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Abstract

The dataset developed within the PlasticObs+ project aims to facilitate a multi-resolution
approach for detecting and quantifying anthropogenic litter through areal images. Tradi-
tional detection methods often suffer from narrow, use-case-specific limitations, reducing
their transferability. To address this, an image dataset was created featuring various spa-
tial and spectral resolutions. The highest spatial resolution images (ground sampling
distance = 0.2 cm) were used to generate a labeled dataset, which was georeferenced for
mapping onto coarser-resolution images.

Dataset: https://doi.org/10.5281/zenodo.14844219.

Dataset License: CC-BY

Keywords: anthropogenic litter; plastic litter pollution; litter object detection; dataset
annotation; multi-resolution; multi-sensor; multi-class; multispectral data; remote sensing

1. Summary
The dataset presented here was obtained within the project PlasticObs+. Its main

focus lies in the efficient combination of overview scans (with a lower spatial resolution
but a larger field of view) and a high-resolution, multispectral camera, employing artificial
intelligence techniques for the automated detection and precise identification of litter objects
in marine environments [1]. Therefore, airborne data collection was performed using
two distinct platforms: a fixed-wing research aircraft for large-scale, moderate-resolution
surveys and unmanned quadrocopter systems (hereafter referred to as “drone”) for high-
resolution, site-specific mapping. This approach leveraged the strengths of each platform,
with the aircraft enabling rapid coverage of extensive areas and the drone providing
detailed imagery of selected sites.

To obtain reliable data to test the multi-platform and multi-sensor approach, a field
campaign was conducted from 25 to 28 June 2024 on an open-air festival camping area in
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Northern Germany, directly after a festival took place. Due to the limited flying range of
the research airplane and the insufficient amount of waste in the nearby areas of Northern
Germany, sufficient samples of litter objects could be gathered at the festival location. To
ensure data availability, several flights were performed with sensor-equipped drones and
an airplane, collecting RGB (red–green–blue) and multispectral data for a total of four
measurement days (see Tables 1 and 2).

Table 1. A summary of the metadata for the drone-based dataset.

Name Resolution Dates Time (UTC) Georeferenced Type

Label Dataset RGB
High-Resolution

(660 images)

0.2 cm 1 25.06.2024 10:35–13:29 Yes

PNG
0.2 cm 1 26.06.2024 08:26–13:39 Yes

0.2 cm 1 27.06.2024 06:37–08:45 Yes

0.2 cm 1 28.06.2024 09:44–14:09 No

Label Dataset
Multispectral

(blue, green, red, red
edge, near-infrared)

2.8 cm 25.06.2024 11:45–13:29 Yes

TIF

4.7 cm 25.06.2024 12:45–13:05 Yes

0.89 cm 26.06.2024 10:16–11:34 Yes

2.8 cm 26.06.2024 11:36–11:47 Yes

4.7 cm 1 26.06.2024 11:36–11:47 Yes

0.89 cm 27.06.2024 07:28–09:15 Yes

2.8 cm 27.06.2024 08:15–08:26 Yes

4.7 cm 27.06.2024 08:35–08:43 Yes

Orthomosaics

2.74 cm 25.06.2024 11:45–13:29 Yes

TIF
2.79 cm 26.06.2024 11:36–11:47 Yes

2.80 cm 27.06.2024 08:15–08:26 Yes

2.82 cm 28.06.2024 08:09–08:15 Yes
1 Resampled using bilinear interpolation.

Table 2. Airplane-based data.

Name Resolution Dates Georeferenced Type

20240625_001_HRVIS_162
- 25.06.2024 No PNG

15.2 cm 25.06.2024 Yes TIF

20240626_002_HRVIS_119 - 26.06.2024 No PNG

20240628_003_HRVIS_45 - 28.06.2024 No PNG

The structure of this paper is divided into the data description and the methodology
that was used for preprocessing the data. The data description explains the ground truth,
drone, and airplane data while addressing other available data sources. The methodology
integrates these datasets, and the processing steps involved mapping and analyzing litter
distribution across four locations over four days.

2. Data Description
Data taken by drone were separated into label datasets and the orthomosaics. The

label dataset as georeferenced based on the orthomosaics to ensure a correct overlay for the
scaling approaches. Due to the size constraint of the online storage, the highest resolution
for the drone data was set to 0.2 cm. Raw data can be provided upon request.
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2.1. Drone Data

Using sensor-equipped drones, four different resolutions were collected from four
sampling sites, as shown in Figure 1. A set of high-resolution images was acquired by
flying a DJI Mavic 2 Enterprise Advanced drone [2] at approximately 4 m above ground
level over individual 2 × 2 m sampling plots (see Figure 2). The integrated camera system
was used to capture high-resolution RGB images. The only exception to this was on 27 June
2024, when a drone of type DJI Matrice 210 V2 [3], equipped with the DJI XT2 camera
system [4], was used to acquire high-resolution images. These images were resampled to
a unified ground sampling distance of 0.2 cm to label the objects with a set of classes, as
defined in Table A1. DJI Matrice 210 V2, equipped with the multispectral MicaSense Altum
V04 camera system [5], was utilized for data acquisition at three distinct altitudes (20 m,
60 m, and 100 m) according to the specifications outlined in Section 3.1, resulting in the
normalized spatial resolutions presented in Table 1.

 

Figure 1. An overview map of the sampling areas during the field campaign (Map projection: UTM
32N). The high-resolution images captured are displayed as points, color-coded according to the date
of capture. Background source: ATKIS-DOP [6].

  

(a) (b) 

Figure 2. Example of annotation dataset with high-resolution RGB images: (a) full PNG image,
as georeferenced data, cropped in position of reference system UTM 32N; (b) detailed view of
labeled data.
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On 28 June 2024, the data acquisition method had to be changed, and no ground control
points (GCPs) were taken for the individual sampling plots. As a result, georeferencing the
high-resolution dataset was not possible for this date.

2.2. Airplane Data

The aerial data acquisition procedure was conducted using the fixed-wing research
aircraft “Jade One”, a Diamond HK36-TTC ECO motor glider, operated by the Jade Uni-
versity of Applied Sciences. This specialized platform is designed for scientific missions
and features two certified underwing pods, which can be outfitted with scientific equip-
ment. For the measurements presented in this study, the airplane was equipped with a
VIS Line Scanner, a sensor developed by Optimare Systems GmbH, modified to suit the
needs of the PlasticObs+ project [7]. It is a single-line RGB sensor with a resolution of
4096 px and an acquisition rate of up to 500 Hz. The field of view of the VIS Line Scanner is
94 degrees, yielding a ground resolution of up to 15 cm at a 1000 ft airplane altitude. The
obtained lines are color-corrected, timestamped, and corrected for the roll movement of
the airplane by utilizing the location and orientation information obtained with an IMU
(Inertial Measurement Unit).

On 25 June 2024, stacked VIS Line Scanner imagery was successfully georeferenced
using a third-degree polynomial transformation based on 39 GCPs. This approach resulted
in a mean error of 18.77 px in the georeferenced raster outputs. In contrast, imagery
acquired on other days exhibited pronounced roll movements, attributed to the elasticity
of the airplane wings, which led to substantial image distortion. While georeferencing
these datasets was theoretically possible, the resulting spatial accuracy was found to be
insufficient for reliable analysis, and, thus, georeferenced products were not generated for
those dates. A summary of the airplane datasets can be seen in Table 2.

2.3. Additional Data

The DOP20 dataset includes a digital orthomosaic ;Tile ID: 325345888; acquisition date:
26 June 2024, obtained from the NI-LGLN OpenGeodata portal [6]. This dataset offers
orthomosaics at a spatial resolution of 20 cm, comprising four distinct spectral bands (blue,
green, red, near-infrared), with a geometric accuracy of +/− 0.4 m.

Sentinel-2 L2A satellite data can be downloaded from the Copernicus Data Space
Ecosystem Browser [8]. For the Area of Interest (UTM 32N: xmin 535846, xmax 535856,
ymin 5889194, ymax 5889204), cloud-free observations for exemplary dates on 20 June 2024,
25 June 2024, and 27 June 2024 are provided. Geometric accuracy depends on applied
refining steps.

Additionally, weather data from DWD stations 4745 and 4275 [9] can be included
to provide essential context and support for interpreting satellite and orthomosaic data.
Incorporating this weather information allows researchers to account for the environmental
conditions present during data collection periods.

3. Methods for Data Acquisition and Processing
In this study, we employed an integrated methodology that combined data acquired

from multiple platforms and sensors to detect anthropogenic litter. By fusing these diverse
datasets, comprehensive multi-resolution mapping was achieved, with the aim of enabling
robust and scalable analytical outcomes. Four sampling locations were considered on four
consecutive days, as shown in Figure 1.

3.1. Drone Data Acquisition

Drone imagery was acquired with both front (longitudinal) and side (lateral) overlaps
set to 80%. This high degree of overlap was selected to ensure comprehensive coverage
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and continuity between adjacent images, which is essential for generating detailed and
accurate three-dimensional (3D) surface models. The substantial overlap enables each
ground feature, including targets and objects of varying heights, to be captured from
multiple perspectives at all considered heights. The drone flight plan was created with
DJI Pilot, optimized upon the custom camera settings for the multispectral camera system
Micasense Altum V04 [5]. The 3D maps were generated with Pix4D version 4.6.4 [10]
and radiometrically calibrated using the option “Camera, Sun Irradiance, and Sun Angle
using DLS IMU” and images from the reference panel. After generating the orthomosaics,
georeferencing was performed by utilizing QGIS version 3.38.2 [11] to map targets and
objects on the ground.

The georeferencing of drone-acquired imagery was conducted through an iterative
process, beginning with datasets of the lowest spatial resolution, typically collected at an
altitude of 100 m. For this initial step, prepared GCPs measured with Real-Time Kinematic
GPS were utilized, ensuring comprehensive coverage of the sampling area for each survey
day. Subsequently, higher-resolution datasets captured at lower altitudes were aligned
using the previously georeferenced maps as references, with manual identification of
corresponding ground control points to refine the spatial accuracy.

Throughout the georeferencing workflow, the mean pixel error associated with the
transformation remained low (e.g., 4.2 × 10−12 px). Any spatial shifts resulting from
camera distortions were systematically addressed, and, where necessary, the georeferencing
procedure was repeated to guarantee the consistent alignment of features across all levels
of image detail. For downstream analysis, the thermal channel, characterized by its lower
spatial resolution, was excluded from the set of georeferenced orthomosaics, allowing the
focus to remain on the assessment of high-resolution multispectral data.

3.2. Annotation of the Drone Data

For labeling the waste objects, the single high-resolution RGB images, taken at a low
altitude, were first georeferenced to be mapped on the other flight altitudes datasets and
masked afterward by consistent 2 × 2 m shapes.

The further processing of the orthomosaics, including masking by the 2 × 2 m shapes,
normalizing using the full sensor range, resampling to 0.2 cm, and reformatting, were
performed with R version 4.3.2 using package terra and sf [12]. The processed images, as
displayed in Figure 2a, were formatted to PNG and uploaded to an annotation tool [13],
labeled with predefined classes, and checked for inconsistencies; see Appendix A: Table A1.

Consistent label alignment during the integration of multi-resolution datasets was
ensured using a developed annotation harmonization framework. In this framework,
bounding box coordinates of the COCO-format annotations were scaled via affine transfor-
mations across spatial resolutions. This involved programmatically adjusting annotation
coordinates using scale factors derived from ground sampling distance ratios while pre-
serving topological relationships between features [14].

Additionally, employing the same framework, the annotation categories in the labeling
dataset were clustered according to their corresponding material types (Metal, Paper,
Plastic, Others, as illustrated in Appendix A: Table A2), as well as into a binary one-class
categorization. This multi-class approach enabled a broad use-case and the research-
specific usage of the annotation dataset. For objects which could not accurately attached
to a specific object, material, category, or material class, the term “others” was used. The
object classes for “material” and “binary” were each clustered from the annotation for all
object classes. For example, the object classes “X. . .-Plastic-X. . .” were merged into the
material class “Plastic”.



Data 2025, 10, 113 6 of 10

3.3. VIS/Airplane Data Acquisition

The VIS Line Scanner recorded RGB line data at 4096 px with a variable frame rate
of up to 500 Hz. The frame rate was dynamically adjusted with respect to the airplane
speed and altitude to ensure that individual pixels corresponded to rectangular areas
on the ground. The sensor was operated on board using a laptop to coordinate data
acquisition and timing. Using the timing information, lines from the respective channels
could be combined to obtain traditional images. As the individual color channels on
the chip were physically separated, their recording times had to be staggered to overlap
the individual resulting images. The sensor was oriented to record lines on the ground
perpendicular to the flight direction. This maximized the covered ground area by reducing
recording overlap, but this also introduced a sensitivity with respect to the roll movement
of the airplane. As the sensor was mounted rigidly inside the cargo pod, the rolling
movement of the airplane resulted in distortions of the recorded images. To address this,
the airplane’s navigation data were recorded using the Nginuity DAQAHRS-IMU [15].
Based on this information, the individual scan lines were shifted to correct for the airplane’s
roll motion, thereby producing geometrically undistorted images. The 25 June 2024 scene
was georeferenced and aligned with drone orthomosaics using the methodology detailed in
Table 2. Imagery from subsequent dates exhibited significant roll movements due to wing
elasticity, causing substantial distortion. While georeferencing remained technically feasible,
the resulting spatial accuracy was deemed insufficient for reliable analysis. Consequently,
no georeferenced products were generated for these dates.

4. Experimental Verification
The verification of the published dataset was conducted within the framework of

the PlasticObs+ project, which developed a two-stage artificial intelligence system for the
detection of plastic waste in diverse environments [1]. The system integrates a Variational
Autoencoder for rapid onboard anomaly detection as the first stage and a Mask R-CNN-
based segmentation module as the second stage for the high-resolution multispectral
detection of objects. This modular architecture enabled the system to achieve both speed
and precision and supported adaptability to future sensor technologies.

Performance validation was carried out using drone imagery acquired at different
altitudes. Models trained on drone data recorded at 20 m altitude (GSD = 9 mm), which
closely matched the high-resolution sensor technology for the airplane, exhibited partic-
ularly high detection performance with F1 scores of 0.80. Models trained from drone
images at a 4 m altitude (GSD = 0.2 cm) also achieved strong results, with the model
04m_binary_RGB reaching an F1 score of 0.77 (see Figure 3). These findings suggest that
segmentation approaches are less effective at lower resolutions (e.g., 60 m with an F1
score < 0.6), and that high-resolution sensor technologies benefit significantly from the
two-stage detection process.

The interdisciplinary and adaptable architecture of the PlasticObs+ system bridges
the gap between basic research and practical environmental monitoring. The system is
well suited to support efficient cleanup operations in threatened ecosystems, as well as
commercial applications such as post-event cleanup management. The main emphasis of
this dataset is on scalability and interoperability across multiple sensor systems, hence the
addition of satellite and DOP20 data to the airplane and drone dataset. Thus, further inte-
gration with other datasets and use cases can increase the detection capacity, applicability,
and generalizability.
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Figure 3. The F1 scores for the detection of waste objects with the label dataset RGB and multispectral
combinations at different altitudes colour-coded according to the channels used.

5. User Notes
In the use case of litter detection within the PlasticObs+ project, while working with

georeferenced multi-resolution remote sensing datasets, which are taken at different times,
it is necessary to test for homogeneity, e.g., the moving or disappearing of lightweight
objects. Small displacements, based on inconsistencies among lenses and patterns while
creating orthomosaics, should be emphasized. Therefore, the annotations for images with
coarser resolutions are double-checked, so that misregistered or moved waste pieces are
sorted out. Since newly introduced objects (e.g., bags or paper) that appear in the marked
sampling areas between consecutive flights often cannot be reliably distinguished from
pre-existing features due to sensor resolution limitations, these ambiguous instances were
assigned the label “Others-Others-Others-Unknown” in this study.

While working on multi-resolution data, one objective was to process high-resolution
images with annotations by adapting them down to lower spatial resolutions. Chal-
lenges were encountered due to some missing coverage of orthomosaics; thus, some
lower-resolution masked images were unavailable. Therefore, a conditional data valida-
tion logic was added to the PyTorch (Version 2.4.1) dataloader to ensure compatibility
between images and annotations. Annotations were automatically excluded when their
corresponding images were unavailable, and vice versa. This bidirectional validation
ensured uninterrupted dataloader iteration, preventing runtime errors while maintaining
script execution efficiency.
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GCP Ground control point
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RGB Red-green-blue
RTK Real-Time Kinematic

Appendix A

Table A1. Frequency of labels at 0.2 cm for all classes.

Label
(Object_Type-Material_Type-Main_Category-Condition 1) Frequency

Others-Others-Others 2348

Piece-Paper-Unknown 1135

Piece-Plastic-Unknown 931

Can-Metal-Food_and_Drink 804

Cup-Plastic-Food_and_Drink 755

Wrapper-Plastic-Food_and_Drink 598

Bags_transparent-Plastic-Cleaning_and_Cosmetic 339

Bags_transparent-Plastic-Food_and_Drink 217

Bottle-Plastic-Food_and_Drink 160

Tetra_Pak-Plastic-Food_and_Drink 152

Bags_non_transparent-Plastic-Cleaning_and_Cosmetic 139

Piece-Cardboard-Logistic_and_Transport 130

Box-Cardboard-Logistic_and_Transport 115

Fabric-Plastic-Unknown 113

Bottle-Glas-Food_and_Drink 101

https://zenodo.org/records/15126023
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Table A1. Cont.

Label
(Object_Type-Material_Type-Main_Category-Condition 1) Frequency

Bags_non_transparent-Plastic-Food_and_Drink 88

Cap-Plastic-Food_and_Drink 86

Cup-Cardboard-Food_and_Drink 74

Container-Plastic-Food_and_Drink 74

Tray-Plastic-Food_and_Drink 63

Bowl-Plastic-Food_and_Drink 62

Box-Cardboard-Food_and_Drink 61

Textiles-Textiles-Unknown 58

Piece-Metal-Unknown 57

Shoe-Textiles-Clothing 53

Canister-Plastic-Food_and_Drink 42

Food-Organic-Food_and_Drink 35

Tray-Cardboard-Food_and_Drink 33

Foam-Plastic-Logistic_and_Transport 30

Bottle-Plastic-Cleaning_and_Cosmetic 28

Lid-Plastic-Food_and_Drink 24

Container-Plastic-Cleaning_and_Cosmetic 23

Rope-Unknown-Unknown 20

Straw-Plastic-Food_and_Drink 15

Medical_package-Plastic-Cleaning_and_Cosmetic 13

Sponge-Plastic-Cleaning_and_Cosmetic 13

Piece-Rubber-Unknown 9

Bottle-Metal-Cleaning_and_Cosmetic 9

Coal-Others-Unknown 9

Lid-Metal-Food_and_Drink 7

Piece-Organic-Natural 7

Piece-Glas-Unknown 6

Pipe-Plastic-Construction 5

Piece-Lumber-Construction 3

Furniture-Lumber-Others 3

Other_Net-Plastic-Unknown 3

Trouser-Textiles-Clothing 2

Piece-Ceramic-Unknown 1
1 The last placeholder, “Unknown”, designed for a potential annotation of the condition, is left out for readability
in this table. For other frequencies, depending on the resolution available for the individual days, please see the
dataset folder “Frequencies”.
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Table A2. Frequency of label at 0.2 cm for clustered material type categories.

Label 1 Frequency

1_Plastic 3974

300_Others 2655

5_Paper 1548

7_Metal 877
1 Due to the nature of AI architectures, the classes for training are usually translated into consecutive integers for
class interpretation and prediction. To prevent confusion while merging and interpreting datasets, we created a
unique ID for each category, ensuring that assigned classes were harmonized, even if other datasets contained
more or other material type categories.
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