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Abstract: The recovery and reconstruction of fragmented data is a critical challenge in digital forensics, particularly when 
dealing with incomplete, corrupted, or partially deleted files in large-scale cybercrime investigations. Accurate classification 
of file fragment types is essential for reconstructing critical evidence, especially in environments characterized by high 
levels of data fragmentation, such as cyberattacks, data breaches, and the operation of illicit (“darknet”) data centers. 
Traditional file carving methods often struggle to efficiently handle these fragmented files, limiting their reliability in 
complex investigations involving large volumes of data. This paper introduces a novel approach to classifying file fragment 
types using a Transformer-based model, designed to significantly enhance the speed and accuracy of forensic 
investigations. Unlike traditional methods, which rely on handcrafted rules or shallow machine learning techniques, our 
model leverages the powerful Swin Transformer V2 architecture, a state-of-the-art deep learning model tailored for 
sequence-to-sequence tasks. The model was trained to recognize complex, hierarchical patterns within raw byte 
sequences, enabling it to classify file fragments with high precision and reliability. We demonstrate that our model 
outperforms traditional methods on 512-byte file blocks, achieving superior classification accuracy on the File Fragment 
Type dataset (FFT-75), and also shows strong competitive performance with larger 4 KiB file blocks. Our approach 
represents a significant advancement in digital forensics, automating the classification of fragmented data and improving 
the reliability and efficiency of evidence recovery. Future work will focus on optimizing the model for different file block 
sizes and evaluating its application to real-world fragmented data scenarios. By automating the identification of file 
fragment formats, our approach not only improves classification accuracy but also reduces the time required for 
investigators to recover critical evidence from fragmented data sources. This work provides a promising tool for digital 
forensics practitioners, advancing recovery capabilities in the face of evolving cyber threats. 

Keywords: Digital forensics, File carving, File fragment classification, Data fragmentation, Transformer models, Cybercrime 
investigations 

1. Introduction 
File carving is a critical technique in digital forensics used to recover fragmented data from files that have been 
damaged, deleted, or corrupted. The process involves identifying and reconstructing files and file fragments 
from raw data, which is often necessary when dealing with incomplete or partially overwritten files. Traditional 
file carving methods primarily rely on file signatures or heuristic rules to identify the structure and type of data 
fragments (Ali et al, 2018). These methods have been effective for certain types of file recovery but face 
limitations when dealing with large volumes of fragmented data or highly complex file structures (Pal and 
Memon, 2009). 

In the recent years, machine learning approaches have been explored to enhance file carving techniques 
(Ramli et al, 2021). These methods aim to improve the accuracy and automation of fragment classification, 
potentially eliminating the need for manual feature engineering. However, despite promising results, current 
models typically rely on traditional machine learning (e.g., random forest (Breiman, 2001)) techniques or 
shallow neural networks (Liu et al, 2023; Mittal et al, 2020; Skračić et al, 2023), which may struggle to capture 
complex patterns within file fragments. As a result, these models can exhibit suboptimal performance in 
scenarios involving a high degree of fragmentation, where the relationships between fragments are not easily 
identified through traditional methods (Pal and Memon, 2009). 

This paper aims to address these challenges by applying a Transformer-based deep learning model, specifically 
the Swin Transformer V2 (Liu et al, 2022a), to the task of file fragment type classification. The use of this model 
allows for the recognition of complex, hierarchical patterns within raw byte sequences, improving the accuracy 
of fragment classification, as shown in Section 5. Additionally, the approach seeks to provide a more efficient 
and scalable solution to file fragment identification, reducing the reliance on predefined rules or manual 
intervention. By evaluating the model on the File Fragment Type dataset (FFT-75) published by 
Mittal et al (2020), we demonstrate that it outperforms other models for shorter fragments and offers 
competitive accuracy with larger file block sizes. 
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The remainder of the paper is structured as follows: Section 2 provides a review of related work in the field of 
file carving and machine learning approaches to file fragment classification. Section 3 details the Transformer-
based model used in this paper, including its architecture and key modifications. Section 4 describes the 
dataset and the training process employed in the experiments. Section 5 presents the results and a 
comparison with baseline models. Finally, Section 6 concludes the paper and outlines future research 
directions. 

2. Related Work 
Digital forensics encompasses a range of techniques aimed at recovering, preserving, and analyzing data from 
digital devices to support legal proceedings (Casino et al, 2022). A critical component of this field is file carving, 
which involves reconstructing files from fragmented data without relying on file system metadata (Pal and 
Memon, 2009). File carving is particularly helpful when dealing with corrupted, deleted, or partially 
overwritten files, as it enables the recovery of data that might otherwise be inaccessible. Traditional file 
carving techniques often depend on predefined file signatures and heuristics to identify and reconstruct file 
fragments. While effective in certain scenarios, these methods can be limited when handling large volumes of 
fragmented data or complex file structures (Ramli et al, 2021).  

The exponential growth of digital data (Taylor, 2024) presents a significant challenge that potentially impacts 
the effectiveness of classical file carving methods. As data volumes increase, the complexity and fragmentation 
of files also rise, making it more challenging to accurately and efficiently reconstruct files using traditional 
techniques. This surge in data necessitates the development of more advanced methods capable of handling 
large-scale data with greater precision. The digital forensics research community has been explored a wide 
range of approaches to address these challenges (Li et al, 2021), which resulted in recent advances in file 
carving, as discussed in Section 2.2, thus offering the potential to alleviate the constraints imposed by the 
sheer volume of data and thereby enabling more effective analysis and recovery of fragmented files. 

2.1 Digital Forensics 

Recent advancements in digital forensics have been significantly influenced by the integration of artificial 
intelligence (AI) and machine learning (ML) technologies (Ademu et al, 2011). These innovations aim to 
enhance the efficiency and accuracy of forensic investigations by automating complex tasks and enabling the 
analysis of large datasets. AI-powered tools can process vast amounts of data (Qiu et al, 2016), identifying 
patterns and anomalies that might be overlooked by human analysts. This capability is particularly beneficial 
considering increasing data volumes and the growing sophistication of cyber threats (Balantrapu, 2024). 

In the area of file carving, which involves recovering files without relying on file system metadata, recent 
research has focused on developing more advanced techniques employing deep learning models (Liu et al, 
2023; Mittal et al, 2020; Skračić et al, 2023). Studies have highlighted the need for effective methodologies to 
retrieve data from fragmented files (Ramli et al, 2021), emphasizing the importance of developing and 
validating carving techniques and tools. 

Unlike conventional recovery techniques that rely on file system metadata, file carving works by scanning raw 
disk images and identifying data fragments based on their content, structure, and known signatures (Pal and 
Memon, 2009). This method is particularly useful when file system information is not available, as is often the 
case when files have been deleted or corrupted. Over the years, file carving techniques have been evolving, 
although recovering highly fragmented files still remains a hard challenge nowadays (Ramli et al, 2021). 

Recent research has explored the limitations of traditional carving tools, highlighting issues such as false 
positives (Pahade et al, 2015), incomplete file recovery (Ali et al, 2018), and the challenge of handling 
fragmented files that span across non-contiguous blocks of data (Pal and Memon, 2009). In response, several 
approaches have been proposed that incorporate machine learning techniques to refine the identification and 
reconstruction process (Ramli et al, 2021). These efforts aim to enhance the automation of file carving, reduce 
reliance on predefined rules, and better handle the growing volume and complexity of digital evidence. 
Despite these advancements, the field still faces challenges in achieving reliable results across a diverse 
spectrum of file types and fragmentation patterns. 

2.2 Deep Learning in File Carving 

In the past years, deep learning has emerged as a powerful tool for enhancing file carving techniques, aiming 
to improve the accuracy and efficiency of fragment classification (Mittal et al, 2020). Particularly, convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), has been explored to automate the process of 
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fragment classification and recovery (Liu et al, 2023; Mittal et al, 2020; Skračić et al, 2023; Zhu et al, 2023). 
These models are capable of learning complex patterns and features within data, enabling them to classify file 
fragments without relying on manual feature extraction or explicit signature-based approaches. Several 
studies have applied deep learning techniques to file carving, with encouraging results in improving 
classification accuracy for common file types and fragment sizes, as discussed in Section 5.1. 

One of the key advantages of deep learning in file carving is its ability to recognize more abstract relationships 
in raw data. For instance, CNNs have been applied to treat file fragments as images (Liu et al, 2023) or 
sequences (Skračić et al, 2023), where the network can identify hierarchical patterns between byte sequences. 
Other approaches have utilized long short-term memory (LSTM) networks (Zhu et al, 2023) to capture causal 
dependencies between adjacent bytes within file fragments. The latter can be particularly useful when dealing 
with fragmented files that span across non-contiguous disk blocks, although it requires new datasets providing 
extended metadata. The aforementioned approaches allow for more robust and adaptable carving methods 
that are less dependent on predefined rules or file signatures, thus advancing research on file carving. 

Despite the progress made in applying deep learning to file carving, several challenges remain. One of the 
primary difficulties is the lack of large, annotated datasets that model real-world data for training deep 
learning models. Many of the existing datasets are relatively small or limited to specific types of file fragments 
(Mittal et al, 2020), which makes it challenging to build models that can generalize across a wide range of 
forensic cases. Additionally, while deep learning models show promise in improving accuracy, their 
computational cost remains a concern, particularly when applied to large-scale forensic investigations. As a 
result, some studies have focused on optimizing network architectures and training strategies to reduce 
computational overhead while maintaining performance (Felemban et al, 2024; Mittal et al, 2020; Saaim et al, 
2022; Skračić et al, 2023). To summarize, while deep learning has proven to be a valuable addition to the field 
of file carving, further research is needed to address these limitations and improve the scalability of these 
approaches in real-world applications. 

3. Model 
Designing a model for file fragment classification requires balancing computational efficiency, scalability, and 
the ability to capture complex patterns within raw binary data. The task defined by the FFT-75 dataset—
classifying file types based on fixed-size file fragments—requires dealing with randomly fragmented data 
grouped by file formats into up to 75 classes, with no metadata present. To address these challenges, a 
Transformer-based (Vaswani, 2017) architecture was chosen for its ability to model hierarchical patterns and 
long-range dependencies in sequential data (Wen et al, 2022). 

The Swin Transformer V2 architecture was identified as a strong candidate due to its modularity, scalability, 
and efficient computation by using shifted window-based attention (Liu et al, 2022a). Originally designed for 
visual tasks, its hierarchical structure makes it adaptable to the sequential nature of file fragment data when 
appropriately modified. The decision to base the model on Swin Transformer V2 reflects these strengths, while 
specific adaptations, as discussed in the Section 3.2, were made to tailor the architecture to the non-visual, 
integer input format and task-specific requirements of the FFT-75 dataset. 

3.1 Swin Transformer V2 

The Swin Transformer V2 is an evolution of the Swin Transformer architecture (Liu et al, 2021), a hierarchical 
vision transformer initially designed for visual recognition tasks. This architecture uses shifted window-based 
attention to balance computational efficiency and modeling capability, making it suitable for high-resolution 
input data and improving upon its predecessor by introducing scaled cosine attention mechanism, logarithmic 
positional encoding, which contributes to more stable training and improved performance on complex tasks 
(Liu et al, 2022a). At the same time, Swin Transformer V2 is scalable to moderate models offering competitive 
performance in downstream tasks. 

The aforementioned advancements make the architecture capable of handling diverse tasks beyond image 
classification, including semantic segmentation (He et al, 2022) and video action classification (Liu et al, 
2022b), suggesting applicability of the architecture to the file fragment classification task. The hierarchical 
structure of the Swin Transformer V2 allows it to capture both local and global relationships effectively (Kim et 
al, 2024), offering flexibility in processing inputs of varying resolutions and sizes. 

The architecture exists in several variants, as shown in Table 1, each tailored for different computational 
budgets and performance requirements. The "Tiny" (Swin-T), "Small" (Swin-S), "Base" (Swin-B), and “Large” 
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(Swin-L) models differ in the number of parameters, computational complexity, and layer depth. In this paper, 
we used Swin Transformer V2 (Tiny) pre-trained on the ImageNet1k (Fei-Fei et al, 2009) dataset, as it offers a 
competitive performance for a moderate computational cost. 

Table 1: Comparison of variants of Swin Transformer V2 (Liu et al, 2022a) 

Variant of the architecture Accuracy on ImageNet1k (%) Computational cost (GFLOPs) 

Swin-T 81.80 5.90 

Swin-S 83.70 11.50 

Swin-B 84.20 20.30 

Swin-L 86.90 (ImageNet21k (Ridnik et al, 2021)) 47.50 

3.2 CarveFormer 

To adapt the Swin Transformer V2 architecture for non-visual inputs, specifically for the classification of file 
fragments, several modifications were implemented, resulting in the model referred to as CarveFormer 
(shown in Figure 1). The original Swin Transformer V2 is designed for image processing tasks and begins with a 
2D-convolutional (LeCun et al, 1998) layer that maps three-channel two-dimensional inputs (RGB images) into 
96-channel outputs, followed by a LayerNorm (Ba, 2016) normalization layer. In CarveFormer, instead, the first 
convolutional layer and the subsequent normalization layer were replaced with an embedding layer of 
dimension 96. This embedding layer transforms the sequential byte data of file fragments into a suitable 
representation for the transformer model. The output from the embedding layer is then reshaped to mimic a 
2D structure, aligning with the input requirements of the Swin Transformer V2 architecture. This modification 
allows the model to process non-visual data natively by leveraging powerful Swin Transformer V2 model. 

 
Figure 1: Overview of the CarveFormer model handling file fragments at the level of individual file blocks 

CarveFormer was built upon a snapshot of Swin Transformer V2 (Tiny) pre-trained on the ImageNet1k dataset. 
This choice was driven by the absence of substantially large-scale datasets specifically tailored to file carving 
tasks (i.e. exceeding FFT-75), which might become an issue when training a Transformer from scratch (Steiner 
et al, 2021). Pre-training on ImageNet1k provides the model with a good weight initialization, as it learns to 
recognize patterns and hierarchical structures that, while originally intended for visual data, can still be 
adapted effectively to other types of input such as videos (Liu et al, 2022b) or audio (Guzhov et al, 2021). 

4. Experimental Setup 
The experiments aimed at evaluating the effectiveness of the CarveFormer model in classifying file fragments 
obtained from the FFT-75 dataset, which encompasses a diverse range of file formats and two file block sizes: 
512 and 4096 bytes. The test subset of the FFT-75 dataset served as a basis for benchmarking of CarveFormer, 
those training and optimization of hyper-parameters were performed on respective subsets of FFT-75. 
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4.1 Dataset 

In this paper, we utilized the FFT-75 dataset, a benchmark specifically designed for evaluating file fragment 
classification models. FFT-75 contains labeled file fragments sampled from 75 diverse file types, spanning 
formats commonly encountered in digital forensics, including text, image, audio, video, and archive files. These 
fragments are extracted at random offsets within files and are divided into two categories based on their sizes: 
512 bytes and 4096 bytes and organized into six scenarios, as shown in Table 2. Within each scenario, the 
number of samples is balanced across file formats. This design aims to address a range of real-world 
applications where file fragments can vary in size and distribution of formats. 

Table 2: Description of the FFT-75 dataset (scenarios) 

Scenario # of classes # of samples Description 

#1 75 7500k All file formats 

#2 11 1935k Common file formats 

#3 25 2300k Image and video formats 

#4 5 1054k Image formats 

#5 2 1036k JPEG or any other format 

#6 2 1000k JPEG or another image format 

While FFT-75 provides a good starting point for assessing classification models, it does have certain limitations. 
The dataset is constructed with randomly sampled file fragments, which do not capture the sequential 
fragmentation patterns typically observed in real-world forensic cases, such as those caused by file corruption 
or deletion processes. This random sampling simplifies the task compared to the complexities of real-world 
data, where context and order often play critical roles (Garfinkel, 2007). These limitations highlight the need 
for future datasets that more accurately reflect the challenges of practical file carving scenarios. 

4.2 Model Training 

The CarveFormer model was trained on the FFT-75 dataset for all combinations of scenarios and file block 
sizes, thus resulting in 12 benchmarking experiments. Model weights were initialized from a Swin Transformer 
V2 (Tiny) pre-trained from scratch on ImageNet1k to obtain a good initialization before fine-tuning. This 
initialization strategy allowed the model to benefit from robust feature extraction capabilities developed 
during pre-training, even though the domain of the input data differed, as discussed in Section 3.2. 

The training procedure followed hyper-parameter settings similar to those recommended for Swin 
Transformer V2 pre-training, ensuring consistency and compatibility with the architecture. The effective batch 
size was set to 1024, and the AdamW optimizer (Loshchilov, 2017) was used with a learning rate of 3.75 ∙ 10-4 
and a weight decay of 0.05. Training was conducted for 50 epochs, ensuring the model adapts to the FFT-75 
dataset and underlying distribution of data. In the test phase, the best model snapshot was chosen according 
to the validation accuracy measured after every epoch. 

5. Results 
The evaluation of CarveFormer on the FFT-75 dataset provided insights into its capabilities and limitations in 
file fragment classification. The results demonstrated that CarveFormer is effective in identifying file format-
specific patterns, showcasing competitive performance when compared to existing methods. 

While the model performed well in many aspects, the experiments also suggested an existence of challenges 
inherent to the dataset itself and the way a Transformer-based model can be applied to the task. Certain 
limitations stem from the design of FFT-75, which may not fully reflect real-world fragmentation patterns. 
These challenges, along with observations regarding intrinsic ambiguities in classifying some file formats, 
highlight the importance of addressing both model and dataset limitations for future work in this area, as 
discussed in a more detail in Section 6. 

5.1 Model Performance 

The performance of CarveFormer was evaluated on the FFT-75 dataset to assess its ability to classify file 
fragments accurately across two block sizes: 512 bytes and 4096 bytes, as presented in Table 3 and Table 4 
respectively. Accuracy was used to compare our and the baseline models in the multiclass classification task. 
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At the high level, the obtained results allow for identifying two groups of scenarios, irrespective to the block 
size. Scenarios #1-4 represent more challenging multiclass classification tasks. In contrast, all models 
demonstrate a nearly perfect performance in scenarios #5 and #6 , suggesting that the latter scenarios can be 
considered as solved. Also, with the block size increasing, the difficulty level decreasing, as larger 4096-byte 
blocks provide the model with more format-specific information, making the task easier. Specifically, when 
going from 512-byte to 4096-byte blocks, the accuracy gradually increases for each model in the comparison.  

Table 3 presents results for 512-byte blocks. Here, the proposed CarveFormer model outperforms other 
methods in the most challenging scenarios #1 and #2, achieving accuracy of 72.10% and 90.62% respectively. 
CarveFormer demonstrates second best performance in scenarios #3-5 (93.44%, 92.63%, and 99.04%), with a 
slight decrease in scenario #6 (98.93%). 

Table 3: Performance comparison on FFT-75 (512-byte blocks), accuracy (%) 

Model Reference 
Scenario 

#1 #2 #3 #4 #5 #6 

FiFTy Mittal et al, 2020 65.60 78.90 87.90 90.20 99.00 99.30 

DSC Saaim et al, 2022 65.89 75.84 80.79 87.14 98.94 98.76 

ResNet-18 Liu et al, 2023 71.00 90.40 93.50 93.60 99.20 99.20 

CNN-LSTM Zhu et al, 2023 66.50 – – – – – 

ByteRCNN Skračić et al, 2023 71.10 87.50 91.00 92.00 99.00 99.50 

DSC-SE Felemban et al, 2024 66.33 74.99 80.79 87.32 98.96 98.65 

CarveFormer Ours 72.10 90.62 93.44 92.63 99.04 98.93 

Similarly, the proposed model performs competitively on 4096-byte blocks, achieving new state-of-the-art 
accuracy of 96.87% in scenario #3 and demonstrating second best accuracy in scenarios #1 (82.99%), #2 
(93.96%), #4 (96.91%), and #5 (99.30%). 

Table 4: Performance comparison on FFT-75 (4096-byte blocks), accuracy (%) 

Model Reference 
Scenario 

#1 #2 #3 #4 #5 #6 

FiFTy Mittal et al, 2020 77.50 89.80 94.60 94.10 99.20 99.60 

DSC Saaim et al, 2022 78.45 85.70 93.06 94.17 99.28 99.59 

ResNet-18 Liu et al, 2023 82.10 94.20 96.80 96.10 99.30 99.40 

CNN-LSTM Zhu et al, 2023 78.60 – – – – – 

ByteRCNN Skračić et al, 2023 83.90 93.10 96.50 95.40 99.30 99.50 

DSC-SE Felemban et al, 2024 79.27 87.10 93.32 94.61 99.37 99.69 

CarveFormer Ours 82.99 93.96 96.87 95.91 99.30 99.42 

5.2 Limitations 

The quadratic computational complexity inherent in the Transformer architecture challenges scalability of the 
proposed CarveFormer model. File blocks are currently processed individually by converting them into 
sequences using an embedding layer, where 512-byte and 4096-byte blocks are treated as sequences of length 
512 and 4096, respectively. This design is in alignment with recently published approaches (Felemban et al, 
2024; Skračić et al, 2023) and ensures compatibility with the base Swin Transformer V2 model but significantly 
increases computational costs when the block size increases. The high memory and processing requirements 
restrict scalability, limiting the feasibility of extending the model to handle larger file fragments (above 8 KiB). 

Another limitation arises from the design of the FFT-75 dataset. While the dataset provides a diverse collection 
of randomly sampled labeled file blocks, it does not capture the sequential patterns of fragmentation observed 
in real-world scenarios (Garfinkel, 2007). This absence of realistic fragmentation patterns prevents 
CarveFormer from fully leveraging the Transformer's ability to model long-range dependencies within 
sequences. As a result, the embedding layer is necessary to prepare the data for processing, introducing an 
additional transformation that increases computational costs. 
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Additionally, the comparative analysis of CarveFormer and competing models reveals an upper boundary on 
achievable accuracy, rooted in the fundamental characteristics of file fragments, as can be seen in Table 3 and 
Table 4. Specifically, in the most challenging scenario #1, the best performing models seem to asymptotically 
achieve accuracy of ~73% for 512-byte blocks and ~84% for 4096-byte blocks. This can be attributed to the 
observation that it is often impossible to distinguish between fragments of plain file formats, such as texts or 
images, and those embedded into a container format, such as PDF. Disregarding this observation during 
labeling of the FFT-75 data (Mittal et al, 2020) introduced an inherent ambiguity that potentially confuses 
models in the absence of contextual information. Such challenges highlight intrinsic constraints of the FFT-75 
dataset, irrespective of the model employed. 

6. Conclusion 
This work presented CarveFormer, a Transformer-based model designed for file fragment classification, a 
critical task in digital forensics. By adapting the Swin Transformer V2 architecture to non-visual data, we 
developed a model capable of processing raw file fragments and classifying them with competitive accuracy 
across two file block sizes: 512 bytes and 4096 bytes. The model’s performance on 512-byte file blocks in 
scenario #1 and #2 demonstrated its ability to outperform current carving methods, setting a new state-of-the-
art performance baseline in this task. 

CarveFormer effectively learns patterns corresponding to raw file fragments at block level, leveraging the 
Transformer's potential to model complex relationships within the data. However, inherent constraints, such 
as the quadratic complexity of the Transformer architecture and ambiguities in dataset labeling for certain file 
types, highlight the importance of exploring alternative strategies to enhance scalability and further align 
dataset characteristics with real-world forensic scenarios. 

Future research needs to focus on enhancing both the model and the data. One key direction is to establish an 
improved alternative to the FFT-75 dataset. This involves considering container file formats for assigning 
appropriate class labels. Additionally, the goal is to better follow realistic fragmentation patterns commonly 
encountered in practical forensic cases (Garfinkel, 2007). These improvements aim at reducing the 
computational overhead when applying sequence-to-sequence–primarily, Transformer-based–models. While 
challenges remain, the results affirm the potential of Transformer-based models in digital forensics, and we 
are optimistic that continued exploration in this direction will yield even more robust and versatile solutions. 

Acknowledgements 
This work was funded by the BMBF project Carve-DL (grant 13N16405). 

References 
Ademu, I. O., Imafidon, C. O. & Preston, D. S., 2011. A new approach of digital forensic model for digital forensic 

investigation. IJACSA: International Journal of Advanced Computer Science and Applications, 2(12). 
Ali, R. R., Mohamad, K. M., Jamel, S. A. P. I. E. E. & Khalid, S. K. A., 2018. A review of digital forensics methods for JPEG file 

carving. J. Theor. Appl. Inf. Technol., 96(17), pp.5841-5856. 
Ba, J. L., 2016. Layer normalization. arXiv preprint arXiv:1607.06450. 
Balantrapu, S. S., 2024. Current trends and future directions exploring machine learning techniques for cyber threat 

detection. International Journal of Sustainable Development Through AI, ML and IoT, 3(2), pp.1-15. 
Breiman, L., 2001. Random forests. Machine Learning, 45, pp. 5-32 
Casino, F., Dasaklis, T. K., Spathoulas, G. P., Anagnostopoulos, M., Ghosal, A., Borocz, I. et al., 2022. Research trends, 

challenges, and emerging topics in digital forensics: A review of reviews. IEEE Access, 10, pp.25464-25493. 
Fei-Fei, L., Deng, J. & Li, K., 2009. ImageNet: Constructing a large-scale image database. Journal of Vision, 9(8), p.1037. 
Felemban, M., Ghaleb, M., Saaim, K., Al-Saleh, S. & Almulhem, A., 2024. File Fragment Type Classification using Light-

Weight Convolutional Neural Networks. IEEE Access. 
Garfinkel, S. L., 2007. Carving contiguous and fragmented files with fast object validation. Digital Investigation, 4, pp.2-12. 
Guzhov, A., Raue, F., Hees, J. & Dengel, A., 2021. ESResNet: Environmental sound classification based on visual domain 

models. In 2020 25th International Conference on Pattern Recognition (ICPR), pp.4933-4940. 
He, X., Zhou, Y., Zhao, J., Zhang, D., Yao, R. & Xue, Y., 2022. Swin transformer embedding UNet for remote sensing image 

semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing, 60, pp.1-15. 
Kim, J. H., Kim, N. & Won, C. S., 2024. Global–local feature learning for fine-grained food classification based on Swin 

Transformer. Engineering Applications of Artificial Intelligence, 133, p.108248. 
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P., 1998. Gradient-based learning applied to document recognition. Proceedings 

of the IEEE, 86(11), pp.2278-2324. 
Li, W., Chai, Y., Khan, F., Jan, S. R. U., Verma, S., Menon, V. G. et al., 2021. A comprehensive survey on machine learning-

based big data analytics for IoT-enabled smart healthcare system. Mobile Networks and Applications, 26, pp.234-252. 

175 
The Proceedings of the 24th European Conference on Cyber Warfare and Security, ECCWS 2025



Andrey Guzhov and Christoph Tobias Wirth 

Liu, W., Wang, Y., Wu, K., Yap, K. H. & Chau, L. P., 2023. A Byte Sequence is Worth an Image: CNN for File Fragment 
Classification Using Bit Shift and n-Gram Embeddings. In 2023 IEEE 5th International Conference on Artificial 
Intelligence Circuits and Systems (AICAS), pp.1-5. 

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y. et al., 2022a. Swin Transformer V2: Scaling up capacity and resolution. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.12009-12019. 

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. et al., 2021. Swin Transformer: Hierarchical vision transformer using shifted 
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.10012-10022. 

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S. & Hu, H., 2022b. Video Swin Transformer. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp.3202-3211. 

Loshchilov, I., 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. 
Mittal, G., Korus, P. & Memon, N., 2020. FiFTy: large-scale file fragment type identification using convolutional neural 

networks. IEEE Transactions on Information Forensics and Security, 16, pp.28-41. 
Pahade, R. K., Singh, B. & Singh, U., 2015. A survey on multimedia file carving. International Journal of Computer Science & 

Engineering Survey, 6(6). 
Pal, A. & Memon, N., 2009. The evolution of file carving. IEEE Signal Processing Magazine, 26(2), pp.59-71. 
Qiu, J., Wu, Q., Ding, G., Xu, Y. & Feng, S., 2016. A survey of machine learning for big data processing. EURASIP Journal on 

Advances in Signal Processing, 2016, pp.1-16. 
Ramli, N. I. S., Hisham, S. I. & Badshah, G., 2021. Analysis of file carving approaches: A literature review. In Advances in 

Cyber Security: Third International Conference, ACeS 2021, Penang, Malaysia, August 24–25, 2021, Revised Selected 
Papers 3, pp.277-287. 

Ridnik, T., Ben-Baruch, E., Noy, A. & Zelnik-Manor, L., 2021. Imagenet-21k pretraining for the masses. arXiv preprint 
arXiv:2104.10972. 

Saaim, K. M., Felemban, M., Alsaleh, S. & Almulhem, A., 2022. Light-weight file fragments classification using depthwise 
separable convolutions. In IFIP International Conference on ICT Systems Security and Privacy Protection, pp.196-211. 

Skračić, K., Petrović, J. & Pale, P., 2023. ByteRCNN: Enhancing File Fragment Type Identification with Recurrent and 
Convolutional Neural Networks. IEEE Access. 

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J. & Beyer, L., 2021. How to train your ViT? Data, 
augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270. 

Taylor, P., 2024. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2023, with 
forecasts from 2024 to 2028. [Online] Available at: https://www.statista.com/statistics/871513/worldwide-data-
created/ 

Vaswani, A., 2017. Attention is all you need. Advances in Neural Information Processing Systems. 
Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J. & Sun, L., 2022. Transformers in time series: A survey. arXiv preprint 

arXiv:2202.07125. 
Zhu, N., Liu, Y., Wang, K. & Ma, C., 2023. File Fragment Type Identification Based on CNN and LSTM. In Proceedings of the 

2023 7th International Conference on Digital Signal Processing, pp.16-22. 

176 
The Proceedings of the 24th European Conference on Cyber Warfare and Security, ECCWS 2025


	Guzhov+revised 075
	1. Introduction
	2. Related Work
	2.1 Digital Forensics
	2.2 Deep Learning in File Carving

	3. Model
	3.1 Swin Transformer V2
	3.2 CarveFormer

	4. Experimental Setup
	4.1 Dataset
	4.2 Model Training

	5. Results
	5.1 Model Performance
	5.2 Limitations

	6. Conclusion
	Acknowledgements
	References




