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Abstract

The rapid spread of multilingual misinforma-
tion requires robust automated fact verification
systems capable of handling fine-grained ve-
racity assessments across diverse languages.
While large language models have shown re-
markable capabilities across many NLP tasks,
their effectiveness for multilingual claim ver-
ification with nuanced classification schemes
remains understudied. We conduct a compre-
hensive evaluation of five state-of-the-art lan-
guage models on the X-Fact dataset, which
spans 25 languages with seven distinct ve-
racity categories. Our experiments compare
small language models (encoder-based XLM-
R and mT5) with recent decoder-only LLMs
(Llama 3.1, Qwen 2.5, Mistral Nemo) using
both prompting and fine-tuning approaches.1

Surprisingly, we find that XLM-R (270M pa-
rameters) substantially outperforms all tested
LLMs (7-12B parameters), achieving 57.7%
macro-F1 compared to the best LLM perfor-
mance of 16.9%. This represents a 15.8% im-
provement over the previous state-of-the-art
(41.9%), establishing new performance bench-
marks for multilingual fact verification. Our
analysis reveals problematic patterns in LLM
behavior, including systematic difficulties in
leveraging evidence and pronounced biases to-
ward frequent categories in imbalanced data
settings. These findings suggest that for fine-
grained multilingual fact verification, smaller
specialized models may be more effective than
general-purpose large models, with important
implications for practical deployment of fact-
checking systems.

1 Introduction

The rapid spread of misinformation on the internet
has become a critical challenge in today’s digi-
tal age (Scheufele and Krause, 2019; Fung et al.,

1We consider a large language model (LLM) to be any
model with more than 1B parameters, and correspondingly,
small language model (SLM) to have less than 1B parameters.

2022). With the increasing amount of false infor-
mation being shared across different languages and
platforms, automated fact verification systems have
emerged as useful tools for maintaining informa-
tion reliability.

The field of automated fact verification has seen
significant progress in recent years, particularly
with the advent of large language models and
transformer-based architectures (Guo et al., 2022).
However, most of these advancements have been
predominantly focused on English-language con-
tent (Singhal et al., 2024; Dmonte et al., 2024),
creating a significant gap in addressing misinfor-
mation in other languages.

Multilingual fact verification presents fundamen-
tal challenges for NLP (Dmonte et al., 2024; Wang
et al., 2024; Zhang et al., 2024), particularly when
employing fine-grained classification schemes that
better capture the nuanced nature of truth assess-
ment (Gupta and Srikumar, 2021; Pelrine et al.,
2023; Mohtaj et al., 2024). While existing datasets
and approaches employ various classification sys-
tems, classification beyond binary (true/false) and
ternary (true/false/other) categories remains under-
studied across multiple languages.

The multi-category nature of this task bears con-
ceptual similarity to Natural Language Inference
(NLI) tasks (Poliak et al., 2018), though claim veri-
fication differs in its specific objectives. While NLI
focuses on determining entailment relationships
(entails, contradicts, neutral) between premise and
hypothesis, our task requires assessing veracity
across different distinct truth categories that reflect
professional fact-checking standards.

In this work, we examine the performance of di-
verse model architectures and sizes on multilingual
claim verification with fine-grained truth categories.
We benchmark language model performance on the
X-Fact dataset (Gupta and Srikumar, 2021) span-
ning multiple languages with seven distinct veracity
categories, contrasting encoder-based model XLM-



R base (Conneau et al., 2020), encoder-decoder
architecture mT5 base (Xue et al., 2021), and re-
cent decoder-only models Llama 3.1 8B (Dubey
et al., 2024), Qwen 2.5 7B (Yang et al., 2024), and
Mistral Nemo 12B (Mistral AI Team, 2024).2 For
smaller models, we employ standard fine-tuning,
while for larger models, we use both parameter-
efficient fine-tuning with LoRA (Hu et al., 2022a)
and carefully engineered few-shot prompting ap-
proaches. We evaluate models under two condi-
tions: using claims alone and using claims with
accompanying evidence text, which allows us to
assess both inherent verification capabilities and
evidence-augmented reasoning across models us-
ing a classification scheme that better reflects the
nuanced assessments made by professional fact-
checkers.

Our contributions include:

• We conduct comprehensive benchmarking of
five state-of-the-art language models on the
challenging seven-category multilingual X-
Fact dataset, achieving new state-of-the-art
results with a 15.8% improvement in macro-
F1 score over previous best performance re-
ported by Gupta and Srikumar (2021). We
reveal a substantial performance gap between
encoder-based and decoder-only architectures
despite the latter’s greater size and general
capabilities.

• We provide analysis of model behaviors and
error patterns across architectures, identifying
several factors that appear to influence multi-
lingual fact verification performance. These
observations may help inform future research
on verification approaches for diverse lan-
guages.

2 Related Work

2.1 Multilingual Fact Verification Datasets
While a substantial portion of fact verification re-
search has centered on English-language content
(Guo et al., 2022; Singhal et al., 2024; Dmonte
et al., 2024), several datasets have emerged to ad-
dress the multilingual dimensions of this challenge.
These datasets vary significantly in size, language
coverage, and labeling schemes.

Multilingual datasets include FakeCovid (Shahi
and Nandini, 2020), covering 5K claims across

2Further details on the specific model versions are provided
in Appendix A.

40 languages, and MM-COVID (Li et al., 2020),
which provides 11K articles in English, Spanish,
Portuguese, Hindi, French, and Italian. The Multi-
Claim dataset (Pikuliak et al., 2023) contains 28K
social media posts in 27 languages that can be lever-
aged for fact verification tasks. FbMultiLingMis-
info (Barnabò et al., 2022) offers 7K news articles
spanning 37 languages, while NewsPolyML (Mo-
htaj et al., 2024) includes 32K claims across En-
glish, German, French, Spanish, and Italian. The
X-Fact dataset (Gupta and Srikumar, 2021) pro-
vides 31K claims from fact-checking websites in
25 languages across 11 language families.

Labeling approaches range from binary classi-
fication (Li et al., 2020; Barnabò et al., 2022) to
three-category systems (Nørregaard and Derczyn-
ski, 2021; Hu et al., 2022b; Ullrich et al., 2023)
and more complex multi-class schemes including
11 categories in FakeCovid (Shahi and Nandini,
2020), 4 in NewsPolyML (Mohtaj et al., 2024), and
7 in X-Fact (Gupta and Srikumar, 2021). The di-
versity of annotation schemes, while enabling finer-
grained veracity assessments, complicates cross-
dataset training and evaluation for cross-lingual
verification.

2.2 Methods for Fact Verification
The task of claim verification has evolved signif-
icantly with various methodological approaches
emerging to tackle the complexities of determin-
ing claim veracity. Transformer-based architec-
tures (Devlin et al., 2019) brought substantial ad-
vancements to fact verification. Gupta and Sriku-
mar (2021) evaluated mBERT-based models on
the X-Fact dataset spanning 25 languages with
7-way classification. Their best model achieved
an F1 score of 41.9% on the in-domain test set,
though performance dropped to 16.2% F1 on
out-of-domain and 16.7% F1 on zero-shot test
sets, highlighting cross-lingual generalization chal-
lenges.

Recent research has explored large language
models for fact verification using various ap-
proaches. For prompting-based methods, Cao et al.
(2023) investigated different prompting strategies
for fact-checking, finding that carefully crafted
prompts with explicit instructions about expected
output formats and task definitions significantly
improved performance. Hu et al. (2023) found
that increasing few-shot examples beyond a cer-
tain threshold provides substantial gains, suggest-
ing a threshold effect. Self-consistency methods



using majority voting from multiple LLM runs im-
proved performance, while self-refinement strate-
gies where models iteratively refine their answers
showed gains over standard approaches.

Chain of Thought (CoT) approaches have shown
promising results by enabling LLMs to articu-
late reasoning processes before reaching conclu-
sions (Wei et al., 2022). Hu et al. (2023) found
that CoT prompting significantly improved perfor-
mance across all tested models on English data
compared to standard prompting.

Pelrine et al. (2023) compared GPT-4 against tra-
ditional approaches across multiple datasets. For bi-
nary classification on English LIAR (Wang, 2017),
GPT-4 variants outperformed traditional models
like ConvBERT (Jiang et al., 2020) and BERT.
However, in multi-way classification tasks, perfor-
mance declined significantly with traditional mod-
els like DeBERTa (He et al., 2021) showing better
results. The same study demonstrated GPT-4’s
cross-lingual capabilities on CT-FAN-22 (Shahi
et al., 2021), with GPT-4 substantially outperform-
ing RoBERTa-L (Liu et al., 2019) on English multi-
way classification.

Cekinel et al. (2024) found that fine-tuning
LLaMA-2 models (Touvron et al., 2023) on Turk-
ish language data outperformed cross-lingual trans-
fer methods for fact verification. Their fine-tuned
model achieved strong performance on binary clas-
sification, while cross-lingual prompting with En-
glish data showed improvements but proved less
effective than language-specific fine-tuning. Mo-
htaj et al. (2024) evaluated multiple models on the
NewsPolyML dataset spanning five European lan-
guages with four veracity categories. Interestingly,
mBERT achieved the highest performance, suggest-
ing that model size does not necessarily correlate
with performance in multilingual fact verification
tasks.

3 Dataset

For our experiments, we use the X-Fact dataset
(Gupta and Srikumar, 2021). This dataset was se-
lected due to several advantages over other mul-
tilingual fact verification resources. X-Fact en-
compasses a broad range of topics from verified
fact-checking websites, making it more representa-
tive of real-world misinformation challenges com-
pared to specialized datasets like FakeCovid (Shahi
and Nandini, 2020) that focus solely on COVID-
19 related claims. Unlike datasets derived from

social media platforms such as FbMultiLingMis-
info (Barnabò et al., 2022), X-Fact provides ready-
to-use data without requiring access to platform-
specific APIs, ensuring reproducibility of research
findings.

X-Fact comprises 31,189 claims across 25 lan-
guages from 11 language families, including Indo-
European, Afro-Asiatic, Austronesian, Kartvelian,
Dravidian, and Turkic. The dataset was carefully
constructed by identifying reliable fact-checking
sources from the International Fact-Checking Net-
work3 and Duke Reporter’s Lab4, excluding web-
sites that conduct fact-checks in English to avoid
overlap with existing datasets. Each claim in X-
Fact is accompanied by up to 5 pieces of evidence
extracted from fact-checking articles, with an aver-
age of 4.75 non-empty evidence pieces per claim.
The dataset also includes valuable metadata such
as the language of the claim and evidence, the fact-
checking site where the claim was derived from,
links to the evidence where they were published,
claim date, review date, and claimant information.
Examples of claims, corresponding evidence, and
associated metadata can be found in Appendix B.

To ensure consistent evaluation across differ-
ent fact-checking standards, the dataset employs
a standardized seven-label classification scheme:
true, mostly true, partly true/misleading, mostly
false, false, complicated/hard to categorize, and
other. This fine-grained approach provides a more
nuanced assessment of claim veracity compared
to less fine-grained classification schemes used in
many other datasets.

The dataset is divided into multiple subsets de-
signed to evaluate different aspects of model per-
formance (see Table 1). The training set contains
19,079 claims across 13 languages, while the de-
velopment set comprises 2,535 claims spanning
13 languages. For testing, X-Fact provides three
separate subsets: an in-domain test set with 3,826
claims from the same languages and sources as
the training data; an out-of-domain test set con-
taining 2,368 claims from the same languages but
different sources; and a zero-shot test set featuring
3,381 claims from 12 languages not present in the
training data. This evaluation framework supports
a thorough assessment of models’ generalization
capabilities across both domains and languages.

The label distribution in the X-Fact exhibits

3https://www.poynter.org/ifcn/.
4https://reporterslab.org/.



Dataset Subset # Claims # Languages
Training 19079 13
Development 2535 13
In-domain 3826 13
Out-of-domain 2368 5
zero-shot 3381 12

Table 1: Overview of the X-Fact dataset subsets.

significant variation across all subsets (see Fig-
ure 1). The false label dominates the training set
with 7,515 instances (39.4%), followed by partly
true/misleading with 4,359 instances (22.8%). The
least represented label is other with only 576 in-
stances (1.9%).

Figure 1: Distribution of data in X-Fact by label across
subsets.

The language distribution also shows substan-
tial variation across different subsets (see Figure
2). Portuguese dominates the training set with
5,601 claims (29.4%), followed by Indonesian with
2,231 claims (11.7%) and Arabic with 1,567 claims
(8.2%). Serbian has the lowest representation with
only 624 claims (3.3%).

These imbalances may potentially impact model
learning, particularly for cross-lingual transfer, and
present additional challenges for models to learn
fine-grained veracity categories.

4 Experiments

4.1 Experimental Setup

Our evaluation focuses on benchmarking differ-
ent language model architectures on the multilin-
gual fact verification task, using X-Fact’s seven-
category classification scheme across multiple lan-
guages. We evaluate both small language models

(SLMs, <1B parameters) and large language mod-
els (LLMs, >1B parameters) to determine their
relative effectiveness for fine-grained multilingual
verification. Table 2 provides an overview of the
models evaluated in this study.

We selected these models based on their strong
multilingual capabilities and architectural diver-
sity. XLM-R was chosen for its robust pre-training
on 100 languages and encoder-only architecture
that has proven effective for classification tasks.
MT5 represents the encoder-decoder paradigm,
offering a different architectural approach while
maintaining strong multilingual capabilities across
101 languages. For LLMs, we selected Llama 3.1
8B, Qwen 2.5 7B, and Mistral Nemo 12B to rep-
resent state-of-the-art decoder-only architectures
with varying degrees of multilingual support.

We prioritized open-source models with moder-
ate parameter sizes to ensure reproducibility and
facilitate deployment in resource-constrained en-
vironments. This selection allows us to evaluate
whether sophisticated reasoning in current LLMs
transfers effectively to multilingual fact verification
compared to smaller, specialized architectures like
XLM-R.

Model # Par. # Lang. Architecture
XLM-R 270 M 100 Encoder-only
mT5 580 M 101 Encoder-

decoder
Llama 3.1 8 B 8 Decoder-only
Qwen 2.5 7 B 29 Decoder-only
Mistral
Nemo

12 B 11 Decoder-only

Table 2: Models evaluated on multilingual fact verifi-
cation using the X-Fact dataset. # Par. is the number
of parameters and # Lang. is the number of languages
supported by each model.

For the SLMs, we performed fine-tuning exper-
iments, while for LLMs, we explored both direct
prompting and parameter-efficient fine-tuning us-
ing LoRA. The models’ implementation details can
be found in the Appendix C.

4.2 Small Language Models Experiments
For XLM-R and mT5, we conducted two types of
fine-tuning experiments:

• Full Model Fine-tuning: We performed com-
plete fine-tuning of the models, allowing all
parameters to be updated during training.



Figure 2: Distribution of data in X-Fact by language across subsets.

• Classification Head Fine-tuning: We fine-
tuned only the classification head while keep-
ing the base model frozen.

For both approaches, we provided the models
with the claim text and evidence as input. We
did not conduct experiments using only claim text
without evidence, as preliminary experiments con-
firmed the X-Fact paper’s finding that claim-only
setups yield worse performance.

4.3 Large Language Models Experiments

For LLMs, we explored both few-shot prompting
and parameter-efficient fine-tuning approaches. We
evaluated each model in two input configurations:
(1) claim-only, providing only the claim text; and
(2) claim with evidence, providing both claim and
evidence text. Our experimental setup included the
following approaches:

• Few-shot prompting: We developed 7-shot
prompts containing examples for each verac-
ity category to guide prediction without train-
ing. Each prompt included clear instructions,
category definitions, and was tested in both
claim-only and claim+evidence variants.

• LoRA fine-tuning: We implemented
parameter-efficient fine-tuning using LoRA
for both claim-only and claim+evidence
configurations.

The optimized prompt template is provided in
the Appendix E.

5 Results

5.1 SLMs Performance

Table 3 presents the macro-F1 scores for small
language models across three evaluation subsets.
XLM-R with full fine-tuning achieves the high-
est performance with 57.7% macro-F1 on the test

set, substantially outperforming the previous state-
of-the-art mBERT baseline (41.9%) by 15.8% re-
ported in Gupta and Srikumar (2021). XLM-
R also demonstrates superior cross-domain and
cross-lingual generalization, maintaining relatively
strong performance across all evaluation subsets.

Model Test OOD Zero-shot
mBERT (baseline) 41.9 16.2 16.7
XLM-R frozen 51.4 40.8 41.3
XLM-R 57.7 47.6 43.2
mT5 47.6 22.2 19.2

Table 3: SLMs performance on the X-Fact dataset
(macro-F1 scores). XLM-R frozen refers to fine-tuning
the classification head only. mBERT performance is
derived from (Gupta and Srikumar, 2021).

MT5 reaches 47.6% macro-F1 on the test set
but shows poor generalization to out-of-domain
(22.2%) and zero-shot (19.2%) scenarios. The per-
formance gap between XLM-R and mT5 widens
significantly on these evaluation sets, indicating
that XLM-R’s encoder-only architecture may be
better suited for multilingual fact verification tasks.

5.2 LLMs Performance

Table 4 presents LLMs’ results across different con-
figurations. Despite their significantly larger size
(7-12B parameters), all LLMs substantially under-
perform compared to SLMs. The best LLM con-
figuration (Qwen claim-only fine-tuning) achieves
only 16.9% macro-F1 on the test set - 40.8% points
below XLM-R. For visualizations of models’ per-
formance across different evaluation subsets, refer
to Appendix D.

Among the LLMs, Qwen 2.5 consistently
demonstrates the best performance across most
configurations. The model achieves its highest
macro-F1 score of 16.9% with claim-only fine-
tuning on the test set, compared to 15.9% with
claim+evidence fine-tuning and 11.4%-12.7% with



Method Few-shot LoRA-based Finetune
Claim+Evidence Claim Only Claim+Evidence Claim Only
macro micro macro micro macro micro macro micro

Qwen 2.5
Test 12.7 24.9 11.4 18.6 15.9 39.5 16.9 29.6
OOD 13.0 29.6 11.2 27.4 15.1 47.1 11.1 31.3
Zero-shot 10.9 18.9 12.9 23.9 15.4 35.8 11.7 24.5
Mistral Nemo
Test 14.8 30.8 8.5 23.4 14.6 31.9 10.3 20.2
OOD 16.1 42.6 9.7 36.6 12.1 34.2 9.6 27.1
Zero-shot 15.1 28.7 10.6 29.6 12.9 25.7 8.2 15.6
Llama 3.1
Test 14.0 32.0 10.8 18.4 14.3 27.6 15.5 30.5
OOD 13.3 41.2 8.7 21.2 11.2 27.1 13.5 33.2
Zero-shot 12.9 30.1 8.7 17.6 9.6 17.5 12.1 29.4

Table 4: LLMs performance on the X-Fact dataset (macro-F1 and micro-F1 scores). Bold values indicate the highest
macro- and micro-F1 scores for each model-subset combination.

few-shot prompting. LoRA-based fine-tuning con-
sistently improves performance over few-shot in-
ference across all models and configurations, with
Qwen 2.5 showing the largest gains.

The impact of adding evidence to claims varies
significantly across models and methods. For
Qwen 2.5, fine-tuning with claim-only (16.9%) out-
performs claim+evidence (15.9%) on the test set,
showing a consistent pattern across all evaluation
sets. In contrast, Mistral Nemo generally performs
better with claim+evidence input in few-shot set-
tings (14.8% vs 8.5% on test set) but shows mixed
results with fine-tuning. Llama 3.1 demonstrates
the most inconsistent performance across differ-
ent configurations. While it achieves reasonable
performance on the test set (15.5% macro-F1 with
claim-only fine-tuning), it shows the largest per-
formance drop on the zero-shot set, with the worst
configuration (claim+evidence fine-tuning) falling
to 9.6% macro-F1.

LoRA Fine-tuning and Few-shot Prompting.
Fine-tuning consistently improves performance
over few-shot prompting across all models. Qwen
shows the most substantial improvement (from
12.7% in few-shot with claim+evidence setting to
to 15.9% in fine-tuning with claim+evidence set-
ting) on the test set. Mistral Nemo shows minimal
differences between methods, with some configura-
tions favoring few-shot prompting (16.1% vs 12.1%
on out-of-domain with claim+evidence). Llama
3.1 generally benefits from fine-tuning, improving
from 10.8% to 15.5% in the claim-only configura-

tion on the test set.

Performance Across Evaluation Subsets. All
models show declining performance from test to
out-of-domain and zero-shot sets when fine-tuning.
Qwen 2.5 maintains stable performance, with the
sharpest drop by 5.2% from test to zero-shot. Mis-
tral Nemo shows the least variation, performing
best on out-of-domain (16.1%). Llama 3.1 ex-
hibits the largest degradation, dropping from 15.5%
on test to 9.6% on zero-shot in comparable con-
figurations. Refer to the Appendix F for visu-
alizations comparing LLMs performance across
these evaluation subsets. For a combined view of
claim+evidence configurations across all LLMs,
refer to Appendix G, which directly compares
the macro-F1 scores across evaluation subsets and
highlights the best performing method for each
model.

Macro vs. Micro F1 Score. The substantial gap
between micro- and macro-F1 scores is consistent
across all LLMs, with the largest gaps observed
in fine-tuning configurations. Qwen 2.5 achieves
39.5% micro-F1 compared to 15.9% macro-F1 in
its claim+evidence fine-tuning on the test set, a gap
of 23.6%. Similarly, Mistral Nemo shows a 17.2%
gap in its claim+evidence fine-tuning configuration
on the test set.

Few-shot configurations generally show
smaller gaps. For instance, Qwen’s few-shot
claim+evidence on the test set shows an 12.2%
gap, while its fine-tuning equivalent shows a
23.6% gap. This pattern holds across all models



where fine-tuning configurations consistently
exhibit gaps ranging from 15 to 32 percentage
points, while few-shot configurations typically
show gaps between 8 to 20 percentage points. The
visualizations depicting the performance gaps
between macro- and micro-F1 scores across LLMs
can be found in Appendix H.

6 Discussion

Our comprehensive evaluation across 25 languages
reveals several important findings that advance our
understanding of how different architectures han-
dle fine-grained veracity classification across lan-
guages.

Performance Gap Between Model Types. The
most striking finding is XLM-R’s superiority over
all tested LLMs, achieving 57.7% macro-F1 com-
pared to the best LLM performance of 16.9% from
Qwen 2.5. This performance difference is partic-
ularly noteworthy given that LLMs contain many
more parameters than XLM-R. XLM-R was pre-
trained on 100 languages using a masked language
modeling objective that may align well with classi-
fication tasks, whereas LLMs use next-token pre-
diction objectives optimized for text generation.
These differences in pre-training approaches and
objectives may contribute to the observed perfor-
mance gap.

While our comparison involves different training
methodologies (full fine-tuning for SLMs versus
LoRA for LLMs), it is important to note that even
when comparing more similar approaches, substan-
tial performance gaps persist. Our frozen XLM-R
configuration, which only updates the classifica-
tion head similar to LoRA’s parameter-efficient ap-
proach, still achieves 51.4% macro-F1 compared
to the best LLM performance of 16.9%. This sug-
gests that the performance differences extend be-
yond training methodology. Future work should
include detailed per-label performance analysis to
better understand model biases and identify which
veracity categories prove most challenging across
different architectures.

Evidence Integration Patterns. A clear pat-
tern emerges in how LLMs handle evidence: sur-
prisingly, incorporating additional evidence of-
ten does not enhance performance and can even
lead to worse results. For instance, Qwen’s
claim-only fine-tuning (16.9%) outperforms its
claim+evidence configuration (15.9%). This pat-
tern persists across all Llama 3.1 configurations,

suggesting systematic difficulties in leveraging ad-
ditional context for verification decisions.

We hypothesize several factors that may con-
tribute to this counterintuitive finding. First, the ar-
chitectural limitations of decoder-only LLMs may
hinder effective evidence integration. Unlike XLM-
R’s bidirectional attention that allows simultaneous
consideration of all evidence elements against all
claim components, LLMs’ autoregressive attention
can only consider previous tokens. This sequential
processing creates a tendency to forget or ignore
earlier information as sequences become longer,
making balanced evidence evaluation more chal-
lenging.

Second, our input formatting may have con-
tributed to this issue. While we used clear de-
marcation between claims and evidence in our
prompts (as shown in Appendix E), we did not im-
plement more sophisticated structuring techniques
that might have helped LLMs better distinguish
and compare these elements. Context window size
was treated as a hyperparameter in our experiments,
with LLMs tested at both 2048 and 4096 tokens,
while SLMs were evaluated with context windows
ranging from 256 to 512 tokens. With evidence
pieces having median lengths of 25-35 words each
and approximately 4.75 pieces per claim on aver-
age, the evidence was fully accommodated within
the context windows of all models. Therefore, ev-
idence truncation was not a contributing factor to
the observed performance patterns.

This finding is particularly significant because
evidence-based reasoning is fundamental to reli-
able fact verification. The fact that simply pro-
viding claims yields better results than including
supporting evidence indicates that current LLMs
may not be effectively utilizing the additional infor-
mation or may be getting confused by the increased
input complexity.

Fine-Grained Classification Challenges. The
severe data imbalances in X-Fact likely contributes
to the observed performance patterns. The domi-
nance of false and partly true/misleading categories
creates a challenging environment for models to
learn effective representations for less frequent but
equally important categories. This imbalance effect
is aggravated in the seven-category setting, where
models must not only distinguish between true and
false but also navigate subtle gradations of partial
truth. Furthermore, the language distribution im-
balance (Portuguese comprising 29.4% of training
data while Serbian represents only 3.3%) likely



impacts cross-lingual performance. Models may
develop language-specific biases that hinder their
ability to generalize across languages, particularly
to those underrepresented in the training data.

The substantial disparity between micro- and
macro-F1 scores across all LLMs reveals criti-
cal limitations in handling nuanced veracity cat-
egories. The micro-F1 scores being consistently
higher than macro-F1 scores confirms that perfor-
mance is driven primarily by accuracy on frequent
categories, while rare categories remain poorly pre-
dicted. This pattern is particularly pronounced in
LLMs, suggesting they may be more influenced
by biases in the training data than the fine-tuned
XLM-R.

Cross-Lingual and Cross-Domain General-
ization. Performance degradation across evalu-
ation subsets is consistent across all models but
varies in magnitude. XLM-R demonstrates the
most robust cross-lingual transfer, while LLMs
show steeper drops. The relatively stable perfor-
mance of XLM-R on unseen languages suggests
that its multilingual pre-training provides effective
cross-lingual representations for fact verification
task. The sharper declines observed in LLMs may
indicate that their multilingual capabilities are less
robust when faced with languages not well repre-
sented in their training data or when transferring
across different fact-checking domains.

Even when comparing XLM-R’s frozen configu-
ration (which only updates the classification head,
similar to LoRA’s parameter-efficient approach),
we still observe substantial outperformance over
LLMs (51.4% vs 16.9% best LLM performance).
This suggests that the performance differences may
stem not only from the fine-tuning methodology
but also from other factors such as architectural ad-
vantages of encoder-based models for this specific
task or the amount and quality of the pre-training
data available in different languages.

7 Conclusion and Future Work

This work presents a comprehensive evaluation of
diverse language model architectures (small and
large; encoder, encoder-decoder, and decoder-only)
on multilingual fact verification using the challeng-
ing seven-category X-Fact dataset. Our findings
reveal several key insights that advance understand-
ing of how different models handle fine-grained
veracity classification across languages.

Fully fine-tuned XLM-R emerges as the clear

winner, achieving 57.7% macro-F1 on the test set
– a 15.8% improvement over previous state-of-the-
art. Despite having significantly fewer parameters,
XLM-R substantially outperforms all tested LLMs,
with the best LLM (Qwen 2.5) reaching only 16.9%
macro-F1. The magnitude of this performance gap
persists even when comparing lightweight fine-
tuning approaches (e.g., frozen XLM-R with a
trained classification head: 51.4% vs best LLM:
16.9%), suggesting that factors beyond training
methodology contribute to the observed differences.
However, the exact nature of these factors requires
further investigation.

Our analysis reveals problematic patterns in
LLM behavior, particularly their inability to ef-
fectively utilize additional evidence. Models often
perform worse when provided with claim-evidence
pairs compared to claims alone, indicating system-
atic challenges in leveraging external information
for verification decisions. This limitation is particu-
larly problematic given that evidence-based reason-
ing is fundamental to reliable fact-checking, though
the underlying causes of this behavior need deeper
exploration.

The significant disparity between micro- and
macro-F1 scores across the models reveals the chal-
lenge of handling imbalanced datasets with fine-
grained categories. Models tend to learn shortcuts
based on frequent categories while struggling with
rare but equally important veracity labels. This bias
appears more pronounced in LLMs, indicating they
may be more vulnerable to dataset imbalances than
smaller models that have been carefully fine-tuned.

These findings have important implications for
the development of multilingual fact verification
systems. While LLMs show promise for many
NLP tasks, our results suggest that for fine-grained
fact verification across languages, smaller special-
ized models may provide better performance while
requiring fewer computational resources.

8 Limitations

Our study has several limitations that should be
considered when interpreting the results.

Training Methodology Differences. Our com-
parison involves fundamentally different training
approaches: XLM-R undergoes full fine-tuning
with all parameters being updated, while LLMs uti-
lize LoRA that freezes the majority of the original
model parameters. This methodological difference
could significantly impact the ability of LLMs to



adapt to the specific task requirements and may
partially explain the observed performance gaps.

Prompt Engineering Constraints. Our prompt
engineering approach may not be equally optimal
across all languages in our multilingual evaluation.
While we developed carefully engineered 7-shot
prompts with examples balanced across the seven
veracity categories, our prompt design focused pri-
marily on ensuring representative coverage of each
label rather than optimizing for linguistic diversity.
This approach may have favored certain languages
or language families that were better represented in
our example selection. Language-specific prompt
optimization could potentially narrow the perfor-
mance gap, though this would require substantial
additional engineering effort for each target lan-
guage.

Evidence Interpretation Limitations. Given
the relatively small performance differences be-
tween claim-only and claim+evidence configura-
tions, we cannot definitively conclude that LLMs
are incapable of evidence utilization. The limited
performance gap may simply reflect the inherent
difficulty of the task or limitations in our evalu-
ation approach. It’s possible that with more so-
phisticated prompting strategies, larger datasets, or
alternative evidence presentation formats, LLMs
might demonstrate improved evidence integration
capabilities. The evidence quality in the X-Fact
dataset may also play a role, as analysis reveals
that search snippets may not always contain suffi-
cient information for accurate verification (Gupta
and Srikumar, 2021).

Practical Computing Considerations. Our
comparison between fully fine-tuned XLM-R and
LoRA-adapted LLMs reflects realistic scenario
with limited computational resources. Full fine-
tuning of billion-parameter models requires sub-
stantial computational resources that are often
prohibitive for many researchers. In contrast,
parameter-efficient methods like LoRA can be ap-
plied with modest computational resources, mak-
ing them the more practical choice for deploying
large models. This comparison addresses a critical
question: given realistic computational constraints,
which approach provides better performance for
multilingual fact verification? Our results demon-
strate that a smaller, fully fine-tuned model can sig-
nificantly outperform much larger models adapted
with parameter-efficient methods, suggesting that
for specific tasks like multilingual fine-grained ver-
ification, specialized smaller models may be prefer-

able to general-purpose large models.
Output Analysis and Reproducibility. To en-

hance reproducibility and enable further investi-
gation of the observed performance patterns, we
make our LLM outputs available in the repository5,
including detailed predictions and model responses.
A comprehensive analysis of these outputs, includ-
ing confusion matrices and detailed error patterns
that could reveal potential parsing issues or system-
atic biases, represents important future work that
could provide deeper insights into the substantial
performance differences observed between model
architectures.
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madka, Timotej Smoleň, Martin Melišek, Ivan
Vykopal, Jakub Simko, Juraj Podroužek, and Maria
Bielikova. 2023. Multilingual previously fact-
checked claim retrieval. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16477–16500, Singapore.
Association for Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Seventh Joint Confer-
ence on Lexical and Computational Semantics, pages
180–191, New Orleans, Louisiana. Association for
Computational Linguistics.

Dietram A Scheufele and Nicole M Krause. 2019.
Science audiences, misinformation, and fake news.
Proceedings of the National Academy of Sciences,
116(16):7662–7669.

http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/2021.acl-short.86
https://doi.org/10.18653/v1/2021.acl-short.86
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#HuSWALWWC22
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#HuSWALWWC22
https://arxiv.org/abs/2310.05177
https://arxiv.org/abs/2310.05177
https://doi.org/10.18653/v1/2022.naacl-main.246
https://doi.org/10.18653/v1/2022.naacl-main.246
https://proceedings.neurips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://arxiv.org/abs/2011.04088
https://arxiv.org/abs/2011.04088
https://arxiv.org/abs/2011.04088
https://mistral.ai/en/news/mistral-nemo
https://mistral.ai/en/news/mistral-nemo
https://doi.org/10.1145/3643491.3660290
https://doi.org/10.1145/3643491.3660290
https://aclanthology.org/2021.nodalida-main.47/
https://aclanthology.org/2021.nodalida-main.47/
https://doi.org/10.18653/v1/2023.emnlp-main.395
https://doi.org/10.18653/v1/2023.emnlp-main.395
https://doi.org/10.18653/v1/2023.emnlp-main.395
https://doi.org/10.18653/v1/2023.emnlp-main.1027
https://doi.org/10.18653/v1/2023.emnlp-main.1027
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023


Gautam Kishore Shahi and Durgesh Nandini. 2020.
FakeCovid- A Multilingual Cross-domain Fact Check
News Dataset for COVID-19. ICWSM.

Gautam Kishore Shahi, Julia Maria Struß, and Thomas
Mandl. 2021. Overview of the clef-2021 checkthat!
lab task 3 on fake news detection. Working Notes of
CLEF.

Aryan Singhal, Thomas Law, Coby Kassner, Ayushman
Gupta, Evan Duan, Aviral Damle, and Ryan Luo
Li. 2024. Multilingual fact-checking using LLMs.
In Proceedings of the Third Workshop on NLP for
Positive Impact, pages 13–31, Miami, Florida, USA.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Herbert Ullrich, Jan Drchal, Martin Rýpar, Hana Vin-
courová, and Václav Moravec. 2023. Csfever and ctk-
facts: acquiring czech data for fact verification. Lan-
guage Resources and Evaluation, 57(4):1571–1605.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Xinyu Wang, Wenbo Zhang, and Sarah Rajtmajer. 2024.
Monolingual and multilingual misinformation detec-
tion for low-resource languages: A comprehensive
survey. Preprint, arXiv:2410.18390.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Caiqi Zhang, Zhijiang Guo, and Andreas Vlachos. 2024.
Do we need language-specific fact-checking models?

the case of Chinese. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1899–1914, Miami, Florida, USA.
Association for Computational Linguistics.

A Model Implementation Details

For our experimental evaluation, we used the fol-
lowing model versions:

XLM-R base. We used FacebookAI/xlm-
roberta-base (270 million parameters) model from
Hugging Face, which has been pre-trained on text
in 100 languages. The model was tested in two con-
figurations: (1) with frozen parameters and only
the classification head fine-tuned, and (2) with full
fine-tuning of all parameters.

mT5 base. We employed the google/mt5-base
model (580 million parameters) from Hugging
Face, which follows an encoder-decoder architec-
ture and has been pre-trained on multilingual text.

Llama 3.1 8B. We used the instruction-tuned
version of Llama 3.1 with 8 billion parameters.
This model officially supports seven languages:
French, German, Hindi, Italian, Portuguese, Span-
ish, and Thai, in addition to English.

Qwen 2.5 7B. We employed the instruction-
tuned Qwen 2.5 model with 7 billion parameters.
This model supports 29 languages and has demon-
strated strong performance in both English and
multilingual tasks.

Mistral Nemo 12B. We used the Mistral Nemo
model with 12 billion parameters. This model
supports 11 languages: English, French, German,
Spanish, Italian, Portuguese, Chinese, Japanese,
Korean, Arabic, and Hindi.

All experiments with LLMs were conducted
using the Unsloth library (Daniel Han and team,
2023) to efficiently implement and optimize the
fine-tuning and inference processes, ensuring faster
training times and reduced memory usage without
compromising model performance.

B Details on X-Fact

For examples from the X-Fact dataset, please refer
to the Figure 3.

C Hyperparameter Details

C.1 Small Language Models

For our small language models (XLM-R and
mT5), we employed Bayesian hyperparameter opti-
mization through Weights&Biases, conducting 90
sweeps for the classification head approach and 60
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Figure 3: Details of the X-Fact dataset. Examples from
X-Fact as presented in the original paper by Gupta and
Srikumar (2021). For reference, translations are also
shown.

sweeps each for the full fine-tuning experiments.
We used an AdamW optimizer with a polynomial
learning rate scheduler. To prevent overfitting, we
implemented early stopping. Table 5 shows the key
hyperparameter values for each model variant.

Model Learning Rate Batch Size
XLM-R frozen 5.7e-04 8
XLM-R 1.82e-05 6
mT5 2.2e-05 8

Table 5: Key hyperparameter values for SLMs.

C.2 Large Language Models

For large language models, we used parameter-
efficient fine-tuning with LoRA. Through system-
atic experimentation, we identified optimal LoRA
configurations with a rank of 16 and adapter al-
pha of 32. We targeted both attention components
(query, key, value, and output projections) and feed-
forward layers (gate projections and up/down pro-
jections).

Lower rank values (r = 2, 4, 8) and alpha values
(8, 16) produced inferior results, while increasing
these parameters beyond our chosen values (r >
16, alpha > 32) provided negligible performance
gains while substantially increasing memory re-
quirements.

For prompt engineering, we tested various tem-
perature settings and found that temperatures be-
tween 0.3 and 0.5 provided the best balance be-
tween confident predictions and appropriate uncer-
tainty handling. Lower temperatures led to overly
deterministic outputs that failed to capture nuanced
veracity judgments, while higher temperatures re-
sulted in inconsistent classifications.

All LLM experiments were conducted using 4-
bit quantization to enable efficient processing on
GPUs while maintaining performance.

D Performance Comparison across
Models

Figure 4: Macro-F1 scores across test subset by model.

Figure 5: Macro-F1 scores across OOD subset by
model.

E Prompt Template

In Figure 7 we provide a prompt template used to
instruct LLMs.

F LLMs Performance Comparison
Visualizations

In Figure 8 we provide a comparison of macro- and
micro F1 scores across LLMs, evaluation subsets,
and training methods.



Figure 6: Macro-F1 scores across zero-shot subset by
model.

G LLMs Performance Summary Table

In Table 6 we present a combined comparison
of macro-F1 scores for all evaluated models us-
ing claim+evidence configurations across the three
evaluation subsets (Test, OOD, Zero-shot). This
table extracts the claim+evidence results from Ta-
ble 4 and combines them with the small language
model performance to facilitate direct performance
comparison.

H Micro- and Macro-F1 Scores
Comparison across LLMs

In Figure 9 we provide a comparison of average
macro- and micro-F1 scores across LLMs for each
evaluation subset.



Method Test OOD Zero-shot

mBERT (SLM) 41.9 16.2 16.7
XLM-R frozen (SLM) 51.4 40.8 41.3
XLM-R (SLM) 57.7 47.6 43.2
mT5 (SLM) 47.6 22.2 19.2

Qwen 2.5 Few-shot (LLM) 12.7 13.0 10.9
Qwen 2.5 LoRA (LLM) 15.9 15.1 15.4

Mistral Nemo Few-shot (LLM) 14.8 16.1 15.1
Mistral Nemo LoRA (LLM) 14.6 12.1 12.9

Llama 3.1 Few-shot (LLM) 14.0 13.3 12.9
Llama 3.1 LoRA (LLM) 14.3 11.2 9.6

Table 6: Macro-F1 performance comparison across evaluation subsets for claim+evidence configurations. Bold
values indicate the highest macro-F1 score for each LLM model across the two training methods (Few-shot vs
LoRA). SLMs results included for reference.



Figure 7: Prompt template used for LLMs.

Figure 8: Comparison of macro- and micro F1 scores across LLMs, evaluation subsets, and training methods.



Figure 9: Comparison of average macro- and micro-F1 scores across LLMs for each evaluation subset.
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