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Abstract: Applying fertilizers and pesticides near bodies of water poses significant environmental
risks, primarily due to the potential for chemical runoff to contaminate aquatic ecosystems. To
avoid this, regulations establish prohibition zones based on environmental and application-specific
parameters, such as terrain slope, wind speed, precipitation, and the type and composition of substances
used. This paper presents an autonomous robotic system that was developed to comply with these
regulations while maximizing usable agricultural land. The robot scans its environment with sensors,
including LiDAR, to measure features such as the distance to nearby bodies of water and the slope
of the ground underneath. The InteGraal reasoning framework uses samples of regulations encoded
in machine-readable RDF formats (using PAM vocabularies) and sensor observations modeled by
the Semantic Sensor Network Ontology (SSNO) to make real-time decisions about where to stop or
resume spraying. We extend existing vocabularies to include fertilizer-specific regulations, ensuring a
comprehensive, semantically rich decision-support system for autonomous farms.
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1 Introduction

Spreading plant protection agents, such as pesticides and fertilizers, is challenging. It
becomes even more complicated when spraying next to water bodies, such as rivers, streams,
or ponds, because the chemicals can easily be washed away by rain or irrigation, polluting
the water. That’s why states and agricultural institutions have set up many regulations to
avoid such scenarios. These regulations take many factors into consideration to establish a
distance threshold from which a prohibited zone is formed toward the water body. These
factors include the slope of the ground, wind speed, rainfall, and the order of the water body
in terms of its size and streamflow. The regulations also depend on what is being spread
(fertilizer or a plant protection agent) and vary depending on the chemical composition.
Our paper addresses the scenario of an autonomous robot dedicated to applying fertilizer
to fields bordering water bodies. The robot must scan the environment to measure related
parameters using different sensors. Then, it must reason about the measurements and the
rules to decide when to stop and resume spraying.
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2 Regulations on Spraying Next to Water Body

The regulations define the distance from a body of water where it is not allowed to spread
fertilizers or plant protection agents. This helps utilize as much of the land as possible
for growing crops while ensuring that the boundaries where it might harm or pollute the
water are not exceeded. There is no general distance that applies everywhere; it depends
on several parameters. The PAM [Es21] [Sc16] service, provided by the project of the
same name, offers regulations related to applying plant protection agents near water bodies
in machine-readable format using controlled RDF vocabularies, based on the publicly
available database for approved plant protection products in Germany [BV]. This service
and its vocabularies formed the basis for our application. We expanded those vocabularies to
model the regulations related to spraying fertilizers. This was necessary due to the different
structure of fertilizer regulations.

3 Measurement of the Environment

In order to comply with regulations on spraying fertilizers or plant protection agents near
water bodies, environmental measurements are needed to determine whether the spraying
machine can operate. This requires attaching many sensors and measuring devices, and
feeding the data to a decision-making machine along with the regulations. To this end, we
modeled the output of a robot and a drone in a simulated environment of a field bordering a
stream of water. The output is distance from the robot to the water body, and the slope of the
ground underneath, both calculated from the LiDAR sensors in the simulated environment.

distance to closest river sample

River slope reference distance
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Fig. 1: Estimation of slopes next to a water body

3.1 Measured Features

While advancing on the field, the drone and robot scan the environment using LiDAR sensors
with GPS localization and generate an implicit map using a Neural Distance Field (NDF)
[Pa24]. An implicit map is a functional definition of the map surface, which can be queried
for encoded features like the closest distance to the surface, color or semantics. For this use
case it is beneficial, as it naturally extrapolates to unobserved data.



After generating the NDF, the reference to the river is estimated by querying the points with
the lowest z-value. Since most terrain is above the water level, it can be assumed that the
water has the lowest reference points in the spatial map. Once the reference to the river is
known, the relevant environmental measurements, namely the distance and slope to the
river are estimated as visualized in Fig. 1. The distance is simply the horizontal distance
to the closest reference point on the river. As the localization of the robot can experience
inaccuracies, this distance can be modeled statistically with mean and standard deviation.

For the estimation of the slope, it first needs to be known, if the river crest is clearly
perceivable, like on the right river bank in Fig. 1, or not perceivable, like on the left river
bank. In case of the former, the distance has to be computed to the upper bound of the river
bank, while in the latter case the distance is computed to the mean water level. This can
be efficiently detected in the spatial map using a line-fitting algorithm like RANSAC or
least-squares. The incline of the slope is then derived from the surface elevation around the
reference point, which is n metres away from the river in direction of the robot. In the next
step, the computed distance and slope are passed to the data model for the measurements.

The measured features of distance and slope are modeled using the Semantic Sensor Network
Ontology (SSNO) vocabulary. This ontology describes sensors, the observations they make,
the procedures involved, the features of interest under investigation, the samples used,
the observed properties, and the actuators. The core ontology of SSNO is called SOSA
(Sensor, Observation, Sample, and Actuator) for its elementary classes and properties
[W3b]. Those elementary elements are depicted in Fig. 2. We also used QUDT vocabularies
to model the values of the parameters, which include the proper units, as seen in Fig. 3.
QUDT, which stands for (Quantities, Units, Dimensions, and Type) is an ontology and data
model developed to represent and manage physical quantities and their associated units in a
structured, machine-readable way—particularly for use on the Semantic Web and in Linked
Data applications [W3a].

Fig. 2: Overview of the SOSA classes and properties from its official website



ex:waterbody a sosa:FeatureOfInterest ; rdfs:label "waterbody" .
ex:distance a sosa:ObservableProperty ; rdfs:label "distance" .
ex:robot a sosa:Platform ;

rdfs:label "Robot" ;

sosa:hosts ex:lidar .

ex:lidar a sosa:Sensor ;
rdfs:label "lidar" ;

sosa:observes ex:distance .

ex:1704895867941880882_waterbody_distance

sosa:hasFeatureOfInterest ex:waterbody ;

sosa:hasResult [ a qudt:Quantity ;
qudt:unit unit:M ;

qudt:value 2.570299e+01 ] ;

sosa:madeBySensor ex:lidar ;

sosa:observedProperty ex:distance ;

sosa:resultTime "2024-01-10 14:11:07.941881"^^xsd:dateTimeStamp .

Fig. 3: Modeling distance to water body measurement in our application

4 Decision Making and Application Structure

The InteGraal reasoning framework [Ba23] will be responsible for making real-time
decisions about whether or not a violation of regulations is occurring, and thus whether to
continue or stop spraying. It can build a knowledge base from different datasources, and
allows querying it while taking rule reasoning into account. To do so, it receives the modeled
regulations a priori, and the environmental measurements in real time. The regulations are
formalized as logic rules and stored in a deductive knowledge graph, while real-time sensor
observations (such as slope and distance) are continuously published and ingested using a
publisher-subscriber architecture. The model compares the current measurements with the
related rules, made out from the modeled regulations, and makes a decision in real time,
using forward-chaining rule evaluation over live data. This approach ensures explainability,
as decisions can be traced back to specific rules and measurements within the knowledge
graph. The scenario involves a robot moving on a field located next to a water body. The
robot advances on the field while scanning the surroundings with LiDAR sensors. The robot
performs a computation to calculate two important parameters: the distance of the robot
from the border of the water body and the slope of the ground where the robot is currently
standing. These values are measured many times per second, modeled using SOSA and
QUDT vocabularies, timestamped, and published to the reasoner, which listens to the same
topic using a subscriber. The reasoner applies the regulations’ rules and determines whether
spreading chemicals is permitted at this timestamp.



Fig. 4: Structure of the application. Both regulations and facts are being modeled in rdf and fed to the
reasoner, but the top is in advance, the lower in a streaming way using publisher-subscriber.

5 Current Status and Next Steps

In the ROS2 framework, an open-source platform for developing robot applications, we
created a simulation file, rosbag, that records a drone flying alongside a river and a
robot advancing toward the river. The file plays within a Docker container containing our
application and publishes the measurements in real time to the reasoner, which listens to
the file and performs its task by making decisions while considering the regulations and
measurements (distance and slope). Currently, we are working on incorporating measurement
uncertainties into our simulation, modeling its output in a standardized way, and defining
rules in the reasoner that address the uncertainties. The recorded simulation publishes the
same output as a real robot and drone operation, meaning that testing the application with
real data is possible. For the same reason, the reasoner and decision-making calculations
can also occur on a remote device or in the cloud. This reduces the amount of resources
needed by the robot to make a decision but makes the system less resilient to connection
drops. We also believe that system would work with the available tractors, who be made
capable of sending the measurements of slope and distance in the standardized model way.

6 Evaluation

To assess the accuracy and reliability of our system, we propose a two-stage evaluation
process. First, we evaluate the perception layer by comparing the estimated environmental
features—specifically the slope and the distance to the water body—with ground truth
values available from the simulation environment. Since the terrain and water body were
artificially created, we have precise knowledge of their geometry, allowing us to quantify the
error in LiDAR-based estimation using standard metrics such as mean absolute error (MAE)
or root mean square error (RMSE). Second, we evaluate the decision-making component by
comparing the system’s spray/no-spray decisions with an expected decision derived from
applying the regulation rules directly to the known ground truth measurements. This allows
us to isolate errors introduced by either measurement inaccuracies or reasoning mismatches
and determine the overall decision accuracy of the system under controlled, repeatable
conditions.



7 Conclusion

In our application, we demonstrated how to autonomously spray plant protection agents or
fertilizers next to a water body in a simulated environment. We demonstrated how to integrate
environmental measurements and regulatory rules into the RDF world using well-known
ontologies. We use publicly available open data that contains the rules and restrictions for
applying such substances to fields next to water bodies. Since these regulations vary by
state, we attempted to expand the available vocabulary to model French regulations, as an
example. The application profits form the interoperability of the standard representation
of the measurements, which ease its use with any current system who sends the data is
this format. Spraying near water bodies is an example of applying open data, controlled
vocabularies, and reasoning to agriculture. We believe our approach could be applied to
similar use cases where regulations should also be considered when performing actions in
the field. For example, protection of groundwater from contamination.
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