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Abstract
Wearable Augmented Reality (AR) technologies are gaining recog-
nition for their potential to transform surgical navigation systems.
As these technologies evolve, selecting the right interaction method
to control the system becomes crucial. Our work introduces a voice
user interface (VUI) for surgical AR assistance systems (ARAS),
designed for pancreatic surgery, that integrates Large Language
Models (LLMs). Employing a mixed-method research approach,
we assessed the usability of our LLM-based design in both simu-
lated surgical tasks and during pancreatic surgeries, comparing its
performance against conventional VUI for surgical ARAS using
speech commands. Our findings demonstrated the usability of our
proposed LLM-based VUI, yielding a significantly lower task com-
pletion time and cognitive workload compared to speech commands.
Additionally, qualitative insights from interviews with surgeons
aligned with the quantitative data, revealing a strong preference
for the LLM-based VUI. Surgeons emphasized its intuitiveness and
highlighted the potential of LLM-based VUI in expediting decision-
making in surgical environments.

CCS Concepts
• Human-centered computing → Mixed / augmented reality;
Empirical studies in HCI.
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1 Introduction
Wearable augmented reality (AR) has become a technology with
vast potential for surgical navigation systems, promising enhanced
precision and real-time guidance for medical professionals. Despite
its promising capabilities, the effective integration of AR in criti-
cal domains, such as open surgery, has faced delays and notable
challenges compared to other professional fields [16, 17]. One of
the challenges associated with this integration delay is the current
limitations in usable interaction methods to control the system
[11, 20, 46] that could be easily used and adapted to critical do-
mains [12]. Traditional input mechanisms, such as hand gestures or
using combinations of eye gaze and virtual menus, prove imprac-
tical in areas where manual control is restricted and the AR view
should not be occluded with too many virtual objects, hindering
the full adaptation and utilization of wearable AR technology in
these crucial fields [40, 54]. Among alternative interaction meth-
ods, voice-controlled assistants using speech commands stand out
as a viable option, offering a hands-free and potentially intuitive
means of interacting with AR systems during surgical procedures
[8, 23, 24, 40]. While impressive in their ability to respond to voice
commands, often lack contextual understanding and adaptability
[21]. Furthermore, Relying solely on speech commands presents
its own set of challenges, including the need to implement distinct
keywords for each custom functionality, consequently increasing
the complexity of the application for users [40]. In domains where
simplicity, efficiency, and ease of use are mandatory, such as in
critical surgical settings, introducing additional workloads or time-
consuming processes may compromise the technology’s adoption
and effectiveness.
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Despite recent improvements in interaction methods for AR
applications [43] and in voice-controlled assistant systems[15], a
gap still exists in the feasibility of using these techniques in critical
domains, such as surgical navigation systems [12, 46]. The unique
challenges presented in such vital domains have not yet received
sufficient attention.

In this paper we presented a voice user interface (VUI) for a sur-
gical AR-based assistance systems (ARAS), utilizing large language
models (LLM), aiming to address the aforementioned limitations
and enhance user experience in these critical settings. By harness-
ing the capabilities of speech recognition and LLMs, we introduce
an intuitive method to control the system during surgical proce-
dures helping to reduce the cogntitive load caused by interaction
with the system.

We use LLM to perform function calls and control the system, en-
abling users to execute parallel functionalities based on the context
of their request and the context presented in the application. We
integrated our LLM-based VUI into the previously developed and
clinically evaluated system, ARAS, designed to navigate pancreatic
surgeries by enabling in-situ visualization of patient-specific 3D
models of vessels and tumors, as well as access to supportive data.

We evaluated the feasibility of our LLM-based VUI for intraop-
erative interaction with ARAS throughout two studies, comparing
it against previously tested VUIs for surgical AR applications us-
ing speech commands [13, 47]. Firstly, we conducted a user study
with expert surgeons (N=9) involving surgical tasks to simulate the
environment where ARAS would be normally used. We measured
system usability, task execution time (TCT), cognitive load (NASA-
RTLX), and conducted interviews to evaluate our method through
quantitative and qualitative measures. Secondly, we employed both
VUIs independently in two pancreatic surgeries to further evaluate
these approaches in the users’ end setup. Our findings highlight
that the integration of LLM-based VUI led to faster task executions
and reduced cognitive workload by generating more context-aware
system outputs compared to VUI relied on speech commands.

Our work contributes to the design and development of VUIs
specifically for time-critical, highly stressful, and demanding do-
mains, such as surgery. These domains often do not fit general
solutions but require systems that are carefully designed, imple-
mented, and include user involvement throughout the process, as
any unpredicted errors during system implementation could have
significant consequences. To the best of our knowledge, our work is
among the first studies to explore the potential of controlled usage
of LLMs targeted and tested in a surgical environment beyond their
commonly explored role as training and teaching tools [42, 50]. Our
study showcases the feasibility of this approach in such a critical
field by demonstrating not only the advantages of LLMs for users in
terms of time and cognitive load reduction but also how LLMs can
simplify the development process by combining and calling simple
system functionalities to achieve more complex and context-aware
system behavior.

2 Related Work
This relatedwork sectionwill first provide a comprehensive overview
of AR applications in the surgical domain, followed by an explo-
ration of interaction techniques within the medical field, and con-
clude with a dedicated chapter on natural communication and
speech-Based interaction.

2.1 Augmented Reality in Surgery
Surgical assistance and simulation systems have undergone sig-
nificant advancements with the integration of AR technologies
[29, 33, 38, 52, 56]. While many approaches were implemented
for display-based or handheld AR navigation systems for surgical
procedures for example in laparoscopic surgery [45], the advance-
ment of having wearable AR devices opens the door for further
integration of technology in more challenging fields such as open
surgery [17, 44, 48]. While the interaction principles to execute
certain tasks with displays and touch-sensitive surfaces such as
tablets have become traditional and well-accepted over the years,
the control techniques for wearable AR devices have yet not been
perfected. The restrictions available in critical fields such as open
surgery in terms of available interaction and control methods, make
the integration of this technology in a routine practice more diffi-
cult as the risks are very high and any distractions or errors caused
by technological devices are not welcomed. In a study done by Saito
et al. [46] it was demonstrated that using 3D holograms and hand
manipulation caused higher cognitive workload compared to usual
2D supports as it required higher physical demand and effort.

2.2 Interaction Techniques in Medical Domain
The interaction techniques used in wearable AR technologies might
vary depending on the task and used modalities [24]. While many
interaction modalities could be used for a range of tasks in non-
critical medical domains, such as training and simulations[5, 34]; the
options for hygienic and sterilized surgical environments remain
very restricted. Among different interaction and control modalities
hand, voice, and foot input became possible options for interactions
in the surgical environment as they do not require any direct contact
with foreign objects [23]. Despite, the usability of these interaction
methods, the environmental limitations during the surgical theater
might not always allow practical usage of all these input modalities
[40, 54]. Moreover, the limited number of different gestures that
could be performed using only hand or foot inputs might restrict
the system features [24] when compared to voice.

2.3 Natural Communication and Speech Based
Interaction

The employment of voice input as a natural interaction, control,
and communication method gathered extensive attention in the
research. While the majority of applications focused on using voice
in combination with other input modalities [27, 35, 43], the recent
speech recognition algorithms and natural language processing
provided mediums to use voice-based interaction as the sole input
modality [49]. With the latest development of smart assistant sys-
tems and natural communication schemes through speech, voice
input became popular especially where other input modalities could
not be used [25]. With the outbreak of LLM, new possibilities have
emerged to use natural communication schemes for interactionwith
assistant systems. Mahmood et al. [39] presented a LLM-powered
conversational voice assistant that could be used in different areas.
The combination of speech input and LLMs could be also used to
achieve smarter assistant systems to control the system and per-
form certain system functionalities, as it was demonstrated by Dong
et al. [14].
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Despite the extensive research in the mentioned research fields,
there has been a notable gap in exploring the various VC methods
within AR environments. This gap in the literature is particularly
noteworthy in critical domains such as open surgery, where practi-
cality and safety become essential, and alternative input modalities
may not be feasible.

3 Methodology
In this work we focused on finding an optimal interaction method
for ARAS specifically designed for open pancreatic surgery, address-
ing the challenges associated with the impracticality of common
input modalities in confined surgical spaces. This led us to explore
and evaluate voice control (VC) methods for a more practical and
efficient user experience in this surgical context. To guide our re-
search, we addressed the following research questions over five
consecutive phases as depicted in Figure 1.

Research Questions (RQs):

(1) What are the user and field-specific requirements in
terms of interaction methods for an AR-based surgical
navigation system?

Objective: To gather insights from surgeons to inform
the design of the user interface and interaction with
the AR system, ensuring it meets their practical re-
quirements and enhances their ability to perform the
surgery.
Method: Observations, interviews with surgeons,
along with demographics of participating surgeons.

(2) How feasible is an LLM-based VUI for a surgical AR
system, and how does it impact the user’s cognitive
load? How does this approach compare to previously
tested VC methods, such as speech commands?

Objective: To gather insights from surgeons about the
usability, cognitive workload, and their assessment of
the LLM-based VUI method and compare it to the pre-
viously employed approaches.
Method: User study with surgeons in a simulated sce-
nario involving surgically relevant system interaction
tasks. Data collection using NASA_RTLX [22], and sys-
tem usability scale (SUS) [9], and post-study interviews
with surgeons, along with demographics of participat-
ing surgeons.

(3) How feasible is the LLM-based VUI in the users’ end
setup during surgery compared to speech commands?
What are the users’ (surgeons’) reflections?

Objective: To gather insights from field surgeons about
the usability of each VUI in an ecologically valid setup
that involves highly stressful situations.
Method: Case study involving the employment of both
VUIs, each in a pancreatic surgery session, and con-
ducting postoperative interviews with surgeons about
the interaction method used to control the surgical AR
system.

We began our investigation by exploring the user and domain-
specific requirements for a VUI for ARAS by interviewing experts
from the field. Consequently, we developed two non-conversational

VUI. Following the previous works on clinically tested voice interac-
tion methods, our first VUI utilizes speech recognition and speech
commands [13, 47] and serves as our baseline. The second VUI in-
corporates speech recognition, an LLM, and natural communication
schemes to control the system. Internally, both VUIs have access to
the same set of system functions of ARAS. In our first user study,
we explored the usability of each VUI in a simulated environment
and compared their performance in terms of added workload on
surgeons while performing surgically relevant tasks, their usabil-
ity, and conducted semi-structured interviews with participating
surgeons. Finally, after proving the usability of both methods, we
tested both VUIs in an ecologically valid environment during a
clinical trial and conducted interviews with surgeons.

In this work, we solely focused on evaluating our proposed
LLM-based VUI for ARAS in a time-critical domain, specifically in
pancreatic surgery, and compared our approach to a conventional
VUI using speech commands. We note that the evaluation of ARAS
itself falls outside the scope of this paper.

4 System Design and Development
We used the Unity 3D game engine [4] for software design and
development and used Microsoft HoloLens 2 device [3] as a wear-
able AR device. The selection of the HoloLens 2 for this application
was mainly motivated by ethical, and safety considerations as it is
CE-certified and was shown to have been successfully used in the
medical domain before [28, 37, 46].

4.1 AR Assistance System
The ARAS software was designed and clinically evaluated as a
supportive and navigation tool for open pancreatic surgery [30–
32]. It was designed to contain two distinct feature sets to sup-
port surgeons throughout the surgery session: in-situ visualization
and supportive data visualization (Figure 2). The system features
segment-based visualization of a patient-specific 3D model, the
ability to enable or disable modes between marker-based tracking
for in-situ visualization, and maintaining the model’s position and
orientation. It also allowed for the visualization of supportive data,
such as CT images and patient diagnoses. The designed user inter-
face was aimed to provide means for surgeons to precisely execute
features without interrupting the surgical flow.

4.2 Voice User Interfaces
During the pre-design stage, we interviewed four surgeons from
the Hepatopancreatobiliary 1 and Visceral2 fields (Table 1) to un-
derstand the user and domain-specific requirements in terms of
interaction with ARAS. Furthermore, to enhance our understanding
of the domain-specific constraints and environmental challenges
we participated in 2 pancreatic tumor resection procedures as ob-
servers. The insights from interviews and observations made during
the operation highlighted certain limitations regarding the feasible
interaction method to control ARAS. With surgeons requiring both
hands to perform intricate operations, incorporating hand gestures

1Hepatopancreatobiliary surgery consists of the general surgical treatment for benign
and malignant diseases of the liver, pancreas, gallbladder, and bile ducts.
2Visceral surgery, also known as abdominal surgery, refers to surgery of the abdominal
cavity and abdominal wall, endocrine glands, and soft tissue, including transplantation.
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Pre-design

Demographics, 
observations, 
interviews 

Design and 
development of 

VCUI

Preliminary experiments

User study 
(simulated):                    

Speech commands 
vs. LLM

Demographics, 
NASA-RTLX, SUS, 
interviews

Refinements
Case study                

(clinical evaluation):               
Speech commands vs. 

LLM

Interviews

Figure 1: Chart showing different phases of our work from pre-design till the case study involving a clinical trial and associated
data collection for each phase.

In-situ visualization

Features

Segment-based visuzalization

Enable/disable marker tracking

Freeze 3D model position and orientation

Supportive data visualization

Features

Manual repositioning

Scrollable 3x DICOM visualizer

Scrollable patient history panel

Figure 2: The characteristics of in-situ visualization and supportive data visualization feature set provided by the ARAS software.

is severely constrained. Furthermore, the physical setup around
the operation field of the surgery table, where four surgeons and
a nurse typically stand (as illustrated in Figure 3), results in a lim-
ited field of view for the AR application. Consequently, placing
any virtual objects between surgeons and the operation area can
obstruct the surgical view, introducing undesirable visual occlusion.
Objects positioned behind other medical professionals are not only
obscured but also challenging to interact with, given the physical
constraints of extending hands and arms in a confined space. These
insights underscore the necessity of an alternative user interface,
leading us to explore and evaluate fully VUI for a more practical and
efficient user experience in the context of surgery. Consequently,
we developed two VUIs to interact with ARAS. While the first VUI
follows the previously tested VC methods for the surgical domain
using speech commands, our second VUI uses LLM and a natural
communication scheme.

4.2.1 VUI with Speech Commands. In implementing the speech
commands, we utilized the Windows speech recognition service
(using IMixedRealityDictationSystem service) [1] and Microsoft

Table 1: Profiles of interviewed surgeons before design and
development process.

Age Gender Field Surgical
Experience (year)

51 Male Hepatopancreatobiliary 23
53 Male Hepatopancreatobiliary 25
40 Female Hepatopancreatobiliary 13
33 Male Visceral 4

Mixed Reality Toolkit, MRTK2 [2], to define specific keywords for
triggering desired functionalities. These keywords were carefully
selected in collaboration with surgeons from the field, ensuring
relevance and ease of recall. A total of 34 unique keywords were
assigned to trigger the system functionalities (Table 2). Designed as
medical terms commonly used in daily practice or intuitive words,
each keyword corresponded either to the names of anatomical
structures available in the 3D model (Figure 4) or as intuitive words
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Figure 3: A top view of the surgical room setup. The place-
ment of the medical staff around the table. The limited area
around the operation field, and sterilization rules restrict the
interaction with AR surgical assistance system. The surgeons
are numbered based on their role in the surgery with Number
1 being the lead surgeon.

routinely used in a clinical environment or daily life. Recognizing
the challenges of keyword recognition and aiming to enhance flexi-
bility, some functions could be executed using multiple keywords
or synonyms. For instance, the keyword "cancer" could be used in-
terchangeably with the keyword "tumor" to enable or disable tumor
visualization (Table 2). Additionally, all the keywords used for 3D
visualization could be used in a combination of ON/OFF to either
enable or disable some segments visualization or without these
extensions as toggle behavior between on and off mode. To provide
visual feedback to the user confirming the successful recognition
of the spoken keyword, we used the MRTK tooltip component to
be shown upon the detection of a speech command.

4.2.2 LLM Based VUI. We designed and implemented a system
framework to automatically execute system functions upon user
query stated via natural speech and speech recognition using the
sameWindows speech recognition service as the speech commands
method [2]. We implemented a GPT communicator layer for Unity
in C# to facilitate external API calls to chat-GPT from Unity and
used GPT-3.5-turbomodel to process the user request and return the
system functions. Our LLM-based VUI framework consisted of four
main components, a dynamic initial prompt generator, a dictation
service, a response handler, and a GPT 3.5 model (Figure 5).

We developed an adaptive prompt generator to dynamically
create initial prompts specific to each patient, aiming to provide
patient-specific contextual information while defining the task for
the LLM.

We used the patient’s specific 3D model meshes to calculate the
proximity and relational distance of each 3D object in the model,
such as vessels and tumors, to other structures. We further provided

Figure 4: Anatomical drawing of 3D reconstructed segments
in ARAS and their positions around the pancreas. The names
of these segments were used as keywords for VUI using
speech commands.

the system with the patient diagnosis, and surgical resection guide-
lines, along with a list of system functions, and heuristic examples
(Figure 5).

To mitigate hallucinations by LLMs, as demonstrated in other
related studies [19, 36, 55], we implemented an auto-repeat func-
tion that resends the initial prompt to the chat. Our preliminary
experiments revealed that the accuracy of LLM outputs decreases
as more user inputs are added, causing the model to lose the context
of the initial prompt—which contains critical patient-specific infor-
mation and the main task. This leads to increased hallucination in
the generated responses.

To counter this effect, we developed a mechanism that period-
ically reminds the LLM of the task and relevant information by
resending the initial prompt after each user input. Once the user’s
request is processed, this reminder prompt is automatically sent
to the chat, ensuring that the model retains the original context
without the user noticing.

As a safeguard for occurred hallucinations which resulted in
non-accurate response from LLM, we have implemented a reset
function that would be used to correct the initial prompt and reset
the chat. Like other system functionalities, the LLM could call upon
this function based on the context of the user query. Users were
informed about this functionality and instructed that if the system
executed an incorrect or unexpected action, they could notify the
LLM and specify the correct response for that situation. Apart
from this reset function, no extra function or direct annotation to
the study tasks (C5.1) was included in the initial prompt to avoid
potential performance bias for the sake of the study.

As the GPTmodel only receives data in text format, we generated
a JSON file containing all this information along with the requested
task to return the appropriate system functions and variables based
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Table 2: Implemented voice keywords and their functionalities

Type Voice Keywords Functionality

Patient information Patient history / diagnosis / medication Activates/Deactivates patient history panel
CT / CT Image / Tomography / Activates/Deactivates CT Visualizer
Computed Tomography / CT scans

3D visualization

arteries/veins Activates/Deactivates rendering of all arteries/veins
Sternum

Activates/Deactivates rendering of the associated structure

Celiac trunk
GDA
Mesenteric artery
Splenic artery
Gastric artery
Hepatic artery / liver artery
Portal vein
Vena cava
Splenic vein
Mesenteric vein
Tumor / lesion / cancer
Variation Activates/Deactivates rendering of unusual anatomical structures

Control commands
Go up/down Activates the automatic scrolling up/down of the CT slices
Stop Stops the automatic scrolling of CT slices
Capture photo / hologram captures a photo using HoloLens mounted camera with / without holograms
Freeze Freezes the 3D model position and orientation and disabling the marker tracking
Marker tracking Enables marker tracking
Reset Resets the app including the 3D model position and orientation relative to sternum marker

on the given sentence. The JSON format used for the initial prompt
is given in Appendix A.

After successful initialization, the user could send a request to
the application through voice query using a natural communication
scheme. The dictation is activated using a single speech command
called "Assistant" to avoid false queries. After activation of the dic-
tation system, the system starts listening to the user query. During
preliminary testing, we observed that most of the requests from
users to the LLM last around ten seconds. Therefore, we set the
default listening time to ten seconds. However, if the ten seconds is
exceeded and the user is still speaking the system would wait for
two seconds of silence before sending the query to the LLM. This
way we made sure that the system would at least listen to the user
query for ten seconds while also allowing for longer queries. The
transcribed user query would then be formatted to JSON and sent
to the GPT model via the GPT communicator. Upon receiving the
response from GPT, the response is first validated, and if there is
no error in the received format or request to reset the chat by LLM
due to the user correction, then associated system functions are
executed and presented to the user.

If there is a call to reset among the received functions from LLM,
then the system stores the user interaction example along with the
correction that the user provided to LLM. The active chat would
be terminated another initial prompt would be generated using the
recently added user example and a new chat would be initiated.

In addition, similar to tooltips used in the speech commands ap-
proach, we designed a virtual panel (Figure 6) to provide a real-time
transcription of the user’s voice input, to provide visual feedback
about the recognition of the user’s query. This decision was made
to show the user about the recognized request and give the user a
chance to correct it if it was detected wrong.

5 User Study 1: Evaluation During Simulated
Surgical Scenarios

We employed a mixed-method evaluation approach, integrating
both qualitative and quantitative data analyses, to comprehensively
assess the feasibility of our proposed LLM-based VUI and draw
comparisons with the VUI method utilizing speech commands. In
this study, we compared and evaluated both methods in a simulated
lab environment focusing on our two research questions (RQ2).
We conducted a within-subject study, where all participants expe-
rienced both VUI (LLM and speech commands) for two different
patient cases. To avoid potential bias the order of the VUI and the
patient case were counterbalanced.

5.1 Study Design
Aligned with ARAS’s primary function, the study tasks focused on
adjusting the visualization of 3D model segmentations to guide var-
ious phases of surgery. This approach aimed to test the VUIs within
their relevant context in a controlled, simulated environment.

Even though the tested system’s functionality was limited, this
task design aimed to focus more on interaction with the system as a
result of cognitively challenging tasks which would be the normal
case during the pancreatic surgery. The decision to trigger different
system functions to visualize various combinations of structures
depended on several factors, such as the relationship between struc-
tures and the tumor, patient history, surgical guidelines, and the
current stage of the surgery. Any unnecessary virtual objects or
structures visible in the AR view could confuse the surgeon or
unnecessarily occlude the view. It is worth noting that while it is
possible to implement separate functions for certain predefined
guidelines, often the decision of which structure combination to
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Figure 5: Overview of LLM-based VC framework. The system begins with loading patient files and function descriptions to
generate an initial prompt. The system functions then is called upon the user’s query via speech.

visualize is not definite, hard to implement, requires processing
power on the operating device, and highly varies depending on
each patient case and the stage of the operation.

Given the multifaceted nature of pancreatic surgery, which is
divided into consecutive sessions for the preparation and resection
of the vascular system and pancreas organ infiltrated with the
tumor, we tailored the tasks to align with the interaction with the
system during these distinct stages of each intraoperative session.

The task designs and their execution order were advised by expe-
rienced surgeons to simulate the progression of pancreatic surgery

and the associated workload on surgeons. This approach aimed
to replicate the decision-making process, considering the varying
cognitive difficulty levels involved in identifying vital structures at
different stages of the surgery.

The first two tasks targeted the commonly used first surgical
approaches therefore the names of the structures to be visualized
were given in the task description. Tasks 3 and 4 are performed
in occasional situations based on the progress of the operation,
however, due to the fix procedure performed in these tasks the
names of the essential structures to be visualized were also given
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in the task description. Tasks 5 and 6 were designed to address
later stages of the operation where the surgeon is required to make
complex decisions on which structures are needed to be observed to
guide a critical phase of the operation such as the tumor resection
phase. Therefore, in these last two tasks, the names of the structures
to be visualized were neither given in the task description nor were
annotated in the system as the decision to which structure to be
visualized is subjective to the surgeon and might vary. While task
5 focuses on visualization of the structures that are affected by the
tumor, task 6 focuses on visualization of the structures that need to
be removed along with the tumor which is not always limited to
those structures affected by the tumor. The task descriptions were
as follows:

Tasks:

(1) Kochermaneuver:During this task participants were
asked to only enable the visualization for the following
structures: the tumor, inferior vena cava, and portal
vein [53].

(2) Preparation of the hepatoduodenal ligament: Dur-
ing this task participants were asked to enable visual-
ization for the following structures: portal vein, hepatic
artery, and gastroduodenal artery [53].

(3) Uncinate-first approach: During this task partici-
pants were asked to enable visualization for the follow-
ing structures: tumor, portal vein, and superior mesen-
teric artery [53].

(4) Artery-first approach: During this task participants
were asked to enable visualization for the following
structures: hepatic artery, gastroduodenal artery, celiac
trunk, and superior mesenteric artery [53].

(5) Tumor infiltration: Participants were asked to only
enable those structures that are infiltrated by the tumor.
They were free to look at the CT images to decide or
observe the 3D model as it would be the case for the
real surgery.

(6) Complex surgical decision: During this task the
participants were asked to evaluate and make decisions
about which structures should be resected (surgically
cut or removed along with the tumor to secure patient
safety) during the pancreatic resection and only enable
the visualization of those structures.

During this study, we used a medical manikin to simulate the
surgical scenario where the AR assistance system (Figure 6). We
used the reconstructed 3Dmodels of two real patients with complex
pancreas tumor localization with vascular involvement to efficiently
address all the above-mentioned tasks. Both study groups included
both patient cases. The participants were asked to stand around
the table where the manikin was placed and position themselves
as lead surgeon position (Figure 3, surgeon number 1) as the main
decisions during the surgery and the above-mentioned tasks are
usually performed and are decided by the lead surgeon.

Figure 6: A captured image from the AR surgical assistance
system using LLM-based VUI. Themanikin and transcription
panel were used in the first study to simulate the visualiza-
tion of the overlayed patient-specific 3D model during the
surgical session.

5.2 Measures and Data Analysis
We used quantitative and qualitative measures to evaluate different
VUIs. TCT (measured in seconds) was recorded for each performed
task. We also recorded the attempt count for the successful comple-
tion of each task.

We used the SUS [9] and NASA-RTLX [22] questionnaires to
evaluate system usability and perceived cognitive workload after
the completion of all tasks using each VC method. We concluded
with a semi-structured interview with each participant to gather
qualitative insights about their experiences with each method.

To analyze the quantitative data, we formulate the following
hypotheses:

Hypotheses (Hs):

(1) The LLM-based VC leads to lower task completion
times.

(2) The LLM-based VC leads to lower cognitive load as
measured by NASA-RTLX.

(3) The LLM-based VC has better usability as measured
by SUS.

After confirming the normality of the data, we thus conducted
one-tailed paired t-test to confirm or reject our hypotheses. For H3,
we conducted a one-tailed Wilcoxon signed rank test instead, since
data normality was violated.

All interviews were transcribed verbatim. Given the volume of
the data, we followed the pragmatic approach to qualitative analysis
as recommended by Blandford et al. [7]. Initially, two researchers
analyzed 25% portion of the data. Following this, we created a
preliminary coding framework through iterative discussions. The
remainder of the interview data was then divided equally among the
two researchers for coding. In a concluding discussion, we refined
the coding framework further and identified overarching themes.
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5.3 Procedure
The study procedure started with participants completing demo-
graphic questionnaires to provide essential background information.
To mitigate order bias and potential learning effects, all participants
engaged with both studied VUIs in a counterbalanced order with
a different case for each VUI. Prior to task execution, participants
were familiarized with the AR system and its functionalities using
each VUI. Data recording was initiated after participants confirmed
their ability to successfully interact with the system. Each partici-
pant systematically performed all experiment tasks for two sessions,
each session using a different VUI and different patient case. Task
progression was subject to verbal confirmation of the participant
regarding the accurate visualization of structures. Upon completion
of the six tasks in each session, participants were prompted to fill
out paper-printed questionnaires asking them to specifically answer
the questions considering the experienced VUI but not the patient
case. After completing both sessions, a brief semi-structured inter-
view was conducted to gather insights about participants’ opinions
regarding each VUI. The whole study took approximately 40 min-
utes per participant. The study received the approval of the Medical
Association of Saarland ethical committee board, ensuring that all
aspects of the research adhered to established ethical guidelines.

5.4 Participants
Our study included nine volunteered experienced surgeons with a
mean age of 42.44 (SD = 7.49) and 14.33 (SD = 7.35) years of average
surgical experience. We compared the participant number with the
participant number required for a usability evaluation. The number
of participants in this study falls above the acceptable range of 4± 1
[10, 26], considering their high expertise in the field. The partic-
ipants reported an average of 11 to 50 times experience with AR
technology and 2 to 10 times experience with LLM or generative AI
systems including chatbots and conversational assistance systems.
The detailed characteristics of the participants are given in Table 3.

Table 3: Participant Characteristics (N=9). Likert scale values
range from 1 to 5, with 1 being the least and 5 being the most
frequent or proficient. SD = Standard deviation

Characteristic Mean SD

Age (years) 42.44 7.49
Surgical Experience (years) 14.33 7.35
How many times used AR (1-5 Likert Scale) 3.00 1.50
How many times used LLM (1-5 Likert Scale) 2.78 1.20
English Proficiency (1-5 Likert Scale) 3.89 0.60

5.5 Results
5.5.1 Quantitative Measures: TCT, NASA-RTLX, SUS. The partic-
ipants completed all six tasks using both methods: LLM, with a
mean attempt count of 1.074 (SD = 0.328), and speech commands,
with a mean attempt count of 1.370 (SD = 0.784) for successful
completion. While the average error rate for speech commands due
to misrecognition or failure to recognize keywords was calculated
at 27%, the average error rate in executing system functionalities

when using the same speech recognition service with LLMs was 6%.
As shown in Figure 7, individual one-tailed paired t-tests revealed
that the LLM-based VC method yielded a significantly lower TCT
for all tasks: Task 1 (𝑡 (8) = −3.04, 𝑝 < .01), Task 2 (𝑡 (8) = −2.33,
𝑝 < .05), Task 3 (𝑡 (8) = −2.60, 𝑝 < .05), Task 4 (𝑡 (8) = −2.56,
𝑝 < .05), Task 5 (𝑡 (8) = −4.34, 𝑝 < .01), and Task 6 (𝑡 (8) = −4.16,
𝑝 < .01). This result confirms H1.

The overall NASA-RTLX score was significantly lower for the
LLM-based approach (𝑡 (8) = −2.24, 𝑝 < .05), confirming H2. Specif-
ically, it scored significantly lower for the subscales mental demand
(𝑡 (8) = −2.71, 𝑝 < .05), physical demand (𝑡 (8) = −2.35, 𝑝 < .05),
and effort (𝑡 (8) = −2.36, 𝑝 < .05). We found no significantly lower
score for LLM-based VUI for the other subscales, temporal demand,
performance, and frustation. A visualization of this result can be
found in Figure 8.

Using Bangor et al. [6] rating scale, the LLM-based VUI was
classified as "excellent" with a SUS score of 87.78, and VUI using
speech command was classified as "good" with and 79.17 SUS score.
Despite the better performance of LLM, it did not yield a statistically
significant higher SUS score. Thus, H3 could not be confirmed.

5.5.2 Interview Findings. Our analysis identified threemain themes:
User preferences and experience, context of use, and limitations
and future improvements

User Preferences and Experience: Participants generally ex-
pressed a strong preference for the LLM VUI over traditional speech
commands. They appreciated the flexibility and intuitiveness of the
LLM, which allowed for more natural communication and seemed
to reduce stress by accommodating various phrasings and intents
without requiring specific keywords.

One surgeon reflected on the ability to articulate complex queries
and receive accurate, contextually relevant information was par-
ticularly valued in high-stakes environments like operating rooms,
saying:

I personally think it’s much less stressful to have such
language support because I can say whatever I want,
how I ever want to phrase it and the system realizes
what I want. (P1)

Furthermore, they emphasized that not only the LLM-based VUI
provided a more natural way of communicating with the system
but also helped them to reduce the burden of thinking and making
decisions about the requirements of the task by performing context-
aware function calls. P2 pointed out this aspect stating:

For example, for tumor infiltrations, you have to
first look at the tumor and which vascular system is
infiltrated, then tell each time what to open or turn on
[Speech Commands]. That’s why I think it was much
better with LLM, with large language model, because I
simply asked and that showed. (P2)

Context of Use: The interviews revealed that, while both VUIs
are usable, the specific context and situations in which the system
is employed may highlight the unique potential of each method.
While the LLM-based method could be highly beneficial in stressful
and time-critical conditions, the voice command might be a better
option for surgeries that do not have time criticality. P8 and P9
highlighted this by following statements:
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Figure 7: Task completion times for each task given the different VCmethods (LLM, Speech commands). LLMyielded significantly
lower completion times for all tasks (marked with * for 𝑝 < .05 and with ** for 𝑝 < .01).
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Figure 8: Total NASA-RTLX score (left) and individual subscale scores (right) given both VC methods (LLM, Speech commands).
LLM yielded significantly lower scores (marked with *).

It depends on which time I have to use. So for example,
if you say there’s an emergency, see, then I would prefer
the AI [LLM]. In obesity surgery I have time. I have no
emergency. So I don’t have tumor and I have more time.
In the process of the operation you can say remove this,
remove that. So step by step [Speech Comands]. (P9)

If the patient bleeds, even a few seconds wait is al-
ready annoying (...) nevertheless, even with bleeding I
find the second one better [LLM], because you can say
directly what you want to see without thinking. (P8)

Limitations and Future Improvements: The interviews re-
vealed the importance of accurate dictation and robust speech recog-
nition service for both VUIs. The visual feedback on the real-time
transcription of the user query in the LLM-based method caused

extra confusion, showing the potential misjudgment about the sys-
tem’s capability by the user. As users attempted to correct misinter-
preted words upon observing incorrect transcriptions, the clarity of
their requests diminished, leading to decreased performance in trig-
gering the relevant functions by LLM. Conversely, the LLM would
typically mitigate such errors by interpreting them as typographical
mistakes, thereby maintaining higher accuracy in understanding
and responding to user commands. P4 pointed out this matter by
raising attention to the system’s capability being affected by misin-
terpreted words due to the different pronunciations saying:

The less I say, it’s supposed to be easier for the system
to understand me, right? I don’t know. I was thinking
when I say too much then the system doesn’t under-
stand me because I said too much. With shorter words
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you minimize the misunderstanding when someone pro-
nounces it differently. (P4)

The surgeons also raised concerns about the default listening
time that was set in the LLM-based approach. P3 suggested adopting
an approach where the initialization and ending of the listening
time could be activated by some keywords to refrain from waiting
if the query time is less or longer than the default listening time,
saying:

For example, you say assistant or something to begin.
But can I also say end of sentence or so that I don’t have
to wait those couple of seconds. (P3)

Additionally, participants mentioned that the LLM-based VUI
required a clear statement of the request. Despite the ease of use,
the interaction would be even easier over time as one would learn
how to clearly phrase their request. P3 reflected on this saying:

When I tried the second one [LLM], with the AI, I
think it’s even easier to use if you’ve done it before. Then
you have the routine of what you have to say so that the
device understands what I want, and then it’s easier and
quicker. I mean how I should formulate my question so
that the system understands me and shows the result
that I want. (P3)

5.6 Implications
Our study comparing LLM-based VUI to a VUI using speech com-
mands has revealed implications for the integration of such tech-
nologies into surgical settings. These implications highlight the
potential benefits and necessary refinements for practical applica-
tion:

Potential superiority of LLM-based approach in critical
surgicalmoments: The LLM-based approach demonstrated advan-
tages, particularly when a decision-making situation was involved.
It exhibited significantly reduced execution times across various
tasks. As tasks increased in cognitive demand, particularly in Task
5 and Task 6, the disparity in execution times became more pro-
nounced, reflecting the challenge of mental workload and decision-
making when using speech commands. Moreover, assessments of
cognitive load indicated a lower mental demand with the LLM-
based approach. This convergence suggests that LLM-based VUI
could offer a superior option in real surgical environments, where
timely decisions are required during constrained time frames.

Need for system refinements prior to real-surgery eval-
uation: However, our findings also illuminate areas necessitat-
ing refinement before practical deployment in surgical settings.
The real-time transcription panel introduced confusion as users at-
tempted to rectify misinterpreted words, compromising the clarity
of sentence context. Additionally, while LLM-based VUI facilitated
quicker task completion, further enhancements in dictation service
are essential to mitigate any remaining delays and optimize task
execution times.

6 Case Study: Evaluation During Actual Surgery
Following the proven usability of both VUI systems in our initial
user study (section 5), this study aimed to further evaluate these

Figure 9: Actual pancreatic surgery. The right picture shows a
snippet from the application view captured from a surgeon’s
device. GDA: Gastroduodenal Artery, PV: Portal Vein, CHA:
Common Hepatic Artery

VUIs in a real surgical setup, addressing our third research ques-
tion (RQ3). This phase sought to confirm our findings under actual
surgical conditions, which can differ significantly from laboratory
environments due to factors such as higher stress levels and time
constraints. Building upon our findings from our first user study
(Section 5.5), we have first performed refinements (Figure 1, Re-
finement) to our approach and later evaluated each VUI during a
pancreatic tumor removal surgery (Figure 9).

We performed the following refinements to our LLM-based VUI:
The transcription panel providing real-time feedback to visualize
the transcription of the voice query panel was removed, as it was
observed to cause more confusion. Users attempting to correct
what they perceived as misinterpreted words during their query
can diminish the efficiency of the LLMmethod, as the context of the
sentence may become unclear. Instead, we used conversational au-
dio feedback similar to those commercially available conversational
assistants such as Siri 3. We used sound saying "OK" to indicate
receiving the user query and "Please state your request differently"
when the LLM response did not yield any of the defined system
functions. Furthermore, we adapted the listening time after activa-
tion of the dictation service. The user request would automatically
send to the LLMmodel after one and half seconds of silence without
waiting for any further default time.

After performing refinements, we deployed our previously de-
veloped AR Assistance system designed to visualize 3D model of
the patient during the surgery with the capability of both VUIs.

6.1 Study Design
To evaluate our LLM-based VUI and compare its outcomes, such as
TCT and cognitive load, with the speech command during actual
surgery, we exclusively employed qualitative measures and con-
ducted post-operation interviews. This decision was driven by the
inherent variability in each patient case, which might inevitably
affect cognitive load measurements due to the unique nature of
each surgical procedure. Similarly, task execution time would be
influenced by the specifics of the surgery being performed. Con-
sequently, a direct comparison between the two methods across
different surgeries would not yield meaningful results. Thus, we
chose to gather insights through interviews and observations, with
3Siri is Apple’s voice-activated virtual assistant, available on iOS devices such as
iPhones and iPads.
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an observer researcher participating in the surgery sessions, making
notes and observations about user interaction with the system. This
approach allowed us to assess the impacts of each VUI, enabling us
to collect qualitative data that could inform future improvements
and implementations.

6.2 Procedure
To validate our approach in an ecologically valid environment, we
conducted clinical trials involving the intraoperative evaluation
in patients with underlying (borderline) resectable pancreatic tu-
mors who required various types of pancreatic resection. The trials
took place at Saarbrücken Klinikum hospital, certified to perform
pancreatic tumor resection surgeries.

The study protocol received approval from the Ethics Committee
of the Medical Association of Saarland under registration num-
ber: (registration number: 159/23). The protocol of our study was
also registered at ClinicalTrials.gov under the registration number:
NCT06208579.

Patients provided informed consent prior to surgery. All partici-
pating surgeons were fully briefed on the experimental nature of
the method and the device used. They voluntarily agreed to use
the system during the surgeries, assuming full responsibility for
its operation and the outcomes. The surgeons were also informed
that they could discontinue the use of the system at any point if
necessary, without obligation.

To avoid first-time use bias two of the surgeons (P1, P2) who
participated in study 1 participated in this study. Each surgery began
with two surgeons equipped with our designed wearable assistance
system with both VC method capabilities. In each session, surgeons
were asked to use only one of the VC methods. However, they
always had the choice to use the other method if it was essential for
the course of the surgery. We conducted interviews with surgeons
after each surgery session about their experience with each VUI.

6.3 Results
No technical difficulties regarding the VUIs were observed during
both sessions and both surgeons used the system with the assigned
VUI throughout the surgery.

Interviews with two surgeons who experimented with both VUI
across two surgical procedures proved the feasibility of our LLM-
based VUI in a real surgical environment in line with findings from
our first study.

The LLM’s capability to discern user context and analyze patient
data facilitated the surgeons in adjusting the visualization of patient
3D models according to the tumor’s proximity more efficiently
specifically in the initial preparation phase of the operation. This
benefit was encapsulated by a participating surgeon, who remarked:

Today’s patient had an anatomical anomaly so we
had to be more careful identifying the vessels during
preparation so we don’t damage them because they
were so close to the tumor. So we had to change the
visualization a lot. At that moment actually the LLM
was a big help actually because it saved us a lot of times.
(S2)

S1 also reflected on this topic saying:

I think the biggest difference between two [VUIs]
was during the initial phase of the operation where we
usually use the system more to identify the vessels. But
when the vessels are identified and already visible we
don’t interact with the system much. (S1)

Unlike the speech command method which requires precise
pronunciation of predefined keywords, the LLM system maintained
a more natural communication flow. This aspect was profoundly
appreciated, as S2 shared:

Voice commands also worked fine but the issue with
the voice commands is sometimes when people are talk-
ing around the table you have to say a word 100 times
until the system detects it. LLM is more forgiving if
that’s a correct word to use. (S2)

Additionally, S1 reported on the benefits of using natural com-
munication to control the system and also sharing information with
other staff around the table. S1 reported:

When I say a single word usually other staff surgeons
don’t know what I am doing because they don’t see
what I see in the device. But when I talk to the system
the way how I talk normally, then they know, ok, now I
am trying to see where some vessels are when I say, for
example, show me the vessels near the tumor or like I
want to see mesenteric artery. (S1)

S2 also highlighted the benefits of the performed refinements,
noting the reduced confusion from removing the transcription panel
and improved system response times:

This time with LLM system we didn’t have to wait
much for the system to react so it was way better and less
annoying. Also, I think removing the panel was a good
decision as I didn’t see what the system understands so
I didn’t worry much about correcting my request and
the system worked even better. (S2)

7 Discussion
The introduction of AR-based surgical assistance systems has signif-
icantly transformed surgical practices, offering an enhanced level of
precision and support. As these technologies evolve, the choice of
interaction method to control the system becomes a pivotal consid-
eration. Our study introduces a novel VUI for surgical ARAS using
speech recognition and LLM and conducts a comparative analysis
with the conventional VUI using speech recognition and speech
commands, focusing on enhancing operational efficiency and user
experience in the critical context of surgery. Importantly, we tested
both methods in controlled laboratory settings and real surgical
environments, offering a robust evaluation of their practical appli-
cation and performance. This dual-context approach allowed us to
gather comprehensive insights into the efficiency, cognitive load,
user preferences, limitations, and situational applicability of each
VC method.
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7.1 Efficiency and Cognitive Load: LLMs versus
Speech Commands

The SUS scores, along with the successful implementation of both
VC methods in simulated and real surgical environments, demon-
strate their usability and confirm their applicability in critical med-
ical settings. However, the distinction in performance, especially
in time-sensitive scenarios like the initial phases of surgical inter-
vention, which is the most mentally demanding phase, underscores
the criticality of choosing the right control and interaction method.

The use of LLMs significantly outperformed traditional speech
commands in TCT. This efficiency is attributable to the LLMs’ ability
to generate context-aware outputs and execute multiple functions
simultaneously to achieve a certain undefined functionality, a qual-
ity unattainable with keyword-specific speech commands without
implementing further keywords to perform this task. As functional-
ities expand, the speech command method suffers from scalability
issues, requiring an ever-increasing list of keywords. Conversely,
LLMs streamline this process, enabling parallel function execution
based on user requests without necessitating an extensive set of
unique commands.

A more intriguing aspect of LLMs lies not just in determining
which function to call based on user requests, but also in acting
as an intelligent assistant and generating outputs which normally
requires a complex decision-making process. This was particularly
evident when LLM successfully generated the correct output to call
certain system functionalities even when the function name or its
specific purpose was not directly mentioned in the user’s query.
The capability of LLMs to generate context-aware outputs using all
available information represents a significant advancement towards
truly intelligent user interfaces and assistance systems.

A detailed analysis of user interaction logs with the LLM revealed
its ability to successfully make decisions in numerous instances
where users would otherwise have had to decide themselves. This
difference in performance compared to speech commands was par-
ticularly evident. Despite the system functionalities being simple
and identical in both cases, the reasons for employing these func-
tionalities were often complex. With speech commands, the user (a
surgeon) needed to decide and then instruct the system to make
specific changes in visualizations using keywords. In contrast, the
LLM-based system handled the decision-making process.

For example, in task 6, P2 asked the LLM, "Can you showmewhat
should be resected?" Despite no specific information or annotation
regarding the task description or the structures to be enabled in
this context, the LLM correctly decided to display the tumor and
the infiltrated veins and arteries within the resection margins by
invoking multiple system functions simultaneously. This decision-
making process is highly complex, relying on factors such as patient
history, tumor position, and surgical guidelines regarding resection
margins.

This feature demonstrated by the LLM not only reduced task
completion times but also significantly diminished cognitive load.
This was also evidenced by the lower scores in the NASA-RTLX,
indicating a more intuitive and less burdensome interaction for
the user—something unachievable with speech command methods
without pre-implementing more complex functions into the system.

In applications such as surgical navigation systems, where sys-
tem interaction is part of a decision-making process and this pro-
cess depend heavily on the specific context of each patient case
and scenario, pre-implementing an all-encompassing solution is
very challenging. In such settings, predefining an comprehensive
rule-based or intent-driven system is highly challenging due to the
variability and nuance involved. Specialized voice assistance meth-
ods, such as those using machine learning [21], require training
the system with specific user terminology for different scenarios.
Additionally, these approaches come with significant processing
costs that might affect the performance of wearable devices. Here,
LLMs can provide significant benefits by offering a more generaliz-
able, adaptive, context-aware, and efficient approach to managing
complex tasks, even when the underlying system remains relatively
simple in terms of functionality. Their flexibility to interpret diverse
inputs, adapt to new scenarios, and support open-ended reasoning
makes them well-suited for assisting in dynamic decision-making
processes.

By analyzing patient-specific data and examples given in the
dynamically generated initial prompt, LLMs can offer custom rec-
ommendations, enhancing the support system’s utility in high-
pressure situations. This capability to interpret context and call
relevant function combinations offers surgeons a richer, more con-
textual understanding of the patient’s data, including visualization
of details in the 3D models, an attribution that with conventional
voice assistant systems using speech commands cannot be achieved
[21].

Despite the apparent advantages of the LLM method in facilitat-
ing quicker, multi-functional requests, our study also highlighted
a perception mismatch among some participants. They perceived
speech command execution as a faster method for task completion,
despite objective evidence showing the LLM method reduced TCTs.
This discrepancy may be linked to the system’s default listening
time (minimum ten seconds or wait for 2 seconds of silence if longer
than ten seconds) following the user query. It suggests the necessity
for an adaptive approach in managing the activation and deactiva-
tion of the system’s listening duration for the LLM-based method
to ensure the receipt of full user queries without a long wait. As a
shorter listening period could prematurely send incomplete queries
to the LLM, while a longer period might unnecessarily delay the
system’s response.

7.2 Pros and Cons: Balancing Control and
Transparency

In our study we found out that, speech commands, with their di-
rect and deterministic nature, afford users a clear understanding of
cause and effect. This transparency in interaction fosters a sense of
reliability and control, essential in high-stakes environments like
surgery. However, this method’s scalability and flexibility are con-
strained by the need to predefine every command, which can limit
the system’s responsiveness to complex or unforeseen requests.

On the other hand, LLMs represent a paradigm shift towards
more fluid, conversational interactions. By understanding and pro-
cessing natural language, these models offer a dynamic and flexible
interface that can interpret a broad spectrum of user requests. How-
ever, this sophistication comes with a degree of opacity. The "black
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box" nature of LLMs can obscure the pathway from request to action,
potentially undermining user confidence if the system’s reasoning
and decision-making processes are not sufficiently transparent.

This lack of transparency can occasionally lead to doubts about
the system’s decisions, especially given the potential for hallucina-
tions in LLMs. To mitigate these concerns, future system designs
could adopt a reasoning-based approach. In scenarios involving
decision-making or uncertainty, the system could present its rea-
soning to the user, allowing them to review and ultimately serve as
the final judge.

Moreover, when LLMs are applied in more critical contexts, mov-
ing beyond basic roles such as VUIs for controlling 3D visualizations
and into more complex functions as intelligent assistants, the po-
tential impact of system errors might become greater. In these high-
stakes applications, mistakes resulting from model hallucinations
could lead to more serious consequences, such as incorrect analysis,
flawed decision-making, or unintended system behavior. To address
these risks, incorporating a human-in-the-loop approach becomes
essential. This means that the system should not carry out any
requested actions without first presenting the proposed response
or decision to the user for review and explicit confirmation. By
involving the user as the final authority in the decision-making pro-
cess, the likelihood of critical failures can be significantly reduced,
ensuring both greater accountability and system reliability.

Our study revealed that the LLM system could effectively com-
pensate for errors in the dictation and speech recognition system.
Unlike speech commands, which necessitate precise pronuncia-
tion, the LLM system can infer the user’s intent by analyzing the
context of the query rather than focusing on individual words.
This capability significantly enhances the system’s flexibility and
user-friendliness.

However, it became evident that providing users with real-time
visual feedback of transcription could inadvertently lead to misjudg-
ments about the system’s capabilities. Users attempting to correct
what they perceive as misinterpreted words during their query
can diminish the LLM method’s efficiency, as the context of the
sentence may become obscured. This observation underscores the
critical need for designing user feedback mechanisms that do not
compromise the clarity of communication or the efficiency of the
system control method.

Furthermore, mitigating these challenges necessitates clear com-
munication about the system’s operational boundaries and capabil-
ities. Users need to understand not just how to interact with the
system, but also the underlying principles guiding its responses.
This understanding is crucial for formulating effective requests, es-
pecially with LLMs, where the context and specificity of language
can dramatically influence outcomes. Training and educational pro-
grams play a pivotal role in this regard, equipping users with the
knowledge to navigate the system’s complexities and leverage its
full potential.

We believe that a hybrid approach, integrating both speech com-
mands and LLM capabilities, emerges as a promising solution to
balance control with transparency. By allowing users to switch
between modes based on the task’s complexity or urgency, such a
system combines the directness of speech commandswith the adapt-
ability of LLMs. For routine tasks or when precision is paramount,
predefined speech commands could offer the most efficient pathway.

Conversely, for tasks that require time consuming decision-making
process or when additional context is required, the LLM recommen-
dations could provide a faster solution.

Implementing a hybrid model also entails designing interfaces
that intuitively signal which mode is in operation, therebymaintain-
ing user awareness and trust. Visual or auditory cues could indicate
the system’s current state, whether executing a direct command or
processing a more complex LLM-based request. Moreover, offering
users the ability to override or specify the control mode empowers
them to use the system’s capabilities depending to their immediate
needs and preferences. By carefully navigating the trade-offs be-
tween control and transparency, and by fostering an environment
of continuous learning and adaptation, we can develop systems
that not only enhance surgical outcomes but also align with the
users’ operational and cognitive needs.

7.3 Ethical Considerations
Maintaining ethical standards is crucial for preserving trust in med-
ical research and innovation. By adhering to ethical guidelines,
researchers and practitioners demonstrate their commitment to
prioritizing patient safety and well-being over technological ad-
vancements.

In this study, we emphasized ethical adherence throughout all
stages. We ensured that the introduction of the AR system did not
compromise the safety of patients or surgeons, nor did it undermine
the integrity of the surgical process.

To achieve this, we initiated the study only after obtaining full
approval from the relevant medical ethics review board. All partici-
pants, including surgeons and patients, were thoroughly informed
about the study, with their participation contingent upon a clear
explanation and the collection of informed consent. Patients were
made aware of the potential risks, benefits, and alternatives to
ensure their participation was both voluntary and fully informed.

We also ensured that neither the AR system nor the VC method
used did replace the surgeon’s judgment, maintaining human decision-
making in surgical procedures, and surgeons retained complete con-
trol over the system, consistent with the Fundamental Principles of
Ethics [51].

Our key takeouts from this study regarding ethical considera-
tions for future studies are as follows: The system should function
solely as a supplementary tool to assist the surgeon without re-
placing the surgeon’s expertise. The surgeon must retain ultimate
decision-making authority, ensuring patient safety and adapting to
the unique aspects of each case. Human intuition and experience
should remain the final safeguard in surgical procedures.

7.4 Limitations and Future Work
Even though the results of this study are promising steps towards
using LLMs not only as a VUI but also as intelligent assistants in the
medical domain, our findings are limited to the specific function-
alities of ARAS we used in this study. While these functionalities
are integral to most of surgical navigational applications, a broader
understanding of LLM capabilities requires further research. This
should involve more complex system functionalities and tasks to
fully explore and validate the potential of LLMs in diverse and
demanding scenarios. Furthermore, due to the different criticality
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level and domain-specific requirements involved in each different
type of surgical procedure, further domain-specific research is re-
quired to assess the generalizability of our findings and suitability
of this method for other surgical domains that benefit from AR
surgical navigation tools such as neurosurgery and orthopedics
[18, 41]. In our future work, we intend to broaden the scope of our
investigation into the capabilities and opportunities presented by
LLMs in surgical assistance systems beyond our current application
as a function caller and VCmethod. By leveraging the advanced nat-
ural language understanding and processing capabilities of LLMs,
we hope to uncover newways in which these models can contribute
to the enhancement of surgical outcomes, efficiency, and safety.

8 Conclusion
Our comparative study of two VUIs within an AR-based surgical
assistance system highlights the distinct advantages and consid-
erations associated with speech commands and LLM. We found
that the LLM-based VUI offered significant improvements in opera-
tional efficiency and reduced the cognitive load of users by allowing
for natural, conversational interactions and the ability to generate
context-aware system behavior by executing multiple functions
concurrently. However, the choice between LLMs and speech com-
mands is not clear-cut, despite higher preference towards LLM user
preferences may vary based on perceived control, transparency,
and the context in which the system is employed. While speech
commands provide a sense of direct control and transparency, LLMs
require clear instructions to function optimally, which can some-
times challenge users. The idea of a hybrid model emerges as a
promising solution, aiming to combine the strengths of both ap-
proaches to cater to a broader range of needs and situations in
surgical settings. Looking ahead, we plan to expand our exploration
into the potential of LLMs as conversational assistants that not
only could control the system but could participate more in the
decision-making process, further enhancing the capabilities of sur-
gical assistance systems. This study lays the groundwork for future
advancements in surgical technology, emphasizing the importance
of the involvement of end-users during design and evaluation and
the need for systems that balance efficiency, cognitive ease, and
adaptability to the fast-paced, complex nature of surgical environ-
ments.
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A Initial Promt Json Format

Initial_prompt = {

"description ": "Depending on given sentences , Return

only appropriate method or methods from the executable

methods list without explanation .",

"executableMethods ": [

"function_A(variables)", ..., "function_X(variables)"],

"organTypes ": [

"Organ_A", ..., "Organ_X"],

"OrganCategories ": [

"Category_A", ..., "Category_X "],

"distanceData ": [

" Organ_A ": { " Organ_A ": xx, ..., " Organ_x ": xx},

...,

" Organ_x ": {" Organ_A ": xx, ..., " Organ_x ": xx}],

"guidlines ": [

" rule_A ":" description of rule_A ,

...,

" rule_x ":" description of rule_x ],

"sentencesAndResultsExamples ": [

{ "sentence ": "Show me all of the arteries",

"result ": "function_{xx} (variable_xx)"

},

...,

{ "sentence ": "Show me the infiltrated vessels",

"result ": {" function_{yy} (variable_y1 , variable_y2)",

..., "function_{yy} (variable_y1 , variable_y2)" }}]

}
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