed by a user [63–66]. Prasov and Chai [67] developed a
system that combines speech and passive gaze input to enhance reference resolution in
conversational interfaces. Baur et al. [68] implemented NovA, a system for analyzing and
interpreting social signals in multimodal interactions with a conversational agent, which
integrates eye tracking technology. Thomason et al. [69] developed a gaze-based dialog
system that enables the grounding of word meanings in multimodal robot perception.
Uppal et al. [5] presented a method for segmenting the fixated object using an end-to-end
computer vision model. Chang et al. [70] developed the MemX system that detects human
visual attention based on mobile eye tracking and automatically extracts important video
sequences that can be used for, e.g., lifelogging. Meyer et al. [71] proposed to use head and
eye movement in combination with other sensor data to recognize human activities for
building context-aware smart glasses.

3. Materials and Methods
We implement the eyeNotate system, a web-based tool for fixation-to-AOI mapping,

and evaluate its usability, effectiveness, and efficiency in a small expert case study (n = 3).
Further, we conduct a post hoc experiment to assess the performance of the underlying
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machine learning models in automatically annotating long recordings from head-mounted
eye trackers. In the following, we present the details about the implementation of eyeNotate
and the methodology used for evaluating it.

3.1. The eyeNotate Annotation Tool

We implement eyeNotate, a web-based tool for fixation-to-AOI mapping, an essential
data processing step in research based on mobile eye trackers. Our tool allows practition-
ers to annotate recordings manually fixation-wise, reflecting the current state of the art
(baseline). We designed the user interface to enable efficient navigation through videos
based on fixation events aligned to common video-editing interfaces. Further, we integrate
an IML component that can provide AOI label suggestions for fixations and learn from
user feedback, i.e., when they accept or reject/correct suggestions, based on a few-shot
image classification model (IML-support). User annotations and model-based suggestions
are stored in a database. Figure 1 shows the basic user interface and an overview of the
IML-support features.

a

c

b

d

e

Figure 1. (a) Screenshot of the user interface of our baseline annotation tool and (b–e) an overview
of the IML-support features. It extends the baseline by (b) a status bar indicating the number of
AOI suggestions grouped by model certainty and a trust-level slider for adjusting certainty intervals,
(c) indicators for AOI suggestions in the fixation list, (d) adjusted fixation overlays for the video,
and (e) an option to confirm AOI suggestions.

3.1.1. Baseline Annotation Tool

The baseline tool offers a video-editing-like interface for fixation-wise data annotation
(see Figure 1a). It includes three main elements: A top bar displays information on the
selected recording and the annotation progress, a list on the left shows all fixations and
their annotation state, and a video view on the right with a fixation overlay and buttons
for manual annotation. Selecting a fixation from the list causes the video view to show
the respective image frame with a circular overlay at the fixation position, indicating the
currently assigned AOI. An AOI can be assigned to the fixation by clicking one of the AOI
buttons or pressing the corresponding shortcut on the keyboard. This is visually confirmed
by a green badge that appears next to the fixation’s list entry, and the overlay in the video
view that turns green and shows the newly assigned AOI label. Navigation through
fixations is possible via the arrow keys and on-screen video controls. When consecutive
fixations hit the same AOI, they can be annotated simultaneously by selecting multiple
fixations from the list using the shift and arrow keys in combination. This is consistent with
multi-item selection features in common list views.
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3.1.2. Interactive Machine Learning Support

The IML-support version of our tool integrates an IML component based on a few-
shot image classification model, which is initialized with a small set of images per AOI.
This model generates AOI label suggestions for each fixation by cropping an image patch
from the corresponding video frame around the fixation point. Manual annotations and
confirmatory or corrective feedback are used to re-train the image classification model,
aiming to improve its performance over time. The model training and inference run in
parallel to enable flexible and quick adaptations of the model to the target domain. Figure 2
shows a high-level overview of the components of our system and how they interrelate.

annotate model training

model inference

AOI suggestionsAOI suggestions

confirm/correct

Annotator

Frontend

Backend

Few-Shot
Image

Classification

Figure 2. Overview of the architecture of our interactive annotation system, including a web-based
user interface (frontend), a backend for managing data storage, and an IML service that enables label
suggestions and model retraining for the IML-support version of our tool.

User Interface

The user interface of the IML-support version is extended to display and interact with
model-based label suggestions (see Figure 1b–e). A non-filled badge at a fixation’s list
item indicates that a suggestion is available (see Figure 1c). The outline color of the badge
encodes the model’s confidence, which is either high (green), medium (yellow), or low (red).
The color is also reflected in the fixation overlay in the video view (Figure 1d). Users can set
their perceived trust in the model using a slider in the top bar (Figure 1b). Moving the slider
towards high trust decreases the confidence thresholds: more suggestions appear in green.
Next to the slider, an overview displays the distribution of suggestions across confidence
levels. A suggestion can be confirmed or corrected by users. They press the space key to
confirm a suggestion for one or multiple selected fixations (Figure 1e). To correct it, they
assign another class.

Image Classification Model

The IML-support version adopts a few-shot learning strategy based on the Feature
Map Reconstruction Network (FRNet) [72] to generate AOI label suggestions. An overview
of the training and inference for this model is illustrated in Figure 3. The FRNet is a
convolutional neural network (CNN) architecture that performs classification via a class-
agnostic distance function: The image classification task is framed as a reconstruction
problem in latent space; i.e., predicting class membership relies on measuring the distance
between a query point and reference points in latent space representing our target classes
(i.e., AOIs). For any query image x, the convolutional block of the network outputs a
feature map Q ∈ Rr×d, where r is the spatial resolution (h × w) and d is the number of
channels. The network is trained in an N-shot-K-way manner to learn support feature
maps Sk ∈ RNr×d for each AOI class k ∈ K from a pool of N training images per class.
During inference, the model aims to reconstruct the best-fit query feature map Qk for each
class category as a weighted sum of rows of Sk such that WSk ≈ Qk, where W is the model
weights optimized during model training. By examining the negative reconstruction error,
which represents the disparity between the original feature map Q and each AOI-wise
reconstructed feature map Qk, FRNet assigns a class score. Smaller reconstruction errors
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indicate a higher likelihood that the query image belongs to the same class as the support
features. We train our classification model using n = 10 images and for K = 7 AOIs (initial
labeled data pool). Following Wertheimer et al. [72], we combine the classification loss
with an auxiliary loss Laux that optimizes support features from different classes to span
the latent space to train FRNet:

Laux = ∑
i∈K

∑
j∈K,j ̸=i

∥SiST
j ∥2 (1)

The annotation tool uses this pre-trained FRNet model to infer AOI labels for each
fixation in the selected dataset. Label suggestions are displayed if the threshold exceeds
a minimum confidence value (0.4) that the user can adjust through the trust-level slider.
Manual annotations and confirmed or corrected AOI labels are added to the labeled
data pool. For every 10 new samples, a model re-training is started in the background.
The model weights used for inference are updated upon completion. The models are
trained for 30 epochs at each iteration with weights initialized from the previous steps.
On an NVIDIA RTX 3080 GPU (24GB), the model training takes 2–4 s per epoch.

…
…

Training Phase Inference Phase

Support 
Images 
𝑋𝑠

Support 
Feature Map

 𝑄𝑠

Support 
Feature Pool

 𝑋𝑠

Query 
Reconstruction

 ത𝑄c

Query 
Feature Map

𝑄

Query Image

…

Figure 3. Overview of the FRNet classification workflow for a few-shot classification problem.

3.2. Evaluation

We evaluate our approach in two ways: we conduct a small case study with n = 3
trained annotators to quantitatively and qualitatively compare the baseline version of
our tool with the IML-support version. Annotators have been asked to annotate a small
portion of around 2% of an existing dataset with ground-truth annotations. In a post hoc
experiment, we assess the performance of three machine learning models in automatically
annotating the remaining part of the dataset. In the following, we describe the use case and
the corresponding dataset. Then, we provide details about the case study and the post hoc
machine learning experiment.

3.2.1. Use Case and Dataset from Educational Research

The evaluation focuses on educational research as an important eye tracking use case.
Most digital and analog learning environments are based on visual information. Hence,
gaze behavior is an important observable cue allowing researchers to gain insights into
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learning processes. Jarodzka et al. [73] specify three main research aims for using eye
tracking in educational sciences: The first aim is the improvement of instructional designs
by investigating the waste of cognitive resources on ineffective instructional material
(see, e.g., Malone et al. [74]). Second, eye tracking can be used to investigate visual
expertise leading to superior performance (see, e.g., Reingold and Sheridan [75]). Third,
eye tracking can be used to model learners’ eye movements to promote visual expertise
(see, e.g., Jarodzka et al. [76]). Some further educational studies also used eye tracking to
investigate learners’ gaze behavior in testing situations before and after learning phases
(see, e.g., Thees et al. [77]). Recent mobile eye tracking devices are convenient to wear
and enable learners to move freely and naturally in dynamic and interactive real-world
learning environments, e.g., classrooms or science laboratories [78,79]. This is especially
beneficial for eye tracking recordings with children, as they can easily be distracted by
intrusive measurements and have difficulties sitting still for long periods of time.

The case study (n = 3) and machine learning experiment described below use record-
ings from an existing mobile eye tracking dataset (n = 48). It was recorded and annotated
at Saarland University. The goal was to investigate the impact of AR-support in a lab
work-based learning scenario about electrical circuits on learning outcomes and learn-
ing processes of elementary school children (pre-registered at Open Science Framework:
https://osf.io/gwhu5; accessed on 12 December 2024).

Tablet-based AR was used to visualize measured values of current in different electric
circuits in real time during several experiment and observation tasks. The tablet-based
AR condition was compared to a condition in which a separate tablet presented the same
values without using AR. The data to be annotated in the current case study originates
from a single individual (child) who was assigned to the separate tablet condition. All
children wore a Pupil Core head-mounted eye tracker for children [29]. The lab work
started after a short introduction and the calibration of the mobile eye tracker through
physical markers. The Pupil Capture tool was used to record eye tracking data and a video
from the world camera.

The experiments investigated whether children would benefit from AR-based infor-
mation displays when learning scientific laws on current in series and parallel circuits.
In the first experiment, children built a simple electrical circuit with one bulb. While the
current at the power supply was manipulated, the children answered questions on the
bulb’s brightness and current measurements. After building up a series circuit with two
bulbs for the second experiment, the children again observed the current and brightness
of bulbs while the current at the power supply changed and answered some questions.
Subsequently, the children were asked to compare the brightness and current of the simple
circuit they built for the first experiment and the series circuit. The children also car-
ried out a third experiment on parallel circuits, which is not part of the present study.
For the current case study, the comparison process within the simple circuit (experiment
phase 1 → exp_1) and the comparison process between the simple and the series circuit
(experiment phase 2 → exp_2) are examined. An overview of the considered AOIs can be
found in Table 1.

Figure 4 shows an overview of the experiment scene with overlays for each AOI. Exper-
iment phase 1 includes five AOIs of the simple circuit setup with one bulb placed on the left
side of an experimentation table: left tablet with measurement values (Tablet_Left → T_L),
left voltage source and electric components (Experiment_Area_Left → E_L), and a dou-
ble page in a workbook (Page6_OneBulb → P_6). Experiment phase 2 includes ad-
ditional AOIs of a series circuit placed on the right side of the same table: right
tablet with measurement values (Tablet_Right → T_R), right voltage source and elec-
tric components (Experiment_Area_Right → E_R), and another double page in a work-

https://osf.io/gwhu5
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book (Page8_TwoBulbs_Row → P_8). The voltage source and electric components’
AOIs per side were merged into a single AOI for analysis. A third double page
for phase three was sometimes visible as the children scrolled through the workbook
(Page10_TwoBulbs_Parallel → P_10). This results in a total of seven AOIs: three for experi-
ment phase 1, three for experiment phase 2, and one additional for the workbook pages
of phase 3. However, the AOIs could have also been visible when not intended because
the scene was set up completely, and the children might have looked at non-relevant AOIs.
Nevertheless, fixations on these AOIs have been annotated. It is important to note that the
tablets, experiment areas, and workbook AOIs have similar appearances, which relates to
challenge III outlined in Barz and Sonntag [38].

Table 1. List of AOIs indicating their (intended) visibility per experiment phase.

AOI Visibility
exp_1 exp_2

Tablet_Left → T_L ✓ ✓
Tablet_Right → T_R ✓
Experiment_Area_Left → E_L ✓ ✓
Experiment_Area_Right → E_R ✓
Page6_OneBulb → P_6 ✓ ✓
Page8_TwoBulbs_Row → P_8 ✓
Page10_TwoBulbs_Parallel → P_10

Experiment_Area_Right (E_R)Experiment_Area_Left (E_L)

Tablet_Left (T_L) Tablet_Right (T_R)
Page_* (P_*)

Figure 4. Overview of the experiment setup illustrating considered AOIs.

Following the completion of the data collection, the Pupil Player tool was used for
detecting fixation events and annotating the eye tracking data fixation-wise: it offers an
option to jump between successive fixations and supports hotkey-based annotation. All
recordings have been annotated by four student assistants employed by Saarland University.
They received intensive training before the annotation took place. The manual annotation
of the full dataset took several days, which led to fatigue, frustration, and, eventually,
inadvertent errors in the annotations that were difficult to fix. We recruited three of these
student assistants for the present expert study; the fourth did not reply to our invitation.

3.2.2. Case Study

We invited n = 3 trained annotators for evaluating the baseline and IML-support
versions of eyeNotate. We measured the perceived usability, annotation validity and
reliability, and the efficiency of the annotation process during an annotation task (within-
subjects design). Further, we conducted a semi-structured interview to understand how the
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IML-support version was used and how that might impact the efficiency and validity of the
annotation process. For this case study, we focused on the use case of educational research
and the existing dataset described above. Next, we provide details about the experiment
procedure, the task given to our participants, the specific metrics used for evaluations,
and the limitations of this case study.

Procedure

We conducted the user study online via video calls and recorded them for post hoc
transcription. First, we introduced the study procedure and obtained a signed informed
consent via email. Then, we asked annotators to complete an annotation task with both
eyeNotate versions. For each, we showed a short instructional video explaining the features.
We allowed participants to familiarize themselves with the tool in a 5-min training phase
and ask clarification questions. Subsequently, participants performed an annotation task
and completed the system usability scale (SUS) questionnaire [80]. Two participants
started with the baseline version, one with the IML-support version of the tool. After both
annotation tasks were completed, we conducted a semi-structured interview to retrieve
further qualitative feedback on our tools, particularly for the distinct features of the IML-
support version. The interview guide is provided in Appendix A. The study took around
one hour, for which each participant received a EUR 10 compensation payment.

Annotation Task

We asked participants to annotate 870 fixations from the dataset described above
with ground-truth annotations. This corresponds to around 2% of all samples from the
dataset. To reduce the workload in our study, we constrained the annotation task to data
from a single child and two experiment phases (exp_1: 646 fixations; exp_2: 224 fixations).
In our study, fixations could be mapped to one of seven AOIs or a background class (see
Figure 1). The task ended when the participant annotated all fixations. For the IML-support
version, the participants could stop early if all fixations had highly confident (“green”)
label suggestions, while the confidence level depends on the trust-level slider.

Metrics

We measure the perceived usability, annotation validity and reliability, and efficiency
during the annotation task to assess the two annotation tool versions. We expect the IML-
support version to be more efficient than the baseline, with the perceived usability and
annotation validity and reliability remaining stable.

• Validity and Reliability: We measure the validity of the participants’ annotations for
each tool version. We report their accuracy in mapping fixations to AOIs compared to
the ground-truth annotations from the dataset used in this study. Further, we assess
the reliability as the level of agreement among all participants for each version of our
tool by calculating Fleiss’s κ [81]. We consider both measures to be control variables:
we expect to observe a high accuracy for both versions of the tool (≥95%) and an
almost perfect inter-rater agreement (κ > 0.8) [82].

• Efficiency: We measure the time required for completing the annotation tasks in sec-
onds (task completion time) for each tool version. We expect the IML-support version
to be more efficient than the baseline, according to findings in prior research, i.e., that
the availability of label suggestions leads to easier and faster decision-making [23].

• Usability: We assess the usability of both versions of our annotation tool using the
system usability scale (SUS) questionnaire [80]. Scores can range between 0 and 100,
with high scores indicating better usability. We interpret the SUS scores according to
the adjective rating by Bangor et al. [83]. We consider this a control variable; i.e., we
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do not expect a difference in perceived usability between the two versions of our
tool, but we expect a high SUS score for both versions. Further, we conduct a semi-
structured interview (SSI) to gain further qualitative insights about our annotation tool
and specific IML features. The transcribed interview was analyzed using a reflective
thematic analysis [84].

Limitations

One limitation of this case study is the small number of three participants. While
we expect to gain important insights into the effectiveness, efficiency and usability of our
interactive machine learning tool eyeNotate, these results are not generalizable. Further
investigations will be required in the future, covering additional use cases, i.e., not restricted
to educational science, and additional users and user groups, e.g., lay users that were not
previously trained for the annotation task.

3.2.3. Post Hoc Machine Learning Experiment

In a post hoc experiment, we assess the performance of three machine learning models
in automatically annotating the part of the dataset that was not annotated during our study;
i.e., all test data remains unseen. This includes around 230k fixations from 47 individuals.
The automatic fixation-to-AOI mapping includes all seven classes from our experiment,
plus a background (BG) class. However, the models are not trained to directly classify the
background class. The background class BG is assigned if the probability is lower than
a threshold tBG = 0.4. This means fixations are assigned to one of the seven AOIs if the
probability for this classification is greater than or equal to tBG. The three considered models
include the few-shot learning model (FRNet) [72] that was used in our IML-support version;
ResNet50 (ResNet) [30], a well-established foundation model for image classification tasks;
and MobileNetV2 (MobileNet) [85], a lightweight architecture model suitable for resource-
constrained environments. We consider two data settings for model training: base and
final. For the base setting, we use the initial labeled data pool with 10 images per class as
the training set, i.e., the 70 images that were used to pre-train the FRNet model for the
IML-support version of our tool. For the final setting, models are trained using ground-truth
labels for the 870 fixations from the annotation task. Figure 5 shows the class distribution
for the seven AOIs in the training set. However, by that, we assume that a participant
correctly annotates all fixations, which is not exactly true but sufficient for our experiment:
the average accuracy of our participants in annotating these 870 fixations was 94.55%. In
the final setting, we train FRNet in a 100-shot, seven-way manner, upsampling images for
classes with less than 100 training images because the model requires an equal number
of samples per class (random oversampling). Instead of upsampling, we use weighted
cross-entropy classification loss to train ResNet and MobileNet, which addresses the class
imbalance. As described above, an additional loss with a scaling factor of 0.03 is used to
train FRNet. All models are trained for 30 epochs using an SGD optimizer with a learning
rate of 0.0001. We report the accuracy and f1 scores of all models.
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Figure 5. Class distribution on the training set for the post hoc machine learning experiments.
Tablet_Right (T_R) has the lowest and Page8_TwoBulbs_Row (P_08) the highest number of samples.

4. Results
In the following, we report the results of our evaluation, including a small case

study (n = 3) and a post hoc machine learning experiment to assess the models’ ability to
automatically annotate data when additional training data is used.

4.1. Results of the Case Study

We present the results for each tool version, i.e., the baseline and IML-support versions.
In some cases, we report the individual values per participant because we only considered
three trained annotators for our case study: A1, B1, and B2. Participants started with the
IML-support (A) or the baseline version (B).

4.1.1. Validity and Reliability

We assess the validity of annotations in terms of their accuracy compared to the ground
truth. We report the mean over all three participants for each version of the annotation
tool per phase and combined (see Table 2). For phase exp_1, we observe an accuracy of
97.32% for the baseline version and 97.78% for the IML-support version. We observed
slightly lower values for phase exp_2: the accuracy is 89.58% for the baseline version and
88.24% for the IML-support version. The weighted average over both phases results in
an accuracy of 94.76% for the baseline version and 94.55% for the IML-support version.
This weighted average considers the unbalanced number of fixations in each phase. We
calculate Fleiss κ as a measure for the inter-rater agreement. It is calculated per condition
and phase based on the ratings from all three participants. Table 2 shows agreement values
that range between 0.919 to 0.963 (almost perfect). On average, we observed no deviations
in validity or reliability comparing the two versions of our annotation tool.

Table 2. Annotations’ validity (accuracy) and reliability (Fleiss’s κ) per experiment phase and as a
weighted mean.

Accuracy Fleiss’ κ
Baseline IML-Support Baseline IML-Support

exp_1 97.32% 97.78% 0.954 0.963
exp_2 89.58% 88.24% 0.941 0.920

mean 94.76% 94.55% 0.951 0.952
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4.1.2. Efficiency

We analyze the time required for completing the annotation task per tool and user.
Overall, the slowest participant was A1, who completed the tasks for the baseline condition
in 1999 s and 2095 s for the IML-support condition. Participant B1 was faster, with 1189 s
for the baseline condition and 1251 s for the IML-support condition. With 980 s for the
baseline condition and 966 s for the IML-support condition, participant B2 was the fastest
annotator. While the individual differences in the task completion times are large, we found
only small differences in the completion times between the two conditions. On average,
our participants required 1389 s to complete the tasks for the baseline condition and 3.44%
longer (1437 s) for the IML-support condition. The high rater agreement indicates that there
is no relation between task completion time and the validity of the generated annotations.

We also investigate whether the task completion time changes over time. We plot
the average task completion time for chunks of 100 samples against time in Figure 6.
Hereby, the x-axis determines how many samples have been annotated so far, and the
task completion time displays the time that was required for annotating the next chunk of
100 fixations (moving window average with window-size 100 and step-size 1). The diagram
shows that differences in task annotation time between users originate from annotating
fixations from experiment phase 1 (exp_1). A1, who was the slowest overall, has consistently
higher task completion times per 100-fixation chunk than the two other participants, B1
and B2. A1 requires around 250 s/chunk when using the IML-support version. When
using the baseline version, A1 is faster in the beginning (lower than 200 s/chunk), but task
completion time increases to almost 300 s/chunk towards the end. B1 and B2 need around
150 s/chunk in the beginning. Towards the end, task completion times improve for both
participants. B1 takes around 100 s/chunk in the end, B2 around 50 s/chunk. We cannot
observe differences between the IML-support and the baseline versions of our tool. The
task completion times for experiment phase two lie between 100 s and 150 s per chunk for
all participants and versions of eyeNotate.

In an additional analysis, we assessed differences in annotation times between different
classes. Table 3 shows the mean number of annotations per class (overall), and the mean
task completion time in seconds per annotation for the two versions of eyeNotate. The table
shows that users required the most time for annotating fixations belonging to the classes
T_R, P_10, and BG, with T_R and P_10 having the least annotations overall, independent of
the version of eyeNotate. We observed the fastest annotation times for E_R, P_6, and P_8.
The time required for annotating E_L and T_L depends on the tool used. In both cases,
the annotation times were lower when using the baseline version compared to the IML-
support version.

Figure 6. The task completion time per experiment phase, participant, and version of the tool
over time.
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Table 3. Class-wise mean task completion times in terms of seconds per annotation and the mean
number of annotations per class.

Class

E_L E_R T_L T_R P_6 P_8 P_10 BG

Mean number of annotations 270 59 135 10 276 46 2 73

Mean task completion
time [s/annotation]

baseline 1.55 1.24 1.60 3.04 1.44 1.27 2.96 2.59
IML-
support 2.13 1.32 1.89 2.10 1.41 1.14 3.50 2.01

4.1.3. Usability

We measured perceived usability using the SUS questionnaire. The baseline version
is consistently rated as “excellent” with values ranging from 87.5 to 95 (91.6 on average).
For the IML-support condition, we observed a high variance in SUS scores: the ratings
range from 50 for B1 (“poor”) to 67.5 for B2 (“OK”) to 97.5 for A1 (“excellent”), averaging
to 71.6. The reflexive thematic analysis of the SSI revealed two themes: (a) the tool’s
design facilitates the annotation of mobile eye tracking data, and (b) the constrained model
performance limits IML-based benefits. Details are provided in the discussion section below.

4.2. Results of the Machine Learning Experiment

Table 4 reports the accuracy for each model and training setting. FRNet outperforms
MobileNet and ResNet: it achieves an accuracy of 57.57% in the base setting and 58.78% in
the final setting, which is 6.64% and 7.39% better than the second-best models, respectively.
The model performs marginally better when taking the annotations of our participants
into account for training in the final setting (+1.21%). MobileNet ranks second for the base
setting with an accuracy of 50.93%. The accuracy slightly decreases to 49.28% for the final
setting. ResNet performs worst for the base setting with 39.60% and benefits most from
using more training samples in the final setting. The accuracy increases by 11.78% to 51.39%,
now slightly outperforming MobileNet.

Table 4. Accuracy for each model and train setting.

Test Samples
Base Setting Final Setting

MobileNet ResNet FRNet MobileNet ResNet FRNet

230.3k 50.93% 39.60% 57.57% 49.28% 51.39% 58.78%

Table 5 reports the class-wise and averaged f1 scores for each model and training
setting. In both training settings, FRNet performs best in terms of the macro and weighted
average of the f1 score. The best performance is achieved in the final setting with a
macro-average f1 score of 0.455 and a weighted average of 0.593. In the base setting,
the macro-average is 0.428, and the weighted average is 0.579. MobileNet and ResNet
achieve considerably worse average f1 scores in both settings. For the base setting, the macro-
average is 0.202 for MobileNet and 0.256 for RestNet, the weighted average is 0.460 for
MobileNet and 0.409 for ResNet. MobileNet does not benefit from taking more training
samples into account in the final setting: the macro-average f1 score slightly drops to 0.185,
and the weighted average f1 score to 0.445. For ResNet, the macro-average f1 score stays
similar, while the weighted average f1 score improves by 0.062 to 0.471. However, this is
still 0.122 worse compared to FRNet in the same setting and 0.107 worse than FRNet in the
base setting. It is noteworthy that the difference between FRNet and the other two models is
larger for the macro-average f1 score (difference ≥ 0.172) than for the weighted average f1
score (difference ≥ 0.119). Also, the macro-average f1 score is always clearly worse than the
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weighted average f1 score, indicating that all models perform better for classes with many
samples than for classes with a small number of samples. A class-wise analysis shows
that all models perform best for the background class (BG) with f1 scores starting from
0.569 for ResNet in the base setting and larger than 0.663 for all other conditions. The best
performance for the background class was observed for ResNet and FRNet in the final
setting with an f1 score of 0.681. We only observed a single better f1 score of 0.687 for
the tablet class T_L for FRNet in the final setting. As the background class covers more
than half of all samples (137.9k of 230.3k samples), it has a large impact on the weighted
average. For MobileNet and ResNet models, we observed low f1 scores of less than 0.5 for
all seven classes other than BG in both settings. FRNet shows a more balanced performance.
In the base setting, only four out of eight classes achieve an f1 score below that threshold.
Further, for FRNet, we observed the best performance for each class besides P_10 for
which MobileNet was better. In the final setting, FRNet improves for all classes besides
the experiment area E_R (−0.094), which is why five out of eight classes have an f1 score
lower than 0.5. Still, the model performs best for all classes besides P_10. For BG, ResNet
performs equally well in this setting. The best f1 scores for FRNet are observed for the
background class BG and the two tablet classes T_L and T_R.

Table 5. Class-wise f1 scores for each model and train setting.

Class Test Samples
Base Setting Final Setting

MobileNet ResNet FRNet MobileNet ResNet FRNet

E_L 10,771 0.207 0.180 0.323 0.153 0.224 0.384
E_R 7780 0.001 0.481 0.556 0.006 0.457 0.463
T_L 26,167 0.077 0.002 0.662 0.057 0.001 0.687
T_R 11,407 0.183 0.316 0.570 0.144 0.087 0.575
P_6 14,725 0.317 0.256 0.334 0.310 0.320 0.375
P_8 10,242 0.003 0.198 0.209 0.014 0.120 0.329
P_10 11,392 0.151 0.044 0.093 0.133 0.153 0.146
BG 137,852 0.676 0.569 0.678 0.663 0.681 0.681

Macro Average 0.202 0.256 0.428 0.185 0.255 0.455
Weighted Average 0.460 0.409 0.579 0.445 0.471 0.593

Figure 7 shows the confusion matrix of the best-performing condition: FRNet in the
final setting. It is normalized over the true conditions (i.e., over rows): the values on
the diagonal correspond to the recall of a respective class. Other values in the same row
correspond to false-negative errors and sum up to the miss-rate of that class. For instance,
for the background class BG, the recall is 61.33%, and the false negatives sum up to a miss
rate of 38.66%. The background is often misclassified as one of the experiment area classes
(18.19%) or as one of the tablet classes (12%). The confusion matrix shows that classes with
similar appearances are frequently confused. This can be observed for the two experiment
area AOIs, the two tablet AOIs, and the three workbook AOIs. For instance, for E_L,
the recall is 56.43%, and, with 26.53%, the majority of the false negatives were classified as
E_R. The recall of T_L is 76.31% while 12.38% of the false negatives were classified as T_R.
A similar pattern was observed for the workbook AOIs P_*. All AOI classes are frequently
misclassified as background. Hereby, the false-negative errors for the experiment area and
tablet AOIs range between 10.99% and 16.24%. The three workbook AOIs are affected
more severely: the false-negative errors range between 48.86% and 55.58%. This results in a
precision of 0.765 for BG, which is the best precision among all classes. Precision and recall
for all classes are reported in Table 6.
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Figure 7. Confusion matrix for the test set for FRNet in final setting (normalized over rows).

Table 6. Class-wise precision and recall for the FRNet model in the final setting.

Class Precision Recall

E_L 0.291 0.564
E_R 0.321 0.831
T_L 0.625 0.763
T_R 0.473 0.735
P_6 0.459 0.317
P_8 0.275 0.409

P_10 0.295 0.097
BG 0.765 0.613

Macro Avg. 0.438 0.541
Weighted Avg. 0.633 0.588

5. Discussion
With eyeNotate, we present a tool for annotating mobile eye tracking data. Our

goal is to create a tool that allows researchers to more effectively and efficiently annotate
recordings from mobile eye trackers while providing a high usability. In the following, we
discuss the results of our evaluation, including a case study with three trained annotators
and a post hoc machine learning experiment.

5.1. Validity and Reliability

The validity of users’ annotations is high and alike for both versions of our annotation
tool. We observed an accuracy of 94.76% for the baseline version and 94.55% for the IML-
support version (weighted mean). An additional analysis revealed 14 errors (1.6%) in the
ground truth. We identified these errors in cases when all three annotators agreed on an
AOI that deviated from the ground truth. With a corrected ground truth, accuracy increases
to 96.29% for the baseline version and 96.07% for the IML-support version. This suggests
we met our goal of achieving an accuracy of at least 95%. Our results further suggest that
the exp_2 was more difficult to annotate because accuracy values consistently dropped for
both versions of the tool from more than 97% accuracy to less than 90%, and we observed a
higher ratio of ground-truth errors. A reason might be that the second phase included more
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different AOI classes and a more complex scene. The inter-rater agreement was almost
perfect with κ ≥ 0.9 in all cases, i.e., the reliability of annotations from both versions of our
tool is high.

5.2. Efficiency

On average, task completion times for both tool versions were similar: annotators
were 3.44% (48 s) slower when using the IML-support version. Likewise, the difference
in task completion times between versions per participant is small. On the other hand,
the differences between participants are large. A1 required around 2000 s to solve the task
per tool, while B1 and B2 required around 1200 s and below 1000 s, respectively. This
is almost twice as fast without compromising accuracy, which indicates that B1 and B2
had a more efficient strategy in using our tools. Analyzing the task completion times
over time, we observe that A1 is consistently slower than B1 and B2 with annotation
times of 250–300 s/100 annotations. B1 and B2 require only around 150 s/100 annotations.
During the study, we observed that all participants used shortcuts for annotation and
confirmation, but A1 did not use the multi-select feature, which could explain the high
difference to B1 and B2 in terms of task completion time. Another indicator for the high
effectiveness of the multi-select feature is that B1 and B2 had the lowest task completion
times (50–100 s/100 annotations) at the end of exp_1, which includes many consecutive
occurrences of P_6 and P_8 (see also the low class-wise annotation times in Table 3).
Overall, given the 870 fixations in the annotation task, our eyeNotate achieves a worst-case
annotation rate of 2.41 s/fixation for user A1 when using the IML-support version and a
best-case annotation rate of 1.11 s/fixation for user B2 when using the IML-support version.
This means, using an automatic annotation method to map the remaining 230k fixations in
the full dataset, there is a time-saving potential between 70 and 150 h for this use case.

However, we could not confirm our hypothesis that providing label suggestions would
accelerate the labeling process. This is likely because all annotators tended to manually
check and confirm label suggestions in the IML-support version (cf. Section 5.3). We
observed corresponding annotation behavior during the study, and theme (b) of our SSI
analysis concerning the constrained model performance confirms this: annotators did not
trust the model sufficiently and felt highly responsible for performing the job well. Hence,
they did not benefit from automatic label suggestions as found in Desmond et al. [23].
The differences in interaction design between the baseline and the IML-support version
of our tool seemingly played no role in this context. Our findings from the SSI analysis
relating to theme (a) suggest that participants, in principle, liked the interaction design of
the IML-support version, but due to the low model performance, these features were not
effective. Our findings suggest that future investigations should include more effective
computer vision models that can better cope with the challenges of mobile eye tracking data
like differentiating classes with similar appearance. This could, for instance, be achieved
using a classification model that takes the position of a fixated object into account [86] or
by tracking objects once they have been annotated once using 3D scene reconstruction
and object tracking algorithms [87]. Follow-up work could also investigate how lay users,
in contrast to the trained annotators in our case study, perform in the annotation task,
following the questions whether lay users could achieve the same validity as trained
annotators and whether lay users would benefit more from label suggestions in terms
of efficiency.

5.3. Usability

The usability of our tool’s baseline version was consistently rated as excellent: the
basic features and general interaction design of our annotation tool were perceived very
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positively, which is supported by theme (a) of our thematic analysis concerning the tool’s
interaction design: “the tool’s design facilitates the annotation of mobile eye tracking data.”
However, B1 and B2 rated the IML-supported version drastically lower, which contradicts
our assumption that both tools achieve a similar usability rating. Looking into individual
SUS items, B1 and B2 majorly penalized an increased inconsistency of the IML-support
version and indicated that it was more cumbersome to use. Both felt less confident using
the IML-support version and thought it was less easy to use. Particularly, B1, who rated the
usability of the IML-support version as “poor”, reported that the system provided many
wrong label suggestions and seemed uncertain in many cases, which caused confusion and
deteriorated trust. B1 reports that, as a consequence, they fell back to a manual annotation
strategy. B2 and A1 reported similar issues with the model performance despite rating
usability higher. We observed that B2 and A1 favored manual annotation, similar to B1.
These usability issues can be attributed to the integration of IML-support features and relate
to theme (b) of our thematic analysis concerning the constrained model performance: “the
constrained model performance limits IML-based benefits.” The two themes, originating
from a reflexive thematic analysis of the SSI, are detailed below.

5.3.1. (a) The Tool’s Design Facilitates the Annotation of Mobile Eye Tracking Data

Our case study participants liked our tool’s basic functionality and interaction de-
sign. In particular, they highlighted the clean design that allowed them to focus on the
annotation task throughout the study. They reported high usability and learnability. Quick
reaction times and visual feedback were highly appreciated. Particularly, the video overlay
immediately displaying updates after manual annotation or confirmation was considered
very helpful because they had to check the video frame to decide on the AOI class anyway.
All participants reported a high perceived performance due to the clean, focused interaction
design and the ability to use shortcuts for navigation and annotation. Also, the multi-select
feature for annotation and confirmation seems to impact annotation efficiency positively.
The video playback function was not used by our participants but might have supported
understanding the video-editing-like interface metaphor. Upon asking them, participants
reported they understood the trust-level slider but did not use it often, although it was
considered useful. High-certainty suggestions (green highlight) were also considered help-
ful. However, certain but wrong label suggestions were frustrating as they could lead to
wrong confirmations. Also, the red color of uncertain suggestions was reported to interrupt
the interaction flow in the case the predictions were correct. In summary, color-coding
of the model certainty for label suggestions might cause frustration in the case of certain
but wrong predictions and can interrupt the interaction flow in the case of uncertain but
correct predictions. An implication could be to restrict label suggestions to highly certain
suggestions. Our participants suggested two interesting features that will be considered in
future versions of our tool. They proposed a feature that enables jumping to non-annotated
fixations or uncertain suggestions. Further, they proposed a feature to batch-accept all
certain predictions, which would be dependent on the state of the trust-level slider and
could be restricted to classes with good classification performance.

5.3.2. (b) The Constrained Model Performance Limits IML-Based Benefits

All participants reported a perceived model performance of 30–40% accuracy, al-
though the true value is higher (62%). This indicates that our participants had low trust in
the underlying model generating the AOI label suggestions and could explain why they
checked all suggestions manually. This is also in line with their reports on problems with
certainty-based color coding. All participants specified that the model suffered from a
left/right weakness: Some AOIs with the same appearance were present on the left and



J. Eye Mov. Res. 2025, 18, 27 21 of 35

right sides of the experiment scene, but the model could not properly differentiate between
them. We intentionally investigated this challenge by including experiment phase 2. One
example is T_L and T_R, referring to two instances of the same tablet mounted on the left
or right side of the experiment scene. This is evident in the confusion matrix for FRNet in
Figure 7: T_L is wrongly classified as T_R in 12.38% of the cases. The false-negative errors
concerning all other classes besides BG sum up to 0.31%. We observe similar problems
for the experiment area and workbook page AOIs. If objects look very much alike, our IML-
support version has limitations. Addressing the left/right weakness is essential because
AOIs with similar appearances are common. Future research should investigate whether
object-tracking or position-aware models can help to address this challenge. Another option
can be found in meta-models that iteratively learn for which classes a model performs well
and activate suggestions for those only.

5.4. Post Hoc ML Experiment

We observed the best average f1 scores and accuracy scores when using the FRNet
model architecture in the final setting, i.e., when using the 870 annotated fixations for
training (see Tables 4 and 5). However, using more training data for the FRNet model
only slightly increases the performance, e.g., +1.21% in accuracy and +0.015 concerning
the weighted average f1 score. With +11.78% for accuracy and +0.062 for the weighted f1
score, ResNet showed the greatest improvement when more training samples were added.
MobileNet performs slightly worse for all metrics. However, the results show that the
models are not good enough for most applications such as automatic or semi-automatic
annotation with humans-in-the-loop. This is in line with the user’s feedback from the SSI
as summarized in theme (b).

The best f1 score of 0.687 was observed for the T_L class for the FRNet model in the
final setting, followed by an f1 score of 0.681 for the BG class. The precision is highest for BG
with 0.765 (see Table 6), so labeling support only for the BG class could have been effective.
Since almost 60% of all labels belong to this class, this could already save a lot of time
without raising usability issues like the ones mentioned in theme (b). The high ratio of BG
samples in the test set also means that summary statistics like accuracy and the weighted f1
score are biased through the relatively high performance for this class. This is visible in the
large deviation between the weighted and macro-average f1 scores for all models. Overall,
FRNet shows the most balanced performance across all classes: it performs best for all
classes besides P_10. This also explains the greater relative difference in the macro-average
values and the weighted average values for f1 for MobileNet and ResNet.

The confusion matrix in Figure 7 shows the strengths and weaknesses of the FRNet
model (final) on the class level in more detail. As counts are normalized over the true
condition, i.e., over rows, the diagonal shows the recall scores for the true condition or
class of that row, while the remaining values of that row sum up to the corresponding miss
rate. For BG, we observed a recall of 61.33% with a precision of 76.53%. This means that,
when limiting suggestions to the BG class, labels for more than one-third of all instances
(61.33% of 59.88% of all 230.3k instances) could have been provided, of which around
three-quarters would have been correct. Still, one-quarter would have been wrong. So,
limiting suggestions to BG alone would likely not solve the usability issues mentioned in
theme (b). These scores were observed for the default setting when BG is assigned if the
model’s classification probability for an AOI class is lower than tBG = 0.4. Lowering tBG

would increase the precision for the BG class but at the cost of a lower recall. Likewise,
increasing the threshold for assigning one of the seven AOI classes, we call it tAOI , would
increase the precision for these classes. Eventually, a class-specific batch-accept feature
for accepting label suggestions for a certain class with manually tuned tBG and tAOI could
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be useful. The user should be able to configure the probability threshold tBG and the
classification thresholds tAOI for each class, which would allow annotators to accept labels
based on their own experiences of how the model performs per class. However, most
f1 scores and all precision scores for AOI classes are lower than the scores for the BG
class (see Table 6), which indicates that tuning the thresholds for a batch-accept feature
might be difficult. We conduct and report on a follow-up experiment that investigates how
changes in tBG and tAOI affect the classification performance and relate to the number of
fixations without a label suggestion. By that, we aim to estimate the potential of a class-wise
batch-accept feature.

The confusion matrix also indicates that a reason for the low f1 scores is the similar
appearance of the AOI classes, including the two experiment areas E_*, the two tablets T_*,
and the three workbook pages P_*. These three groups can be clearly identified along the
diagonal as three squares based on the high number of false-negative errors within each
group. Further, it shows that many AOI classes are frequently misclassified as belonging to
the background class BG, particularly the three workbook AOIs. Confusion of AOI classes
with the BG class could be reduced by increasing the classification threshold tAOI . This
could be realized, e.g., through a class-based trust-level slider. Confusion of similar-looking
AOI classes can only be solved by using more suitable approaches like multi-object tracking;
i.e., once an AOI was manually labeled or confirmed by a user, the system could track this
instance to reveal wrong classifications or auto-confirm true classification, or graph neural
networks that consider the spatial location of an object for classification [86]. An option to
increase the utility of the FRNet model would be to provide label suggestions at a higher
semantic level. For instance, eyeNotate could identify all tablets and ask the user which
instances belong to the left (T_L) or right (T_R) class. Similarly, this could be performed
for the two experiment areas and the three workbook pages. Classification performance
would likely be higher for this four-class problem because it is a less complex classification
problem. We investigate this aspect in another follow-up experiment. Further, a two-level
decision task (left vs. right) or three-level decision task in the case of the workbook pages is
less difficult for users than the eight-level decision task, which includes all AOIs and the
separate background class.

Next, we report on the the two mentioned follow-up experiments: one for estimating
the utility of a class-wise batch-accept feature and one for investigating how the model
would perform for the four-class classification problem.

5.4.1. Estimating the Utility of a Class-Wise Batch-Accept Feature

To estimate the utility of a class-wise batch-accept feature, we investigate the impact
of adjusting the classification thresholds tBG and tAOI on the model performance in an
additional experiment. In the current setting, eyeNotate suggested BG as a label when the
probability was below a threshold of tBG = 0.4 and the highest-ranked AOI class otherwise.
In this post hoc experiment, we add a second threshold tAOI that determines the minimum
classification probability p before we assign an AOI class. The higher the gap between
these two thresholds, the higher the number of instances without a label suggestion will be.
Hence, there will be a trade-off between the number of instances with a label suggestion
and the precision of those.

In the first step, we assess whether the default threshold for classifying the background
class tBG = 0.4 was a good choice. For this, we plot an ROC curve that illustrates the trade-
off between the true-positive rate (recall) and the false-positive rate for classifying the
BG class (versus all other AOI classes) depending on tBG (see Figure 8). Note that in the
default setting, tAOI = tBG. The ROC curve shows that false-positive rate for tBG = 0.4
is quite high: 28.07% of non-BG instances are wrongly classified as BG. Reducing tBG to
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0.35 or 0.30 improves the false-positive rate: only 10.92% or 3.06% are wrongly classified as
background. The recall would drop to 44.83% and 29.96%, respectively. A recall of 29.96%
still corresponds to 17.94% of all samples (41.3k) because 59.88% of all 230.3k samples
belong to the BG class.

However, simultaneously reducing tBG and tAOI optimizes the false-positive rate for
the background class but will also lead to an increase in false-positive rates for all other
classes. Hence, we investigate the impact of increasing tAOI in 5% steps on accuracy with
constant tBG for tBG ∈ {0.3, 0.35, 0.4}. At the same time, we investigate the impact on
the number of samples that will not be annotated. The results are presented in Figure 9a.
It shows the model accuracy and the annotation ratio, i.e., the portion of samples that
received an annotation suggestion, as a function of tAOI . Using the default parameters
tBG = tAOI = 0.4, we observe an accuracy of 58.78% as reported in Table 4 for FRNet in
the final setting. The annotation ratio is 100% because tBG = tAOI . For tBG = tAOI = 0.3,
the curve starts with an accuracy of 45.15%. For tBG = tAOI = 0.35, accuracy starts
with 52.58%. In all three cases, the accuracy increases and the annotation ratio decreases
with increasing tAOI . Setting tAOI = 1 means, we do not consider annotations for any
class besides BG. For tBG = 0.4, the accuracy reaches 76.53% and the annotation ratio
57.96% in this setting. We observe that the lower tBG, the lower the accuracy, and the
higher the annotation ratio. Consequently, the maximum accuracy is reached for tBG = 0.3
with 93.54% as well as the minimum annotation ratio of 18.97%. However, for tAOI = 1,
prediction labels would be limited to BG. This indicates that a batch-accept feature for
BG could be effective. For a batch-accept feature that includes other classes than BG, tAOI

must be smaller than 1. To assess how well the model would perform for AOI classes only,
i.e., for all classes besides the background class BG, we ran the experiment for tBG = 0
and 0 ≤ tAOI ≤ 1. The corresponding diagram is shown in Figure 9b. Up to tAOI = 0.15,
all samples are classified as one of the AOI classes. This means that the minimum model
certainty lies between 0.15 and 0.2. With increasing tAOI the accuracy also increases until it
reaches its maximum for tAOI = 0.9 with 64.75%. However, with these parameters, only
1.24% of all samples would be annotated.
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Figure 8. ROC curve for the background class BG for the FRNet model in the final setting. The decision
boundary corresponds to the threshold tBG = tAOI .
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Overall, the results of this additional experiment indicate that a batch-accept feature
for the background class BG could add value to eyeNotate. Since the parameters are
optimized over the test set, the results can only serve as an upper bound of the performance.
In a realistic scenario, the performance with a human optimizing the parameters would
lie below this upper bound, but it would, in theory, be reachable for the considered use
case, dataset, and model. However, the results also show that the classifier is not good
enough for providing label suggestions for AOI classes, even under the assumption that
users could tune the decision thresholds. A reason is likely the high similarity between
some of the AOI classes.

5.4.2. Simulating Model Performance in a Four-Class Classification Setting

Another option to increase the utility of eyeNotate using the FRNet model is to treat
the classification as a four-class problem, i.e., to only differentiate between the background
class BG and three further AOI classes: experiment area E, tablet T, and workbook pages
P. For our use case, the human annotator would still need to decide whether, e.g., the
identified tablet is the left or right version. But this decision is less complex than assigning
one out of all eight classes. Also, this investigation can reveal the potential benefit of
eyeNotate for other, more simple use cases. Hence, we assess the overall accuracy and
the precision, recall, and f1 scores under the assumption that only four target classes exist,
i.e., E, T, P, BG, using the FRNet model in the final setting. For this, we replace the true
and predicted class labels with the corresponding summary class; e.g., E_L and E_R are
replaced with E before computing scores. The BG labels do not change.

In the four-class setting, FRNet achieves an accuracy of 65.30%, which is 6.52% better
than in the original eight-class setting. Table 7 shows the corresponding precision, recall,
and f1 scores. As expected, the scores for summary classes are better compared to the
original classes. For instance, for E, we observe an f1 score of 0.524, while the f1 scores
for E_L and E_R are 0.384 and 0.463, respectively. This also holds for T and P. The re-
sults do not change for BG because there were no changes concerning the background
class. Consequently, the macro-average and weighted average f1 scores are also higher.
The macro-average f1 score increases by 0.167 and the weighted average f1 score by 0.063.

In summary, reducing the complexity of the classification problem has a positive effect
on all observed scores. However, to enable effective annotation support we will need to
further improve the model performance. Promising directions that should be investigated
include methods like multi-object tracking and graph neural network models.

Table 7. Class-wise precision, recall, and f1 scores for the FRNet model in final setting for a reduced
set of four target classes.

AOI # Samples Precision Recall f1 Score

E 18,551 0.380 0.842 0.524
T 37,574 0.661 0.874 0.753
P 36,359 0.598 0.479 0.532
BG 137,852 0.765 0.613 0.681

macro avg 0.601 0.702 0.622
weighted avg 0.691 0.653 0.656
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Figure 9. Accuracy and annotation ratio as a function of tAOI for the FRNet model in final setting for
tBG ∈ {0.3, 0.35, 0.4} (a) and for tBG = 0 (b).

6. Conclusions
We presented eyeNotate, an interactive annotation tool for mobile eye tracking data

based on few-shot image classification. The results of a case study confirmed that eye-
Notate effectively enables fixation-to-AOI mapping: users liked the basic functionality
and interaction design, and the validity and reliability of users’ annotations were high.
However, we observed that providing AOI label suggestions in the IML-support version
did not increase the efficiency, likely because of performance issues of the model that led
to low trust in the trained annotators. Still, our results suggested that FSL bears great
potential for initiating interactive data annotation. Overall, the task completion times were
low, with 1.11 s per annotation (best case) to 2.41 s (worst case). Participants identified
constrained model performance as the main hindering factor, especially problems with
similar-looking AOIs. This limitation was confirmed in our post hoc machine learning
experiment. Future research should aim to develop or integrate more sophisticated com-
puter vision methods that can cope with the dynamic and complex nature of mobile eye
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tracking data, for instance, using multi-object tracking, 3D reconstruction methods [87],
and graph neural networks [86]. Further, the presented case study is limited by its small
sample size, consisting of only three trained annotators, which restricts the generalizability
of our findings. Future studies should include a larger and more diverse participant pool,
e.g., involving untrained lay users that may benefit more from interactive machine learning
support. This would be an important contribution to investigating the role of humans in
interaction with machine learning algorithms [25].
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The following abbreviations are used in this manuscript:

AOI Area of Interest
IML Interactive Machine Learning
AR Augmented Reality
STEM Science, Technology, Engineering, and Mathematics
SIFT Scale-Invariant Feature Transform
SVC Support Vector Classification
VIA VGG Image Annotator
CVAT Computer Vision Annotation Tool
FRNet Feature Map Reconstruction Network
CNN Convolutional Neural Network
SUS System Usability Scale
SSI Semi-Structured Interview
SGD Stochastic Gradient Descent
ROC Receiver Operating Characteristic
AUC Area Under the Curve
FSL Few-Shot Learning
exp_1 Experiment Phase 1
exp_2 Experiment Phase 2
E Experiment_Area (left and right)
E_L Experiment_Area_Left
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E_R Experiment_Area_Right
T Tablet (left and right)
T_L Tablet_Left
T_R Tablet_Right
P (Workbook) Page
P_6 Page6_OneBulb
P_8 Page8_TwoBulbs
P_10 Page10_TwoBulbs_Parallel
BG Background

Appendix A. Interview Guide
We conducted a semi-structured interview to understand how the IML-support version

of eyeNotate was used and how that might impact the efficiency and validity of the
annotation process. In the following, we outline the interview process and the instructions
provided to participants. Instructions and information for participants are marked as
quotes (translated into English).

Appendix A.1. General Information

We introduced the purpose of the interview and explained the goal, i.e., to gather
participants’ feedback and insights about their experience using the annotation tool:

“Thank you for participating in our study. The purpose of this interview is to
gather your feedback and insights about your experience using the annotation
tool. Your responses will help us understand how well the tool worked for you
and will provide valuable insights that we can use to improve the tool in the
future. During the interview, I will ask you a series of open-ended questions
about your experience using the tool. There are no right or wrong answers,
and we are interested in hearing your honest opinions and perspectives. You can
take your time to think about your responses, and you are welcome to ask any
questions you may have. Is there anything you would like to know before we
begin the interview? ”

Appendix A.2. Questions

We asked seven questions about features of the baseline and IML-support version of
the eyeNotate annotation tool. We showed participants a screenshot or short video to better
recall its functionality.

Appendix A.2.1. Q1—Fixation Selection

Question to assess how participants selected fixations. This can help to understand
the thought processes and decision-making strategies they use.

• “In our annotation tool, there are several ways you can select fixations. One option
is to use the mouse to scroll through the fixation list on the left side of the screen.
Alternatively, you can use the forward and back buttons in the video player to move
through the data and locate the fixation you want to annotate. Lastly, you can use the
arrow key shortcuts to navigate through the fixation list.”

• “Can you describe the process you typically used to select fixations for annotations?”
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Figure A1. Fixation selection via mouse input.

Figure A2. Fixation selection via keyboard input.

Follow-up questions:

• “Can you explain why you chose to use the particular method of selection that you
described?”

• “Were there any specific factors or criteria that influenced your decision to use
that method?”

• “Did you encounter any challenges or difficulties when using that method of selection?”

Appendix A.2.2. Q2—Fixation Annotation

Question to assess how participants were using the tool to annotate the data.

“Can you describe the typical steps you took to annotate a fixation?”

Follow-up questions:

• “Can you explain why you chose to use the particular method of annotation that
you described?”

• “Were there any specific factors or criteria that influenced your decision to use
that method?”

• “Did you encounter any challenges or difficulties when using that method of annotation?”

Appendix A.2.3. Q3—Visual Annotation Feedback

Question to assess the role that visualizations played in the annotation process.
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Figure A3. Visual annotation feedback.

• “When you annotate a fixation using the annotation tools, you will receive visual
feedback to confirm your annotation. In the video view, the fixation will be highlighted
in green, and a label with your annotation will appear next to the fixation point. In the
fixation list, the corresponding fixation will also be marked with a green indicator to
show that it has been annotated.”

• “Can you describe how visualizations influenced your decisions about which annota-
tions to create?”

Follow-up questions:

• “Which visualizations did you find the most helpful in making your annotation
decisions? Why?”

• “Did you use any of the visualizations to check the correctness of your annotations? If
so, which ones and why?”

• “Can you describe how you used the visual feedback to monitor your progress during
the annotation process?”

• “Did you follow a specific strategy while annotating the fixations? If so, can you
describe your strategy?”

• “Did your strategy change during the annotation process? If so, can you explain why
and how it changed?”

Appendix A.2.4. Q4—General Experience (Baseline)

Questions were designed to assess the participants’ overall impressions of the tool and
retrieve their suggestions for improvements. We asked open-ended questions to encourage
the participants to reflect on their experiences and provide feedback so we could gather
valuable insights into the usability and effectiveness of the tool.

• “Can you describe your overall experience with the tool?”
• “What did you like the most?”
• “What did you like the least?”
• “Did you encounter any challenges or difficulties while using the tool? If so, can you

describe them and how you overcame them?”
• “Do you think the tool was easy to use and understand? Why or why not?”

Appendix A.2.5. Q5—AOI Suggestions

These questions were designed to gather detailed information about the participants’
use of the AOI suggestions and their perceptions of their accuracy and usefulness.
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Figure A4. AOI suggestions.

“The tool provides you with suggestions for annotation based on the confidence
level of the prediction. These suggestions can be classified as having high,
medium, or low confidence, and are indicated by the color of the suggestion
(e.g., green for high confidence, yellow for medium confidence, red for low
confidence).”

Follow-up questions:

• “Can you describe how you used the suggestions for AOIs while annotating the
fixations?”

• “Now we want to know how often did you accept or reject the suggestions. Please
estimate your acceptance rates on a scale of 1–10, where one is low and 10 is high.”

• “How accurate do you think the AI suggestions were? Please rate their accuracy on a
scale of 1–10, where one is low and 10 is high.”

• “Did the AOI suggestions help you in the annotation process?”
• “If so, how and in what ways? If not, why do you think that was the case?”

Appendix A.2.6. Q6—Trust-Level Slider

These questions were designed to gather detailed information about the participants’
use of the trust-level slider and their perceptions of its usefulness and effectiveness.

Figure A5. Trust-level slider.

“The tool includes a trust-level slider that allows you to adjust the level of support
you receive from the tool’s automatic suggestions. By moving the slider to the left
or right, you can increase or decrease the confidence threshold for the suggestions,
respectively.”

Follow-up questions:

• “Can you describe how you used the trust-level slider?”
• “In your own words, can you explain the effects of moving the slider to the left

or right?”
• “Did you consider the trust-level slider to be a useful feature? Why or why not?”
• “Are there any improvements or changes you would suggest for the trust-level slider?

If so, what are they and why do you think they would be beneficial?”

Appendix A.2.7. Q7—General Impression (IML-Support)

These questions were designed to gather the participants’ overall impressions of the
tool and its AI support and their suggestions for improvements.
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• “Can you describe your overall experience with the tool?”
• “What did you like the most?”
• “What did you like the least?”
• “Did you encounter any challenges or difficulties while using the tool? If so, can you

describe them and how you overcame them?”
• “Are there any features or improvements you would like to see in the tool? If so, what

are they and why do you think they would be beneficial?”
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