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Abstract

Fact verification has emerged as a critical task
in combating misinformation, yet most re-
search remains focused on English-language
applications. This paper presents a comprehen-
sive analysis of multilingual fact verification
capabilities across three state-of-the-art large
language models: Llama 3.1, Qwen 2.5, and
Mistral Nemo. We evaluate these models on
the X-Fact dataset that includes 25 typologi-
cally diverse languages, examining both seen
and unseen languages through test and zero-
shot evaluation scenarios. Our analysis reveals
significant performance disparities based on
script systems, with Latin script languages con-
sistently outperforming others. We identify
systematic cross-lingual instruction following
failures, particularly affecting languages with
non-Latin scripts. Surprisingly, some officially
supported languages such as Indonesian and
Polish achieve better performance than tradi-
tionally high-resource languages like German
and Spanish, challenging conventional assump-
tions about resource availability and model per-
formance. The results highlight critical limita-
tions in current multilingual LLMs for the fact
verification task and provide insights for devel-
oping more inclusive multilingual systems.

1 Introduction

Fact-checking has emerged as a critical defense
against the proliferation of misinformation in the
digital age. While the broader fact-checking pro-
cess involves multiple stages including claim de-
tection and evidence gathering, fact verification,
which is our primary focus, addresses the final cru-
cial step of determining claim truthfulness when
supporting evidence is available (Vykopal et al.,
2024). The rapid spread of misinformation across
digital platforms has made automated fact verifica-
tion systems increasingly essential for maintaining
information reliability (Fung et al., 2022; Aimeur
et al., 2023).

Recent developments in NLP have been signif-
icantly shaped by LLMs and transformer archi-
tectures, which have demonstrated remarkable ca-
pabilities across various tasks (Kotonya and Toni,
2020; Wang et al., 2023). However, the research
landscape remains heavily skewed toward English-
language applications (Guo et al., 2022; Vykopal
et al., 2024; Wang et al., 2024). This linguistic
imbalance creates substantial challenges for global
misinformation detection, as false information fre-
quently crosses language boundaries and impacts
diverse communities worldwide.

Although powerful LLMs have demonstrated im-
pressive performance across various NLP tasks, the
degree to which they work well with particular lan-
guages and specific tasks varies significantly (Bang
et al., 2023; Huang et al., 2023; Ignat et al., 2024).
Fact verification represents a particularly challeng-
ing task requiring nuanced understanding of claims,
contextual reasoning, and the ability to distinguish
between different degrees of truthfulness —capa-
bilities that may not transfer uniformly across lan-
guages (Dmonte et al., 2024). Understanding how
effectively current LLMs address this critical chal-
lenge across different linguistic contexts remains
an essential but understudied question.

Recent multilingual datasets such as X-Fact
(Gupta and Srikumar, 2021), MultiClaim (Piku-
liak et al., 2023), and (Quelle et al., 2025) have
begun to address this gap by providing fact verifica-
tion resources across multiple languages. However,
systematic analysis of how state-of-the-art LLMs
perform across different languages and scripts in
fact verification tasks remains limited. Understand-
ing these performance patterns is crucial for devel-
oping more effective multilingual fact verification
systems and identifying specific challenges that
need to be addressed.

This paper presents a comprehensive analysis of
LLMs performance on multilingual fact verifica-



tion, focusing on language-specific challenges and
patterns. We evaluate state-of-the-art LLMs Llama
3.1 (Dubey et al., 2024), Qwen 2.5 (Yang et al.,
2024), and Mistral Nemo (Mistral AI Team, 2024)
across 25 languages using the X-Fact dataset, em-
ploying both few-shot prompting and fine-tuning
approaches.
Our key contributions are:

* A comprehensive multilingual performance
analysis and taxonomy across 25 languages,
revealing significant disparities based on
script systems with systematic challenges
identified for non-Latin writing systems, pro-
viding important insights for developing more
effective multilingual fact verification sys-
tems.

* A cross-lingual instruction following inves-
tigation identifying specific failure patterns
where models struggle to produce requested
outputs across languages, particularly affect-
ing under-represented languages.

These findings have important implications for
deploying fact verification systems globally and
highlight the need for more inclusive approaches
to multilingual NLP system development.

2 Related Work
2.1 Multilingual Fact Verification

Early multilingual fact verification efforts focused
primarily on dataset creation and basic cross-
lingual transfer methods. The X-Fact dataset
(Gupta and Srikumar, 2021) represents one of
the largest multilingual fact verification resources,
covering 25 languages with claims sourced from
fact-checking websites. Other notable multilin-
gual datasets include FakeCovid (Shahi and Nan-
dini, 2020), which spans 40 languages focusing
on COVID-19 related claims, NewsPolyML (Mo-
htaj et al., 2024) covering over 32K fact-checked
claims in five European languages, and MultiClaim
(Pikuliak et al., 2023) providing 28K claims across
27 languages. However, these datasets vary signifi-
cantly in size, language coverage, and annotation
schemes, making consistent cross-lingual evalua-
tion challenging.

Several studies have explored multilingual fact
verification using traditional transformer models.
Gupta and Srikumar (2021) evaluated mBERT-
based (Devlin et al., 2019) models on X-Fact,

achieving an F1 score of 41.9% on in-domain data
(claims from the same languages and sources as the
training data) but showing significant performance
degradation on out-of-domain (16.2%, claims from
the same languages but different sources) and zero-
shot scenarios (16.7%). The zero-shot subset con-
tained data from languages not present in the train-
ing data, testing the model’s cross-lingual transfer
capabilities, though the authors did not provide
detailed performance breakdowns for individual
languages. Their experiments with English data
revealed that adding training data from other lan-
guages did not necessarily improve performance,
highlighting the complexity of cross-lingual knowl-
edge transfer in fact verification tasks.

Recent work has increasingly focused on LLMs
for multilingual fact verification. Pelrine et al.
(2023) demonstrated that GPT-4 could outperform
prior methods across multiple datasets and lan-
guages, achieving superior classification results
with GPT-4 Score Optimized performing best at
68.1% F1 on English dataset LIAR (Wang, 2017)
and showing strong performance on German data
(57.6% accuracy) even without changing English
prompts. On the NewsPolyML dataset, Mohtaj
et al. (2024) showed that mBERT achieved F1
scores of up to 75.1% across English, German,
French, Spanish, and Italian, with performance
varying significantly by language.

2.2 Cross-lingual Transfer in LLMs for Fact
Verification

Cross-lingual transfer learning has emerged as a
promising approach to address data scarcity in mul-
tilingual fact verification, though its effectiveness
varies significantly across language pairs and task
complexities. Zhang et al. (2024) conducted a
comprehensive analysis of Chinese fact-checking,
demonstrating the limitations of translation-based
methods in Chinese fact-checking. This study
showed that direct translation from Chinese to En-
glish resulted in inaccuracies, particularly with
idiomatic expressions, and that models trained
specifically on Chinese data outperformed both
translation-based and multilingual approaches by
over 10%.

Du et al. (2021) proposed CrossFake, a cross-
lingual fake news detector. The authors applied a
monolingual model (English) cross-lingually via
translation, demonstrating that this strategy can out-
perform generic multilingual encoders for domain-



specific tasks like COVID-19 fake news detection.

Cekinel et al. (2024) conducted a comprehen-
sive evaluation of cross-lingual transfer for Turk-
ish fact-checking, comparing zero-shot and few-
shot prompting with fine-tuning approaches using
LLaMA-2 models (Touvron et al., 2023). Their
experiments revealed that while few-shot learn-
ing provided modest improvements over zero-shot
approaches, fine-tuning on native Turkish data
yielded substantially better results compared to
cross-lingual transfer methods. This finding under-
scores the importance of language-specific train-
ing data even when leveraging powerful multilin-
gual models. The study also explored machine
translation as a bridge for cross-lingual transfer,
finding that translating Turkish claims to English
and applying English-trained models achieved bet-
ter results than the reverse direction. However,
translation-based approaches introduced their own
limitations, particularly in preserving cultural and
contextual nuances essential for accurate fact veri-
fication.

The challenge of cross-lingual fact verification
is further complicated by the need to handle di-
verse writing systems and cultural contexts. Re-
search has consistently shown that model effec-
tiveness is closely tied to language representation
in pre-training data, with high-resource languages
like English and Spanish typically showing better
performance than low-resource languages (Hendy
et al., 2023; Ahuja et al., 2023; Asai et al., 2024).
Script-related challenges have been identified as
a significant factor affecting model performance,
with non-Latin scripts often presenting additional
processing difficulties (Bang et al., 2023).

Despite these advances, several gaps remain in
our understanding of LLMs performance in multi-
lingual fact verification. First, most studies focus
on a limited number of languages or specific lan-
guage pairs, leaving the broader multilingual land-
scape underexplored. Second, systematic analysis
of how script systems and resource levels affect
fact verification performance is lacking. Finally,
the specific challenges faced by LLMs in cross-
lingual instruction following for fact verification
tasks have not been thoroughly investigated. Our
work addresses these gaps by providing a compre-
hensive analysis of LLM performance across 25
languages, examining the interplay between script
systems, resource levels, and models, in the context
of fact verification.

3 Data

We conduct our multilingual fact verification anal-
ysis using the X-Fact dataset (Gupta and Srikumar,
2021), comprising 31,189 claims across 25 lan-
guages from 11 language families. The data con-
sists of claims, accompanying evidence, and meta-
data collected from fact-checking websites, ensur-
ing real-world applicability. The metadata includes
language information, source website, claimant de-
tails, claim dates, review dates, and links to orig-
inal evidence sources. Each claim is classified
into seven veracity categories: true, mostly true,
partly true/misleading, mostly false, false, compli-
cated/hard to categorise, and other.

The dataset is structured into multiple evaluation
subsets designed to test different aspects of cross-
lingual generalization. The training data contains
19,079 claims across 13 languages. The test subset
includes 3,826 claims from the same 13 languages,
enabling evaluation of model performance on fa-
miliar languages. The zero-shot subset comprises
3,381 claims across 12 different languages not seen
during training, testing cross-lingual transfer capa-
bilities to completely unfamiliar languages. While
an out-of-domain evaluation set exists as well, it
falls outside the scope of our research focused on
language-specific analysis.

X-Fact exhibits significant imbalances in terms
of both language and label distribution (see Fig-
ure 1 for detailed information on the training data).
These imbalances extend to the evaluation subsets,
with uneven representation across different types
of languages (see Figure 2). Such imbalances may
affect model calibration and performance, particu-
larly for underrepresented languages and less fre-
quent veracity categories, potentially leading to
biased predictions toward dominant languages and
frequent labels.

To systematically analyze these language-
specific challenges, we categorize the 25 languages
along two key dimensions.

* Script systems: Latin script languages (Azer-
baijani, German, Indonesian, Italian, Pol-
ish, Portuguese, Romanian, Serbian, Span-
ish, Turkish, Albanian, Dutch, French, Nor-
wegian), Arabic script languages (Arabic, Per-
sian), Devanagari script languages (Hindi,
Marathi) and other scripts (Georgian, Tamil,
Bengali, Gujarati, Punjabi, Russian, Sinhala).

* Resource levels: while Joshi et al. (2020)
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Figure 1: X-Fact training data details.
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Figure 2: X-Fact test and zero-shot subsets details. The languages are color-coded based on the script systems they

use ( , Latin, Devanagari, and others).

proposes a six-class categorization based on
the data availability, we simplify this into
a ternary classification for our analysis, dis-
tinguishing between well-represented (Ger-
man, Spanish, French, Arabic), moderately-
represented (Portuguese, Italian, Dutch, Pol-
ish, Turkish, Persian, Hindi, Russian, Ser-
bian), and under-represented languages (In-
donesian, Romanian, Georgian, Tamil, Ben-
gali, Punjabi, Marathi, Albanian, Azerbaijani,
Gujarati, Norwegian, Sinhala).

4 Experimental Setting

We evaluate three state-of-the-art multilingual
LLMs across 25 languages to analyze their fact
verification capabilities across diverse languages
and scripts. We focus on large generative decoder-
only models as they are expected to excel at rea-
soning tasks and evidence assessment, which are
crucial components of fact verification. We se-
lected three instruction-tuned LLMs based on their
parameter sizes and language coverage: Llama 3.1
(8B) (Dubey et al., 2024) officially supports eight

languages: English, German, French, Italian, Por-
tuguese, Hindi, Spanish, and Thai. Qwen 2.5 (7B)
(Yang et al., 2024) offers the broadest coverage
with 29 languages, including strong representation
of Asian languages (refer to Appendix A for more
details on language coverage). Mistral Nemo (12B)
(Mistral Al Team, 2024) is the largest model in
our selection, supporting 11 languages: English,
French, German, Spanish, Italian, Portuguese, Chi-
nese, Japanese, Korean, Arabic, and Hindi.

4.1 Experimental Approach

We evaluate each model under two configurations:
few-shot prompting with claim-evidence pairs and
LoRA fine-tuning (Hu et al., 2022) with claim-
evidence pairs. For few-shot prompting, we de-
veloped a structured prompt providing clear task
instructions in English for the seven-way classifi-
cation, descriptions of each veracity category, and
seven carefully selected examples representing dif-
ferent languages and veracity categories (refer to
Appendix F for the prompt template details). The
fine-tuning experiments employed LoRA targeting



all attention and feed-forward components. Train-
ing data was selected randomly and balanced across
all languages and veracity labels to prevent bias to-
ward overrepresented categories. Refer to Appen-
dices B and C for further implementation details.

4.2 Evaluation Protocol

We evaluate model performance using both macro-
F1 and micro-F1 scores. Performance analysis
is conducted at multiple levels: language-specific
analysis for each of the 25 languages, script sys-
tem comparison (Latin, Arabic, Devanagari, and
other scripts), and resource level analysis (well-,
moderately-, and under-represented languages).

For the zero-shot subset, we analyze cross-
lingual transfer effectiveness by examining perfor-
mance on languages absent from training data. All
models were instructed to provide veracity labels
in English, with robust output processing imple-
mented to handle diverse response formats through
text normalization and label mapping procedures
(refer to Appendix D for further details).

5 Results

Our results reveal significant performance dispari-
ties across languages, script systems, and resource
levels (see Figure 3). Overall performance remains
relatively low across all models and languages,
with the highest-performing language-model com-
bination (Polish with Qwen 2.5 fine-tuning) achiev-
ing 0.31 macro-F1. Most languages perform sub-
stantially below this level, indicating the challeng-
ing nature of multilingual fine-grained fact verifi-
cation for current LLMs.

Qwen 2.5 achieves the highest scores across
most languages, consistently outperforming Mis-
tral Nemo and Llama 3.1 across different language
categories and script systems. Mistral Nemo shows
competitive results for some European languages
but demonstrates difficulties with non-European
languages and non-Latin scripts. Despite hav-
ing the largest parameter count (12B), it does
not consistently outperform the smaller Qwen 2.5
model. Llama 3.1 exhibits variable performance
patterns with notable strengths in certain well-
represented languages but significant weaknesses
in cross-lingual transfer scenarios.

Fine-tuning consistently outperforms few-shot
prompting across most languages, with particu-
larly pronounced performance improvements in
top-performing settings such as Polish and Indone-

sian with Qwen 2.5, and Norwegian in the zero-
shot evaluation, where fine-tuning provides sub-
stantial gains over prompting approaches.

5.1 Performance on Test Subset

Polish and Indonesian demonstrate the strongest
performance with Qwen 2.5 achieving around 0.31
macro-F1 in the fine-tuning configuration. Por-
tuguese and Italian achieve moderate performance
with scores around 0.18-0.20 macro-F1. Spanish
and German show similar moderate performance
across different models. Arabic and Georgian con-
sistently show the poorest performance, with both
languages scoring below 0.13 macro-F1 across all
models and configurations.

5.2 Performance on Zero-shot Subset

Norwegian achieves exceptional performance with
Qwen 2.5 reaching 0.34 macro-F1 in the fine-
tuning configuration, surpassing most seen lan-
guages from the test subset. French and Dutch
demonstrate relatively strong cross-lingual trans-
fer, while Russian shows moderate transfer per-
formance across most scenarios. South Asian lan-
guages show poor zero-shot transfer performance.
Bengali, Gujarati, Punjabi, and Marathi consis-
tently score below 0.13 macro-F1 across all mod-
els.

5.3 Resource Level Performance

Resource level does not show a clear pattern. Well-
represented languages demonstrate mixed results
across both evaluation scenarios. German achieves
performance around 0.12-0.25 macro-F1 in the
test subset across different LLMs and settings,
while Spanish shows similar performance. French
demonstrates relatively strong zero-shot transfer
performance around 0.19 macro-F1.
Moderately-represented languages exhibit
highly variable performance patterns. Polish
achieves exceptional performance as one of the
top performers despite its resource status. Many
languages from this group, including Italian and
Hindi, show moderate performance.
Under-represented languages show the most in-
consistent relationship between resource availabil-
ity and performance. Indonesian achieves one of
the best scores on the test subset, contradicting
expectations based on resource limitations. Con-
versely, Georgian and Romanian show performance
more aligned with traditional resource constraints.
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5.4 Script System Performance

As shown in Figure 5, Latin script languages
demonstrate the highest median performance
across Llama 3.1 and Qwen 2.5 models.

Arabic script languages show intermediate per-
formance with more consistent results across mod-
els. All three models achieve similar median per-
formance for Arabic script languages, with Mistral
Nemo showing slightly higher variance in this cat-
egory.

Devanagari script languages demonstrate the
most constrained performance across all models,
with consistently low median scores and minimal
variance. This pattern indicates systematic chal-
lenges in processing languages using the Devana-
gari writing system regardless of the model archi-
tecture.

The Other script category shows the highest per-
formance variance, particularly for Qwen 2.5 and
Mistral Nemo. While some languages in this cat-
egory achieve relatively high performance, oth-
ers perform poorly, resulting in wide interquartile
ranges and numerous outliers. For the language-
specific performance, please refer to Appendix E.

5.5 Cross-lingual Instruction Following

Analysis of fine-tuned model outputs reveals sys-
tematic failures in cross-lingual instruction follow-
ing, with models frequently unable to produce valid
English labels as instructed.

These failures exhibit two major patterns: com-
plete output failure (empty responses) and language
code-switching (responding in the same or differ-
ent from the input language rather than English)

(see Figure 4).
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Figure 4: Instruction-following failure counts across
three LLMs on the test and zero-shot subsets.

Qwen 2.5 demonstrates the most robust
instruction-following capabilities. In the test sub-
set, it produced only 2 invalid examples (0.05% of
the test dataset) due to same-language responses.
In the zero-shot subset, it had 13 invalid examples
(0.38%), including 3 outputs in unintended lan-
guages and 10 same-language responses. Among
the same-language failures, 6 occurred in Gujarati.

Llama 3.1 shows moderate instruction-following
difficulties. In the test subset, 224 instances (5.85%
of the test dataset) failed to produce valid labels:
9 complete failures (4 Georgian, 5 Tamil) and 215
cases of responding in the input language (136
Georgian, 79 Tamil). The zero-shot subset reveals
more severe challenges, with 225 failures (6.66%
of the zero-shot dataset), including 153 empty out-
puts (111 Bengali, 19 Gujarati, 22 Punjabi) and 72



same-language responses (65 Bengali, 2 Gujarati,
5 Punjabi).

Mistral Nemo exhibits the most significant chal-
lenges across both subsets. In the test subset, 767
instances (20.05% of the test dataset) failed to pro-
duce valid labels: 198 responses in different lan-
guages (161 Georgian) and 569 same-language re-
sponses (174 Arabic, 159 Tamil, 90 Hindi). In
the zero-shot subset, 681 failures (20.14% of the
zero-shot dataset) occurred, including 24 different-
language responses and 657 same-language re-
sponses (325 Bengali, 93 Persian, 78 Punjabi).

6 Discussion

Our comprehensive evaluation of three state-of-the-
art multilingual LLMs on fact verification across 25
languages reveals several insights about the current
state of multilingual NLP capabilities and high-
lights challenges in cross-lingual transfer for com-
plex reasoning tasks.

6.1 Script System as a Performance Predictor

The most striking finding from our analysis is the
significant impact of script systems on model per-
formance. Languages using Latin scripts consis-
tently demonstrate superior performance across all
three models, with median macro-F1 scores gener-
ally higher than other script categories. This pattern
suggests that current LLMs, despite their multi-
lingual training, maintain inherent biases toward
Latin-based writing systems that dominate their
training corpora.

The systematic challenges faced by models when
processing non-Latin scripts extend beyond simple
character recognition issues. Our analysis reveals
that Devanagari script languages (Hindi, Marathi)
show the most constrained performance with mini-
mal variance across models. Similarly, languages
in the Other scripts category exhibit high perfor-
mance variance, suggesting that some scripts may
be better represented in training data than others,
leading to inconsistent cross-lingual transfer.

6.2 Cross-lingual Transfer Patterns

Our zero-shot evaluation results reveal some in-
teresting patterns in cross-lingual transfer. Nor-
wegian’s exceptional performance (0.34 macro-F1
with Qwen 2.5) in the zero-shot setting, surpassing
many languages seen during training, suggests that
certain linguistic features may facilitate better trans-
fer than others. This finding indicates that other

factors may be more important for fact verification
transfer than simple training data availability.

The strong performance of Germanic languages
(Norwegian, Dutch) in zero-shot scenarios, com-
bined with the relatively good transfer to French,
demonstrates clear patterns in cross-lingual transfer
effectiveness. However, the poor performance of
South Asian languages (Bengali, Gujarati, Punjabi,
Marathi) in zero-shot scenarios highlights the com-
plex interplay between script systems and resource
levels.

Particularly noteworthy is the dramatic perfor-
mance degradation for languages absent from train-
ing data. While Norwegian achieves remarkable
zero-shot performance, most unseen languages
struggle significantly, with Bengali, Gujarati, and
Punjabi consistently scoring below 0.13 macro-F1.
This contrast suggests that successful cross-lingual
transfer in fact verification depends on complex
factors that are not uniformly distributed across
different languages.

6.3 Resource Levels and Official Language
Support

The exceptional performance of Indonesian (under-
represented according to our classification) and
Polish (moderately-represented) compared to well-
represented languages like German and Spanish
suggests that factors beyond data availability drive
multilingual fact verification capabilities. Official
language support by model developers (Indonesian
and Polish for Qwen 2.5) provides a more reliable
predictor of success.

The inconsistent relationship between resource
availability and performance suggests that data
quality may be more critical than quantity for en-
abling knowledge transfer. This assumption is sup-
ported by Norwegian’s exceptional zero-shot per-
formance (0.34 macro-F1), which surpasses most
training languages despite being absent from train-
ing data. Norwegian’s success likely stems from
cross-lingual transfer from linguistically similar
Germanic languages (German, Dutch) with sub-
stantial reasoning-focused training data.

6.4 Cross-lingual Instruction Following
Failures

A particularly interesting finding is the system-
atic failure of models to follow cross-lingual in-
structions, with models frequently unable to pro-
duce requested English labels when processing non-
English inputs. These failures become obvious in
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two primary patterns: complete output failure and
language code-switching. The concentration of
these failures in specific languages rather than uni-
form distribution across all unfamiliar languages
indicates systematic model limitations rather than
random processing errors. Bengali’s prominence
in instruction following failures across multiple
models (325 same-language responses with Mistral
Nemo, 111 empty outputs with Llama 3.1) sug-
gests that certain languages present fundamental
challenges to current model architectures.

7 Limitations and Future Directions

Our analysis focuses on a specific fact verification
dataset and task formulation, which may limit the
generalizability of our findings to other multilin-
gual reasoning tasks. The X-Fact dataset’s inher-
ent imbalances in language and label distribution
may influence our observed performance patterns,
though these imbalances reflect real-world multi-
lingual data challenges.

Based on our findings, future work should
explore more sophisticated approaches to cross-
lingual transfer in fact verification, including tar-
geted training strategies that explicitly address
script system biases and instruction following chal-
lenges. Additionally, investigation of the factors
that enable successful cross-lingual transfer could
inform more proper approaches to multilingual
model architecture design.

The development of more balanced multilingual
fact verification datasets, particularly for under-
represented languages and scripts, would enable
more comprehensive evaluation of model capabili-

ties and limitations. Such datasets could also sup-
port the development of targeted training strategies
that address the systematic biases we have identi-
fied in current approaches.

8 Conclusion

This paper presents a comprehensive analysis of
multilingual fact verification capabilities across 25
languages using three state-of-the-art LLMs. Our
evaluation on the X-Fact dataset reveals signifi-
cant performance disparities based on script sys-
tems, with Latin script languages consistently out-
performing others across all models.

Key findings include the identification of system-
atic cross-lingual instruction following failures and
the surprising result that some officially supported
languages (such as Indonesian and Polish) achieve
better performance than traditionally high-resource
languages like German and Spanish, challenging
conventional assumptions about the relationship
between resource availability and model perfor-
mance. The dramatic variation in cross-lingual
transfer effectiveness, exemplified by Norwegian’s
strong zero-shot performance against poor results
for South Asian languages, highlights the complex
factors affecting multilingual capabilities.

These findings underscore critical limitations in
current multilingual LL.Ms for complex reasoning
tasks and emphasize the need for more inclusive
approaches to multilingual model development. Fu-
ture work should focus on addressing script system
biases and developing more fair fact verification
systems that serve diverse communities effectively.
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A LLMs’ Official Language Support

In Table 1 we provide the LLM’s official language
coverage.

Support Level | Languages

All 3 Models EN, DE, FR, IT, PT, ES, HI

Qwen + Mistral | AR, ZH, JA, KO

Llama only TH

Qwen only NL, RU, PL, FA, TR, BN, ID, CZ, HE,
UR, VI, MS, LO, MY, CEB, KM, TL

Table 1: Language support distribution across models.
X-Fact dataset languages are highlighted in blue. Total
coverage: Llama 3.1 (8 languages), Qwen 2.5 (29 lan-
guages), Mistral Nemo (11 languages).

B Balanced Training Data Creation

Our experiments employ a balanced training ap-
proach to ensure fair representation across both
languages and veracity labels. The balancing pro-
cess creates a training set with equal representation
of labels within each language.

The balancing algorithm operates through the
following steps:

1. Data Organization: Training examples are
organized by language and then by veracity
label within each language.

2. Instance Allocation: The total number of
training instances is divided equally among
available languages.

3. Label Balancing Within Languages: For
each language, the algorithm ensures represen-
tation of all available veracity labels through
a two-phase approach:

* Phase 1: Atleast one example is selected
from each available label category within
the language

* Phase 2: The remaining instances are
distributed cyclically across labels that
still have available examples

4. Selection Process: Examples are randomly
selected from each label group to prevent sys-
tematic bias, with selected examples removed
from the pool to avoid duplication.

The balanced dataset is designed to prevent
language or label clustering effects during train-
ing. Distribution statistics are monitored to ensure
proper balancing across both dimensions. The algo-
rithm handles cases where certain languages have

fewer examples than others or missing label cate-
gories.

C LLMs Implementation Details

All experiments were conducted using the Unsloth
library for efficient implementation and optimiza-
tion of fine-tuning and inference processes. Models
were implemented with 4-bit quantization to enable
experimentation on consumer GPUs while main-
taining performance.

For LoRA fine-tuning, we employed the follow-
ing configuration: rank of 16 and adapter alpha of
32, targeting both attention components (query, key,
value, and output projections) and feed-forward
layers (gate projections and up/down projections).
Through systematic experimentation, we found that
lower values (r =2, 4, 8 and alpha = 8, 16) were less
effective, while increasing parameters beyond our
chosen values provided minimal performance im-
provements while substantially increasing memory
requirements.

Temperature settings for inference were set be-
tween 0.3 and 0.5 to provide the optimal balance be-
tween confident predictions and appropriate uncer-
tainty handling. Lower temperatures led to overly
deterministic outputs that failed to capture nuanced
veracity judgments, while higher temperatures re-
sulted in inconsistent classifications.

D Text Processing and Label Extraction
Methodology

D.1 Text Normalization Procedures

The text normalization process for model outputs
consisted of several sequential steps to ensure con-
sistent label extraction across different response
formats. First, all model outputs were converted
to lowercase to enable case-insensitive matching.
Second, text following specific markers was ex-
tracted using a hierarchical approach, prioritizing
text following “label:” markers, with text following
“assistant” markers used as a fallback when primary
markers were absent.

D.2 Label Mapping Procedures

The label mapping system employed a hierarchical
matching approach to handle variations in model
outputs while maintaining consistency with the
seven-category classification scheme. Seven la-
bels were defined with associated variant forms:
”complicated/hard to categorise” matched variants
including “complicated” and "hard to categorise”;



”partly true/misleading” matched variants includ-
ing partly true” and “misleading”; "mostly false”,
“mostly true”, “false”, “true”, and “other” each
matched their respective single variants.

The label extraction algorithm processed nor-
malized text through sequential matching, where
for each label category, the algorithm checked for
the presence of any associated variant in the pro-
cessed text. Upon finding a match, the correspond-
ing label was assigned and processing terminated.
When no valid label variants were detected, the out-
put was classified as na (not available), indicating

instruction-following failure.

E LLMs’ Performance on the Other script
languages

We provide comparison of macro F1 scores across
LLM:s in few-shot prompting settings grouped by
languages using the other script in Figure 6.

020

015 oas M - B N

010 .10 an 010 oo
&&"\ <« ﬁ% & & & 5

Figure 6: Comparison of Macro F1 scores across Mistral
Nemo, Llama 3.1, and Qwen 2.5 models using few-shot
prompting, grouped by languages using the other script.

F Prompt Template

In Figures 7-8 we provide a partial prompt template
used to instruct LLMs.

ﬁur task is to evaluate the given \

claim and evidence, then provide a
verdict using one of the following
labels: false (completely incorrect),
true (completely correct), mostly true
(mainly correct with minor issues),
mostly false (mainly incorrect with
minor true elements), partly
true/misleading (mix of true and false
elements), complicated/hard to
categorise (cannot be verified with

given evidence) or other (doesn't fit
other categories). /

Figure 7: Prompt template used in the experiments (Part

1).

: Claim: In Ungheria le tasse sulle
imprese sono al g per cento e sulle
persone fisiche al 15 per cento, e
lUngheria cresce del 5 per
cento\nEvidence: LUngheria, insieme
ad altri paesi della Ue (Lussemburgo,
Belgio, Olanda, ... Puntando su una
tassazione dei redditi di forte
vantaggio (9% per le societa e 15% per
le ... Per bilanciare la bassa
imposizione fiscale su imprese e
persone fisiche, .. Llva &
generalmente al 27% anche se
esistono aliquote al 18% e al 5%.

A: Label: true

Q: Claim: Das Coronavirus enthalt
HIV-Anteile, wurde also im Labor
erschaffen.\nEvidence: Apr 26, 2020
— Paris - Es klingt wie eine wilde
Verschworungstheorie - und doch hat
es der franzdsische Virologe Luc
Montagnier bei einer Fernsehdisk. Das
Coronavirus enthalt HIV-Anteile,
wurde also im Labor erschaffen. Feb
6, 2020 — Im Internet kursieren wilde
Theorien Uber den Ursprung des
Virus. Dazu tragen auch fragwurdige
,Forscher” bei. Schnelle Studien
enthalten oft ...

A: Label: false

Q: Claim: “La velocidad promedio de
Internet en 2015 era apenas de 4.5
megabits por segundo, hoy la
triplicamos"\nEvidence: Mar 5, 2019
— Macri: “La velocidad promedio de
Internet en 2015 era apenas de 4.5
megabits por segundo, hoy la
triplicamos”. ;Es asi? Leé el chequeo
aca. ..

A: Label: mostly true

Q: Claim: ,Trenutno se radi na popisu
drzavne imovine.\nEvidence: Drzavna
imovina u RH klasificira se, evidentira i
vrednuje na neodgovarajuci nacin. *
Glavna knjiga Drzavne riznice ne ...
prosinca svake godine provesti
sveobuhvatni popis drzavne imovine
kojom .. rad na izradi aplikacijskog
rjeSenja za drugu fazu ISUDIO je u
tijeku. (dovrsenje se ... trenutno
vazecem Zakonu):.. Poseban ...

: Label: mostly false

Figure 8: Prompt template used in the experiments (Part
2).



