
Lifted Model Construction without Normalisation: A
Vectorised Approach to Exploit Symmetries in Factor Graphs

Malte Luttermann1, Ralf Möller2 and Marcel Gehrke2
1German Research Center for Artificial Intelligence (DFKI), Lübeck

2Institute for Humanities-Centered Artificial Intelligence, University of Hamburg
malte.luttermann@dfki.de,{ralf.moeller,marcel.gehrke}@uni-hamburg.de

Abstract
Lifted probabilistic inference exploits symmetries in a probabilistic model to
allow for tractable probabilistic inference with respect to domain sizes of logical
variables. We found that the current state-of-the-art algorithm to construct a
lifted representation in form of a parametric factor graph misses symmetries
between factors that are exchangeable but scaled differently, thereby leading
to a less compact representation. In this paper, we propose a generalisation of
the advanced colour passing (ACP) algorithm, which is the state of the art to
construct a parametric factor graph. Our proposed algorithm allows for potentials
of factors to be scaled arbitrarily and efficiently detects more symmetries than
the original ACP algorithm. By detecting strictly more symmetries than ACP,
our algorithm significantly reduces online query times for probabilistic inference
when the resulting model is applied, which we also confirm in our experiments.

1 Introduction
Parametric factor graphs (PFGs) are probabilistic relational models, i.e., they combine probabilis-
tic models and relational logic (which can be seen as first-order logic with known universes) to
efficiently reason about objects and their relationships under uncertainty. To allow for tractable
probabilistic inference (e.g., inference requiring polynomial time) with respect to domain sizes of
logical variables, PFGs use representatives of indistinguishable objects to represent groups of random
variables (randvars), thereby yielding a more compact model that can be exploited by lifted inference
algorithms for faster inference. Here, probabilistic inference (or just inference for short) refers to
the task of computing marginal distributions of randvars given observations for other randvars (see
Appendix A for more details). Clearly, to run a lifted inference algorithm on a PFG, the PFG has
to be constructed first. The current state-of-the-art algorithm to construct a PFG is the advanced
colour passing (ACP) algorithm. The ACP algorithm begins with a propositional model in form of a
factor graph (FG) and exploits symmetries therein to obtain a PFG entailing equivalent semantics
as the initial FG. During the course of ACP, potentials of factors are compared to decide whether
factors are equivalent and thus might be grouped. However, all potentials of the factors must be
scaled equally for ACP to be able to detect symmetries between factors. In other words, ACP fails
to detect symmetries between factors that are exchangeable but whose potentials differ only by a
scalar, thereby leading to a less compact lifted representation if potentials are not normalised before
running ACP. In this paper, we solve the problem of constructing a PFG from a given FG such that
the resulting PFG entails equivalent semantics as the initial FG and exchangeable factors are detected
independent of the scale of their potentials. We therefore allow potentials to be learned from different
data sources without having to perform a normalisation step while at the same time obtaining a more
compact representation for lifted inference than the output of ACP.

In previous work, Poole (2003) introduces PFGs and lifted variable elimination as an inference
algorithm to carry out lifted probabilistic inference in PFGs. Lifted inference exploits symmetries
in a probabilistic model by using a representative of indistinguishable objects for computations

Malte Luttermann, Ralf Möller, Marcel Gehrke, Lifted Model Construction without Normalisation: A Vectorised
Approach to Exploit Symmetries in Factor Graphs. Proceedings of the Third Learning on Graphs Conference
(LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

Lifted Model Construction without Normalisation

while maintaining exact answers (Niepert and Van den Broeck, 2014). By using logical variables
in parameterised randvars (PRVs) to represent groups of indistinguishable randvars, lifted variable
elimination operating on PFGs is able to allow for tractable probabilistic inference with respect to
domain sizes of logical variables (Taghipour et al., 2013a). After its first introduction, lifted variable
elimination has been steadily refined by many researchers to reach its current form (De Salvo Braz
et al., 2005, 2006; Milch et al., 2008; Kisyński and Poole, 2009; Taghipour et al., 2013b; Braun and
Möller, 2018). Recently, Luttermann et al. (2024a,b) extend PFGs to incorporate causal knowledge,
thereby allowing for lifted causal inference in addition to lifted probabilistic inference. In any case
(purely probabilistic or causal), the construction of a PFG (or its causal extension, respectively)
is necessary to apply lifted inference algorithms afterwards. The “CompressFactorGraph” algo-
rithm (Kersting et al., 2009; Ahmadi et al., 2013) builds on work by Singla and Domingos (2008)
and detects symmetries in an FG to obtain possible groups of randvars and factors by deploying a
colour passing procedure similar to the Weisfeiler-Leman algorithm (Weisfeiler and Leman, 1968),
which is commonly used to test for graph isomorphism. To obtain a valid PFG, the resulting groups
must be represented by introducing logical variables in PRVs, and the current state-of-the-art algo-
rithm to construct a valid PFG entailing equivalent semantics as an initially given FG is the ACP
algorithm (Luttermann et al., 2024c,d,e). While ACP successfully constructs a valid PFG from a
given FG, it requires all potentials of factors to be scaled by the same scalar, which imposes a serious
limitation for practical applications, e.g., when potentials are learned from various data sources and
normalisation is undesirable due to floating point arithmetic issues.

To circumvent the requirement of equally scaled potential values in all factors, we propose a modifi-
cation of the ACP algorithm that encodes potential values of factors as vectors. In an earlier work,
Gehrke et al. (2020) show that potentials of factors can be conceived as vectors such that the cosine
similarity provides a useful measure to check whether factors “behave similarly”, thereby allowing
to keep symmetries over time and to avoid groundings during temporal probabilistic inference. By
using vector representations of factors’ potentials, the potentials do not have to be scaled by the same
scalar and thus, we make use of this property already during the construction procedure of the PFG in
this paper. Detecting symmetries independent of scalars already during the construction of the lifted
representation (i.e., before lifted inference takes place) yields a more compact representation right
from the beginning and thereby significantly speeds up online inference afterwards. We formally
show that using such a vector representation maintains equivalent semantics. Further, we demonstrate
that the vector representation can easily be incorporated into the ACP algorithm to obtain a more
compact representation, which we also confirm in our empirical evaluation.

The remaining part of this paper is structured as follows. First, we provide the necessary background
information and introduce notations. We begin to recap FGs and afterwards formalise the problem
of detecting exchangeable factors. Thereafter, we take a closer look at the problem of detecting
exchangeable factors independent of the scale of their potentials and present our approach that makes
use of vector representations of potentials to solve this problem. We then embed the vectorised
approach into the framework of the ACP algorithm to obtain a generalisation of ACP, which we
evaluate empirically to demonstrate its practical effectiveness before we conclude.

2 Background
We begin by defining FGs as propositional probabilistic graphical models. An FG compactly encodes
a full joint probability distribution over a set of randvars by factorising the distribution into a product
of factors (Frey et al., 1997; Kschischang et al., 2001).
Definition 1 (Factor Graph). An FG G = (V ,E) is an undirected bipartite graph consisting of
a node set V = R ∪ Φ, where R = {R1, . . . , Rn} is a set of variable nodes (randvars) and
Φ = {ϕ1, . . . , ϕm} is a set of factor nodes (functions), as well as a set of edges E ⊆ R×Φ. The
term range(Ri) denotes the possible values of a randvar Ri. There is an edge between a variable
node Ri and a factor node ϕj in E if Ri appears in the argument list of ϕj . The argument list Aj of
a factor ϕj(Aj) is a sequence of randvars from R. A factor is a function that maps its arguments to
a positive real number, called potential. The semantics of G is given by

PG =
1

Z

m∏
j=1

ϕj(Aj), (1)

where Z is the normalisation constant and Aj denotes the randvars occurring in ϕj’s argument list.

2

Lifted Model Construction without Normalisation

Epid

ϕ0
ϕ11 ϕ21

Sick.alice Sick.bob

ϕ12

ϕ22

ϕ32

ϕ42

Travel.alice Travel.bob

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

ϕ13 ϕ23

(a)

Epid

Sick(P)Travel(P) Treat(P,M)

ϕ0

ϕ1 ϕ2

ϕ3

(b)

Figure 1: (a) An FG encoding a full joint probability distribution for an epidemic example (Hoffmann
et al., 2022), (b) a PFG corresponding to the lifted representation of the FG shown in Fig. 1a. The
mappings of argument values to potentials of the factors are omitted for brevity.

Example 1. Figure 1a shows an FG for an epidemic example. The FG consists of two people (alice
and bob) as well as two possible medications (m1 and m2) for treatment. For each person, there
are two Boolean randvars (that is, randvars having a Boolean range) Sick and Travel, indicating
whether the person is sick and travels, respectively. Moreover, there is another Boolean randvar
Treat for each combination of person and medication, specifying whether the person is treated with
the medication. The Boolean randvar Epid states whether an epidemic is present.

Lifted inference algorithms exploit symmetries in FGs to allow for tractable probabilistic inference
with respect to domain sizes of logical variables. In a lifted representation such as a PFG, parame-
terised randvars and parametric factors represent sets of randvars and factors, respectively (Poole,
2003). Symmetries in FGs frequently occur in relational models and are highly relevant in many
real world domains. For example, in the epidemic domain, each person influences the probability
of an epidemic in the same way—that is, the probability of having an epidemic depends on the
number of sick people and not on individual people being sick. In other words, the probability for an
epidemic is the same if there is a single sick person and the remaining people in the universe are not
sick, independent of whether alice or bob is sick. Analogously, there are symmetries in many other
domains, e.g., for movies the popularity of an actor influences the success of a movie in the same
way for each actor being part of the movie, and so on.
Example 2. A PFG corresponding to the lifted representation of the FG illustrated in Fig. 1a is
shown in Fig. 1b. Here, two logical variables P and M with domains dom(P) = {alice, bob}
and dom(M) = {m1,m2} are introduced to represent groups of indistinguishable people and
medications, respectively. Further, there are parametric factors that represent groups of factors, e.g.,
ϕ1 represents ϕ11 and ϕ21. The underlying assumption is that ϕ11 and ϕ21 are exchangeable and hence
encode equivalent semantics. By using logical variables in parameterised randvars, the number of
parameterised randvars and parametric factors in the graph remains constant even if the number of
people and medications increases.

To detect symmetries in an FG and obtain a PFG for lifted inference, the ACP algorithm (Luttermann
et al., 2024c) is the current state of the art. The ACP algorithm employs a colour passing routine to
identify symmetric subgraphs and transforms a given FG into a PFG entailing equivalent semantics
as the initial FG. A formal description of the ACP algorithm is given in Appendix B. For now, it
is important to understand that ACP has to detect exchangeable factors during the course of the
algorithm. Exchangeable factors are factors that encode equivalent semantics and play a crucial role
when detecting and exploiting symmetries in an FG. In the next section, we investigate the problem

3

Lifted Model Construction without Normalisation

A

B

C

ϕ1

ϕ2

A B ϕ1(A,B)
true true φ1

true false φ2

false true φ3

false false φ4

C B ϕ2(C,B)
true true φ1

true false φ2

false true φ3

false false φ4

(a)

A

B

C

ϕ1

ϕ2

A B ϕ1(A,B)
true true φ1

true false φ2

false true φ3

false false φ4

C B ϕ2(C,B)
true true α · φ1

true false α · φ2

false true α · φ3

false false α · φ4

(b)

Figure 2: (a) An exemplary FG, (b) another FG encoding equivalent semantics as the FG shown in
(a) but containing a factor ϕ2 whose potentials are scaled by factor α ∈ R+.

of detecting exchangeable factors in FGs independent of the scale of their potentials in detail and
provide an efficient solution to this problem.

3 Avoiding Normalisation During Lifted Model Construction
Before we formally define the notion of exchangeable factors, let us take a look at the upcoming
example, which illustrates the idea of having differently scaled potentials in exchangeable factors.
Example 3. Consider again the FG depicted in Fig. 1a and let us assume we want to learn the po-
tentials of the factors from observed data (e.g., by counting the occurrences of combinations of range
values). For example, to obtain the potentials for the factor ϕ11(Travel.alice, Sick.alice, Epid),
occurrences of alice becoming sick when travelling are counted. Analogously, occurrences of bob be-
coming sick when travelling are counted to obtain the potentials of ϕ21(Travel.bob, Sick.bob, Epid).
If both factors encode equivalent potentials, they can be grouped (as in Fig. 1b). Now, assume alice
travels twice as much as bob and both become sick on every second trip on average. In consequence,
alice and bob “behave identically” with respect to becoming sick when travelling but the potentials
of ϕ11 and ϕ21 lie on a different scale—in this particular example, the potentials of ϕ11 are equal to the
potentials of ϕ21 times two (because alice travels twice as much as bob).

A straightforward solution to deal with different scales of potentials is to normalise potentials.
However, we cannot always assume that a given FG contains normalised potentials by default and in
practical applications, the normalisation of potentials is often undesirable as it results in additional
floating point arithmetics causing numerical issues. We thus develop a solution that does not require
potentials to be normalised but still detects exchangeable factors, which we formally define next.
Definition 2 (Exchangeable Factors). Let ϕ1(R1, . . . , Rn) and ϕ2(R′

1, . . . , R
′
n) denote two factors

in an FG G. Then, ϕ1 and ϕ2 represent equivalent potentials if and only if there exists a scalar
α ∈ R+ and a permutation π of {1, . . . , n} such that for all r1, . . . , rn ∈ ×n

i=1range(Ri) it holds
that ϕ1(r1, . . . , rn) = α · ϕ2(rπ(1), . . . , rπ(n)). Factors that represent equivalent potentials are
called exchangeable factors.

Note that as a necessary condition, exchangeable factors must be defined over the same function
domain and hence must have the same number of arguments.
Example 4. Take a look at the FG depicted in Fig. 2a, which features two factors ϕ1 and ϕ2 that
map to the exact same potential values φi ∈ R+, i ∈ {1, . . . , 4}. In this scenario, both tables of
mappings from assignments of arguments to potential values are identical (i.e., α = 1 and π is the
identity function) and hence, it is easy to tell that ϕ1 and ϕ2 are exchangeable. If we now consider the
FG shown in Fig. 2b, we can observe that the potential values of ϕ2 are scaled by a factor α ∈ R+.
Despite the scaling, ϕ1 and ϕ2 encode equivalent semantics and thus are exchangeable.

We remark that in general, π does not have to be the identity function, i.e., there might be situations
where, for example, the argument positions of C and B in ϕ2 are swapped and the potential values
in the table read φ1, φ3, φ2, φ4 from top to bottom instead of φ1, φ2, φ3, φ4. Note that the potential
mappings are still the same but their order is a different one. For now, we focus on the scalar

4

Lifted Model Construction without Normalisation

α and assume that π is the identity function, that is, the arguments are already ordered such that
exchangeable arguments are located at the same argument positions if there are any exchangeable
arguments. Later on, in Sec. 3.2, we also show how to deal with arbitrary permutations of arguments.

A fundamental insight is that factors, whose potential mappings are equivalent up to a scalar α,
are semantically equivalent. The intuition here is that the ratio of the potentials within a factor
is the relevant part for the semantics of the factor whereas the absolute values do not matter. For
example, think of a factor ϕ that has two mappings in total, one for the assignment true and one for
the assignment false. Semantically, it does not matter whether ϕ maps true to 1 and false to 2 or
true to 2 and false to 4 because in both cases, ϕ weights the assignment false twice as much as the
assignment true. The normalisation constant Z in Eq. (1) ensures that in both cases, the probability
for true is 1/3 and the probability for false is 2/3. We next formalise this insight.
Theorem 1. Let G = (V ,E) denote an FG with V = R ∪Φ, where R = {R1, . . . , Rn} is a set of
randvars and Φ = {ϕ1, . . . , ϕm} is a set of factors. Then, scaling any factor ϕk ∈ Φ by a scalar
α ∈ R+ leaves the semantics of G unchanged.

Proof. Recall that the semantics of G (before scaling) is given by PG = 1
Z

∏m
j=1 ϕj(Aj), where Aj

denotes the randvars occurring in ϕj’s argument list and Z is the normalisation constant, defined as

Z =
∑

a∈×n
i=1range(Ri)

m∏
j=1

ϕj(Aj = aj), (2)

where aj denotes the assigned values to arguments Aj according to the assignment a. Now, assume
that ϕk ∈ Φ is scaled by α ∈ R+. Then, PG changes to PG = 1

Z · α ·
∏m

j=1 ϕj(Aj) and Z
changes to Z = α ·

∑
a∈×n

i=1range(Ri)

∏m
j=1 ϕj(Aj = aj). In consequence, it holds that PG =

1
α·Z · α ·

∏m
j=1 ϕj(Aj), which is equivalent to the original definition of PG as α cancels out.

Theorem 1 implies that it is also possible to scale various factors by different scalars without changing
the semantics of the underlying model. Using this insight, it becomes clear that FGs can be further
compressed by taking into account factors that are exchangeable up to a scalar α. We next show how
exchangeable factors can efficiently be detected independent of the scaling factor α.

3.1 Dealing with Scaled Potentials

Previous work by Gehrke et al. (2020) shows that potentials of factors can be conceived as vectors
such that the cosine similarity of the vectors can be used to check whether factors “behave identically”,
thereby avoiding groundings in temporal probabilistic inference. We apply the idea of representing
potentials as vectors to detect exchangeable factors independent of a scaling factor already during the
construction of a PFG to obtain a more compact model even before online inference takes place.
Definition 3 (Vector Representation of Factors). Let ϕ(R1, . . . , Rn) denote a factor. The vector
representation of ϕ is defined as the vector ϕ⃗ = (ϕ(a))a∈×n

i=1range(Ri).
Example 5. Consider the factors ϕ1 and ϕ2 depicted in Fig. 2b. The vector representations of ϕ1
and ϕ2 are given by ϕ⃗1 = (φ1, φ2, φ3, φ4) and ϕ⃗2 = (αφ1, αφ2, αφ3, αφ4), respectively.

Given a vector representation of a factor, the idea is that vectors of exchangeable factors point to the
same direction in the vector space. Thus, the angle between those vectors can be computed to deter-
mine whether the factors are exchangeable because exchangeable factors have vector representations
whose angle is equal to zero (i.e., they are collinear). The upcoming example illustrates this idea.

Example 6. Take a look at Fig. 3, which shows the vector representations ϕ⃗1 = (8, 2), ϕ⃗2 = (4, 1),
ϕ⃗3 = (2, 2), and ϕ⃗4 = (4.4, 3.6) for exemplary factors ϕ1, . . . , ϕ4. To allow for a two-dimensional
visualisation, every factor has two possible assignments (e.g., due to having a single Boolean
argument). The angle between ϕ⃗1 and ϕ⃗2 is exactly zero, indicating that ϕ1 and ϕ2 are collinear and
hence exchangeable, which can be verified as ϕ1(a) = 2 · ϕ2(a) holds for all assignments a. At the
same time, the angle between, e.g., ϕ⃗1 and ϕ⃗3 is much larger than zero, indicating that ϕ1 and ϕ3 are
not exchangeable. Further, observe that the angle between ϕ⃗3 and ϕ⃗4 is not exactly zero but close to
zero, indicating that ϕ3 and ϕ4 are not equivalent but approximately equivalent.

5

Lifted Model Construction without Normalisation

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5

ϕ⃗1

ϕ⃗2

ϕ⃗3

ϕ⃗4

θ

Figure 3: Vector representations for exemplary factors ϕ1, . . . , ϕ4. For the sake of this example,
every factor maps two possible assignments to a potential value each. The mappings of the factors are
encoded as vectors and are given by ϕ⃗1 = (8, 2) (i.e., ϕ1 maps its first assignment to potential value
8 and the second assignment to potential value 2), ϕ⃗2 = (4, 1), ϕ⃗3 = (2, 2), and ϕ⃗4 = (4.4, 3.6).

By using vector representations and the cosine similarity between them, exchangeable factors can
efficiently be detected in practice. The cosine similarity between two vector representations of factors
lies within the interval [0, 1] and reaches its maximum value of one if the angle between the vectors is
zero. To obtain a distance measure, we define the cosine distance as one minus the cosine similarity.
Definition 4 (Cosine Distance, Gehrke et al., 2020). Let ϕ1(R1, . . . , Rn) and ϕ2(R′

1, . . . , R
′
n) denote

two factors. The cosine distance between ϕ1 and ϕ2 is defined as

Dcos(ϕ1, ϕ2) = 1−

∑
a∈×n

i=1range(Ri)

ϕ1(a) · ϕ2(a)√ ∑
a∈×n

i=1range(Ri)

ϕ1(a)2 ·
√ ∑

a∈×n
i=1range(R

′
i)

ϕ2(a)2
. (3)

If ϕ1 and ϕ2 are defined over different function domains, we define Dcos(ϕ1, ϕ2) =∞.

A fundamental advantage of using vector representations in combination with the cosine distance
to search for exchangeable factors is that it is also possible to allow for a small deviation of Dcos

from zero (e.g., dependent on a hyperparameter ε). While it is also conceivable to directly compare
the tables of potential mappings and allowing for a deviation controlled by ε, a direct comparison
of tables becomes sophisticated in settings where both a deviation and a scaling factor α have to
be considered at the same time. Vector representations circumvent such issues and allow for a
straightforward comparison of factors at any time. In this paper, however, we focus on the problem of
exact lifted model construction, i.e., we aim to transform a given FG into a PFG entailing equivalent
semantics as the initial FG. Allowing for a deviation between potentials results in the problem setup
of approximate lifted model construction, which is a different problem not considered in detail here.

Before we continue to deal with permutations of arguments in addition to scaled potentials, we
formally show that the cosine distance is a suitable measure to check for exchangeability.
Theorem 2. Let ϕ1(R1, . . . , Rn) and ϕ2(R′

1, . . . , R
′
n) denote two factors. If ϕ1 and ϕ2 are ex-

changeable, then it holds that Dcos(ϕ1, ϕ2) = 0.

Proof Sketch. If ϕ1 and ϕ2 are exchangeable, there exists a scalar α ∈ R+ and a permutation π
of {1, . . . , n} such that for all r1, . . . , rn ∈ ×n

i=1range(Ri) it holds that ϕ1(r1, . . . , rn) = α ·
ϕ2(rπ(1), . . . , rπ(n)). Without loss of generality, assume that the arguments of ϕ2 are rearranged such
that for all r1, . . . , rn ∈ ×n

i=1range(Ri) it holds that ϕ1(r1, . . . , rn) = α · ϕ2(r1, . . . , rn). Then,
entering ϕ1(r1, . . . , rn) = α · ϕ2(r1, . . . , rn) into Eq. (3) yields Dcos(ϕ1, ϕ2) = 0.

Note that the cosine distance is a measure to check for collinearity of the vectors ϕ⃗1 and ϕ⃗2, that
is, to check whether there exists a scalar α such that ϕ⃗1 = α · ϕ⃗2. As we only have to check for
collinearity, we can avoid computing the cosine distance (and hence avoid floating point arithmetics
during exchangeability checks) by checking the equality of products of potential values. The technical
details for collinearity checks using only multiplication operations are given in Appendix D. However,
also keep in mind that even when using the cosine distance to determine collinearity of vectors (which
involves floating point arithmetics), we are able to avoid floating point numbers in the tables of

6

Lifted Model Construction without Normalisation

A

B

C

ϕ1

ϕ2

A B ϕ1(A,B) b
true true φ1 [2, 0]
true false φ2 [1, 1]
false true φ3 [1, 1]
false false φ4 [0, 2]

B C ϕ2(B,C) b
true true α · φ1 [2, 0]
true false α · φ3 [1, 1]
false true α · φ2 [1, 1]
false false α · φ4 [0, 2]

b ϕ≻1 (b) ϕ≻2 (b)
[2, 0] ⟨φ1⟩ ⟨α · φ1⟩
[1, 1] ⟨φ2, φ3⟩ ⟨αφ3, αφ2⟩
[0, 2] ⟨φ4⟩ ⟨α · φ4⟩

Figure 4: An FG entailing equivalent semantics as the FGs shown in Figs. 2a and 2b with corre-
sponding buckets. Note that the arguments of the factor ϕ2 are arranged in a different order than in
Figs. 2a and 2b as B appears at position one and C at position two, whereas in the previous examples,
C was at position one and B at position two.

potential mappings of the factors, which is the more important place to avoid floating point arithmetics
(because during probabilistic inference, these numbers are multiplied).

So far, we did not pay attention to permutations of arguments when looking for exchangeable factors.
In practice, however, we cannot assume that exchangeable arguments are always located at the
same argument position in their respective factors. Therefore, in the next section, we investigate the
problem of detecting exchangeable factors independent of the scale of their potentials while at the
same time taking arbitrary permutations of their arguments into account.

3.2 Dealing with Permutations of Arguments

A straightforward approach to handle permutations of arguments when searching for exchangeable
factors is to iterate over all possible argument permutations of one of the factors, rearrange its
arguments and its table of potential mappings accordingly, and then compute the cosine distance
as described in Sec. 3.1. If there exists a permutation such that the cosine distance is zero, the
factors are exchangeable, otherwise they are not. Such an approach, however, is computationally
expensive as it iterates over O(n!) argument permutations for a factor with n arguments in the worst
case. Luttermann et al. (2024d) introduce the detection of exchangeable factors (DEFT) algorithm,
which avoids iterating over all permutations of arguments and thereby allows to efficiently detect
exchangeable factors according to Def. 2 where α = 1. In other words, DEFT is able to efficiently
handle permutations of arguments but does not consider differently scaled potentials. We now
combine the ideas of DEFT and the vector representation in combination with the cosine distance to
handle both scalars different from one and permutations of arguments simultaneously.

The idea behind the DEFT algorithm is that a factor maps its arguments to potential values that can
be distributed across so-called buckets. Buckets count the occurrences of specific range values in
an assignment for a subset of a factor’s arguments and within these buckets, possible permutations
of arguments are heavily restricted such that not all permutations have to be considered. Before we
illustrate the idea at an example, we give a formal definition of a bucket.
Definition 5 (Bucket, Luttermann et al., 2024d). Let ϕ(R1, . . . , Rn) denote a factor and let S ⊆
{R1, . . . , Rn} denote a subset of ϕ’s arguments such that range(Ri) = range(Rj) holds for all
Ri, Rj ∈ S. Further, let V denote the range of the elements in S (identical for all Ri ∈ S). Then, a
bucket b entailed by S is a set of tuples {(vi, ni)}|V|

i=1, vi ∈ V , ni ∈ N, and
∑

i ni = |S|, such that
ni specifies the number of occurrences of potential value vi in an assignment for all randvars in S.
A shorthand notation for {(vi, ni)}|V|

i=1 is [n1, . . . , n|V|]. In abuse of notation, we denote by ϕ≻(b)
the ordered multiset of potentials a bucket b is mapped to by ϕ (in order of their appearance in ϕ’s
table of potential mappings). The set of all buckets entailed by ϕ is denoted as B(ϕ).
Example 7. Take a look at Fig. 4, which displays an FG entailing equivalent semantics as the FGs
shown in Figs. 2a and 2b with corresponding buckets. In this example, B appears at position one and
C at position two in ϕ2 whereas in Figs. 2a and 2b, C was at position one andB at position two. Both
ϕ1 and ϕ2 entail three buckets {(true, 2), (false, 0)}, {(true, 1), (false, 1)}, {(true, 0), (false, 2)}—
or [2, 0], [1, 1], [0, 2] in shorthand notation. Every bucket corresponds to at least one assignment, e.g.,

7

Lifted Model Construction without Normalisation

Algorithm 1 Detection of Exchangeable Factors without Normalisation
Input: Two factors ϕ1(R1, . . . , Rn) and ϕ2(R′

1, . . . , R
′
m).

Output: true if ϕ1 and ϕ2 are exchangeable, else false.
1: if n ̸= m ∨ B(ϕ1) ̸= B(ϕ2) then
2: return false
3: for each b ∈ B(ϕ1) do ▷ It holds that B(ϕ1) = B(ϕ2)
4: α← max(ϕ≻1 (b)) /max(ϕ≻2 (b))
5: if α differs from α for a previous bucket then
6: return false
7: Cb ← Possible swaps to obtain ϕ≻1 (b) = α · ϕ≻2 (b)
8: if there exists a swap of ϕ2’s arguments in

⋂
b∈B(ϕ1)

Cb such that Dcos(ϕ1, ϕ2) = 0 then
9: return true

10: else
11: return false

the bucket [1, 1] corresponds to all assignments that contain one true and one false value. ϕ1 maps
[1, 1] to ⟨φ2, φ3⟩ and ϕ2 maps [1, 1] to ⟨αφ3, αφ2⟩.

Luttermann et al. (2024d) show that two factors ϕ1 and ϕ2 are exchangeable (for the setting of α = 1)
if and only if there exists a permutation of their arguments such that ϕ≻1 (b) = ϕ≻2 (b) for all buckets b
entailed by the arguments of ϕ1 and ϕ2. The DEFT algorithm exploits this property by checking for
each bucket b whether arguments can be rearranged such that ϕ≻1 (b) = ϕ≻2 (b) holds. The idea is that
the potential values in the ordered multisets determine possible permutations of arguments and thus,
DEFT avoids iterating over all permutations of arguments. For example, assuming that α = 1 in
Fig. 4, we know that αφ3 must be located at position one and αφ2 at position two in ϕ≻2 to match the
order of ϕ≻1 . The corresponding assignments of αφ2, i.e., (false, true), and αφ3, i.e., (true, false),
are then used to determine possible positions of arguments to achieve that αφ3 is located at position
one and αφ2 at position two in ϕ≻2 . For now, it is sufficient to understand that identical potential
values in ϕ≻1 and ϕ≻2 must be found. Further technical details about the DEFT algorithm are given in
(Luttermann et al., 2024d). We next generalise the DEFT algorithm such that it is able to handle the
setting of α ̸= 1 as well. A crucial observation is that the orders of the potential values in the ordered
multisets must be identical up to the scaling factor α.
Theorem 3. Let ϕ1 and ϕ2 denote two factors. Then, ϕ1 and ϕ2 are exchangeable if and only if
there exists a permutation of their arguments such that ϕ≻1 (b) = α · ϕ≻2 (b) for all buckets b entailed
by the arguments of ϕ1 and ϕ2, where, by abuse of notation, α · ϕ≻2 (b) denotes the ordered multiset
resulting from multiplying each potential value in ϕ≻2 (b) by α.

Proof. For the first direction, it holds that ϕ1 and ϕ2 are exchangeable. According to Def. 2, there
exists a scalar α ∈ R+ and a permutation of ϕ2’s arguments such that ϕ1 and ϕ2 have identical tables
of potential mappings up to the scaling factor α. In consequence, for every bucket b it holds that
ϕ≻1 (b) = α · ϕ≻2 (b) since both tables read identical potential values up to α from top to bottom.

For the second direction, it holds that ϕ≻1 (b) = α · ϕ≻2 (b) for all buckets b. Converting the buckets
back to tables of potential mappings then results in identical tables of potential mappings up to the
scalar α, which implies that ϕ1 and ϕ2 are exchangeable.

Using the insight from Thm. 3, the DEFT algorithm can be adapted to search for identical potential
values up to scalar α in the ordered multisets of potential values, as shown in Alg. 1. To do so, α is
determined first, which is done by computing α = max(ϕ≻1 (b)) /max(ϕ≻2 (b)) in bucket b. Note that
α must be identical for every bucket b, otherwise the two factors cannot be exchangeable. Having
determined α, possible permutations of arguments are obtained by looking for identical potential
values up to scalar α. Possible permutations of arguments are then verified (or rejected) using the
cosine distance between ϕ1 and ϕ2 after rearranging ϕ2’s arguments.
Example 8. Consider again the factors ϕ1 and ϕ2 depicted in Fig. 4. Rearranging ϕ2’s arguments
such that B is placed at position two and C at position one in ϕ2’s argument list yields the table of
potential mappings for ϕ2 depicted in Fig. 2b and thus results in Dcos(ϕ1, ϕ2) = 0.

We next demonstrate the practical effectiveness of Alg. 1 in our empirical evaluation.

8

Lifted Model Construction without Normalisation

30

100

300

1000

3000

0 250 500 750 1000
d

tim
e

(m
s)

α-ACP

ACP

0.0

0.1

1.0

10.0

8 16 32 64 128 256 512 1024
d

β

0.01 0.05 0.1 0.15

Figure 5: Average query times of lifted variable elimination on the output of ACP and α-ACP (left)
and the average number β of queries after which the offline overhead of α-ACP amortises (right).

4 Experiments

To assess the effectiveness of Alg. 1 in practice, we compare the run times of running lifted vari-
able elimination on the output of ACP in its original form and of running lifted variable elimina-
tion on the output of ACP extended by running Alg. 1 to detect exchangeable factors (α-ACP).1
For our experiments, we generate FGs containing between 2d + 1 and d · ⌊log2(d)⌋ + 2d + 1
randvars as well as between 2d and d · ⌊log2(d)⌋ + d + 1 factors, where the parameter d ∈
{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} controls the size of the FG. In every FG, a proportion
of p ∈ {0.01, 0.05, 0.1, 0.15} of the factors is scaled by a scalar α ∈ {1, . . . , 10} (chosen uniformly
at random). For each choice of d, we pose three to four queries to each FG and report the average
run time over all queries. Figure 5 displays the results. The left plot shows the average run times
of lifted variable elimination on the output of ACP and α-ACP, respectively. As expected, lifted
variable elimination runs significantly faster and is able to handle larger values of d if α-ACP instead
of ACP is applied. Since α-ACP is able to detect exchangeable factors that are scaled differently, it
detects strictly more symmetries than ACP resulting in a more compact model and hence in faster
inference times. Clearly, the speedup depends on the proportion p of scaled factors and thus, we
provide additional experimental results for each individual choice of p in Appendix E.

The boxplot on the right in Fig. 5 displays the average number β of queries after which the additional
offline overhead of α-ACP compared to ACP amortises.2 In particular, it holds that β = ∆o /∆g,
where ∆o denotes the offline overhead of α-ACP (i.e., the difference of the offline run times required
by α-ACP and ACP) and ∆g denotes the online gain (i.e., the difference of the times required by
lifted variable elimination run on the output of ACP and α-ACP). In other words, after β queries,
the additional time needed by α-ACP to construct the PFG is saved due to faster inference times.
Negative values for β are not displayed (hence the missing boxes for some p) as there is no overhead
in these cases. The boxplot shows a box for each choice of p for every d ≥ 8 and it becomes clear
that the median value for β is always smaller than one. Apart from a single outlier, all values of β are
smaller than ten. Thus, after a maximum of ten queries, the additional offline overhead of α-ACP
amortises, showing that α-ACP works efficiently as it introduces almost no overhead.

5 Conclusion

In this paper, we generalise the ACP algorithm to detect exchangeable factors independent of the
scale of their potentials without the requirement of normalising the potentials. Our proposed approach
allows for arbitrary scalars and makes use of vector representations in combination with collinearity
checks to efficiently detect exchangeable factors independent of their scale. We show that our
approach maintains equivalent semantics and at the same time yields a more compact representation
by detecting strictly more symmetries than the original ACP algorithm, thereby speeding up inference.

1Note that the run time required to perform probabilistic inference on a model directly depends on the graph
size of the model, i.e., the presented run times also give information about the compactness of the models.

2The dots in the boxplot on the right in Fig. 5 represent outliers.

9

Lifted Model Construction without Normalisation

Acknowledgements
This work is funded by the BMBF project AnoMed 16KISA057.

References
David Poole. First-Order Probabilistic Inference. In Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence (IJCAI-03), pages 985–991. Morgan Kaufmann Publishers
Inc., 2003. 1, 3

Mathias Niepert and Guy Van den Broeck. Tractability through Exchangeability: A New Perspective
on Efficient Probabilistic Inference. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence (AAAI-2014), pages 2467–2475. AAAI Press, 2014. 2

Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel. Com-
pleteness Results for Lifted Variable Elimination. In Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-2013), pages 572–580. PMLR, 2013a.
2

Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-Order Probabilistic Inference. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-
2005), pages 1319–1325. Morgan Kaufmann Publishers Inc., 2005. 2

Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilistic
Variable Elimination. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-2006), pages 1123–1130. AAAI Press, 2006. 2

Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling.
Lifted Probabilistic Inference with Counting Formulas. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-2008), pages 1062–1068. AAAI Press, 2008. 2

Jacek Kisyński and David Poole. Constraint Processing in Lifted Probabilistic Inference. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI-2009),
pages 293–302. AUAI Press, 2009. 2

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial Intelligence Research,
47:393–439, 2013b. 2

Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query Answering. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-2018), pages
4980–4986. IJCAI Organization, 2018. 2

Malte Luttermann, Mattis Hartwig, Tanya Braun, Ralf Möller, and Marcel Gehrke. Lifted Causal
Inference in Relational Domains. In Proceedings of the Third Conference on Causal Learning and
Reasoning (CLeaR-2024), pages 827–842. PMLR, 2024a. 2

Malte Luttermann, Tanya Braun, Ralf Möller, and Marcel Gehrke. Estimating Causal Effects in
Partially Directed Parametric Causal Factor Graphs. In Proceedings of the Sixteenth International
Conference on Scalable Uncertainty Management (SUM-2024), pages 265–280. Springer, 2024b.
2

Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting Belief Propagation. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI-2009), pages
277–284. AUAI Press, 2009. 2, 12

Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting Symmetries
for Scaling Loopy Belief Propagation and Relational Training. Machine Learning, 92:91–132,
2013. 2, 12

Parag Singla and Pedro Domingos. Lifted First-Order Belief Propagation. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008), pages 1094–1099. AAAI
Press, 2008. 2

Boris Weisfeiler and Andrei A. Leman. The Reduction of a Graph to Canonical Form and the Algebra
which Appears Therein. NTI, Series, 2:12–16, 1968. English translation by Grigory Ryabov
available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf. 2

10

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Lifted Model Construction without Normalisation

Malte Luttermann, Tanya Braun, Ralf Möller, and Marcel Gehrke. Colour Passing Revisited:
Lifted Model Construction with Commutative Factors. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence (AAAI-2024), pages 20500–20507. AAAI Press, 2024c. 2, 3,
12, 13, 14

Malte Luttermann, Johann Machemer, and Marcel Gehrke. Efficient Detection of Exchangeable
Factors in Factor Graphs. In Proceedings of the Thirty-Seventh International Florida Artificial
Intelligence Research Society Conference (FLAIRS-2024). Florida Online Journals, 2024d. 2, 7, 8,
12

Malte Luttermann, Johann Machemer, and Marcel Gehrke. Efficient Detection of Commutative
Factors in Factor Graphs. In Proceedings of the Twelfth International Conference on Probabilistic
Graphical Models (PGM-2024). PMLR, 2024e. 2, 13

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in Temporal Probabilistic Rela-
tional Models. In Proceedings of the Twenty-Fourth European Conference on Artificial Intelligence
(ECAI-2020), pages 2592–2599. IOS Press, 2020. 2, 5, 6

Brendan J. Frey, Frank R. Kschischang, Hans-Andrea Loeliger, and Niclas Wiberg. Factor Graphs
and Algorithms. In Proceedings of the Thirty-Fifth Annual Allerton Conference on Communication,
Control, and Computing, pages 666–680. Allerton House, 1997. 2

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor Graphs and the Sum-
Product Algorithm. IEEE Transactions on Information Theory, 47:498–519, 2001. 2

Moritz Hoffmann, Tanya Braun, and Möller. Lifted Division for Lifted Hugin Belief Propagation. In
Proceedings of the Twenty-Fifth International Conference on Artificial Intelligence and Statistics
(AISTATS-2022), pages 6501–6510. PMLR, 2022. 3

11

Lifted Model Construction without Normalisation

A Probabilistic Inference in More Detail
The task of probabilistic inference describes the computation of marginal distributions of randvars
given observations for other randvars. In other words, probabilistic inference refers to query answer-
ing, where a query is defined as follows.
Definition 6 (Query). A query P (Q | E1 = e1, . . . , Ek = ek) consists of a query term Q and a
set of events {Ej = ej}kj=1 (called evidence), where Q and E1, . . . , Ek are randvars. To query a
specific probability instead of a probability distribution, the query term is an event Q = q.
Example 9 (Probabilistic Inference). Take a look again at the FG depicted in Fig. 2a and assume we
want to answer the query P (B = true).

P (B = true) =
∑

a∈range(A)

∑
c∈range(C)

P (A = a,B = true, C = c) (4)

=
1

Z

∑
a∈range(A)

∑
c∈range(C)

ϕ1(a, true) · ϕ2(c, true) (5)

=
1

Z

(
φ1φ1 + φ1φ3 + φ3φ1 + φ3φ3

)
. (6)

Since ϕ1(A,B) and ϕ2(C,B) are exchangeable (i.e., it holds that ϕ1(a, true) = ϕ2(c, true) for all
assignments where a = c), we can exploit this symmetry to simplify the computation and obtain

P (B = true) =
1

Z

∑
a∈range(A)

∑
c∈range(C)

ϕ1(a, true) · ϕ2(c, true) (7)

=
1

Z

∑
a∈range(A)

ϕ1(a, true)
∑

c∈range(C)

ϕ2(c, true) (8)

=
1

Z

(∑
a∈range(A)

ϕ1(a, true)

)2

(9)

=
1

Z

(∑
c∈range(C)

ϕ2(c, true)

)2

(10)

=
1

Z

(
φ1 + φ3

)2
. (11)

This example illustrates the idea of using a representative of indistinguishable objects for compu-
tations (here, either A or C can be chosen as a representative for the group consisting of A and
C). This idea can be generalised to groups of k indistinguishable objects to significantly reduce the
computational effort when answering queries.

B Formal Description of the Advanced Colour Passing Algorithm
The ACP algorithm (Luttermann et al., 2024c) extends the colour passing algorithm (Kersting et al.,
2009; Ahmadi et al., 2013), thereby solving the problem of constructing a lifted representation in form
of a PFG from a given FG. The idea of ACP is to first find symmetric subgraphs in a propositional FG
and then group together these symmetric subgraphs. ACP searches for symmetries based on potentials
of factors, on ranges and evidence of randvars, as well as on the graph structure by employing a
colour passing routine. A formal description of the ACP algorithm is depicted in Alg. 2. We next
explain the steps undertaken by ACP in more detail.

ACP begins with the colour assignment to variable nodes, meaning that all randvars having the same
range and observed event are assigned the same colour. randvar with different ranges or different
observed events are assigned distinct colours since those randvar do not “behave in the same way”.
Then, in Line 2, ACP assigns colours to factor nodes such that exchangeable factors encoding
equivalent semantics according to Def. 2 are assigned the same colour. In its original form, ACP
uses the DEFT algorithm (Luttermann et al., 2024d) to efficiently detect exchangeable factors and
to assign colours accordingly. The DEFT algorithm deployed within ACP, however, is not able to

12

Lifted Model Construction without Normalisation

Algorithm 2 Advanced Colour Passing (reprinted from Luttermann et al., 2024c)
Input: An FG G with randvars R = {R1, . . . , Rn}, factors Φ = {ϕ1, . . . , ϕm}, and evidence
E = {R1 = r1, . . . , Rk = rk}.
Output: A lifted representation G′ in form of a PFG entailing equivalent semantics as G.

1: Assign each Ri a colour according toR(Ri) and E
2: Assign each ϕi a colour according to order-independent potentials and rearrange arguments

accordingly
3: repeat
4: for each factor ϕ ∈ Φ do
5: signatureϕ ← []
6: for each randvar R ∈ neighbours(G,ϕ) do ▷ In order of appearance in ϕ
7: append(signatureϕ, R.colour)

8: append(signatureϕ, ϕ.colour)

9: Group together all ϕs with the same signature
10: Assign each such cluster a unique colour
11: Set ϕ.colour correspondingly for all ϕs
12: for each randvar R ∈ R do
13: signatureR ← []
14: for each factor ϕ ∈ neighbours(G,R) do
15: if ϕ is commutative w.r.t. S and R ∈ S then
16: append(signatureR, (ϕ.colour, 0))
17: else
18: append(signatureR, (ϕ.colour, p(R,ϕ)))

19: Sort signatureR according to colour
20: append(signatureR, R.colour)

21: Group together all Rs with the same signature
22: Assign each such cluster a unique colour
23: Set R.colour correspondingly for all Rs
24: until grouping does not change
25: G′ ← construct PFG from groupings

handle factors with differently scaled potentials (i.e., it detects exchangeable factors according to
Def. 2 only for α = 1) and thus, our extension replaces the DEFT algorithm by Alg. 1 to detect
exchangeable factors independent of the scale of their potentials in Line 2 of Alg. 2.

After the initial colour assignments, ACP runs a colour passing routine. ACP first passes the colours
from each variable node to its neighbouring factor nodes and after a recolouring step to reduce
communication overhead, each factor node ϕ sends its colour as well as the position p(R,ϕ) of R in
ϕ’s argument list to all of its neighbouring variable nodes R, again followed by a recolouring step.
The procedure is then iterated until the identified groups do not change anymore. In the end, the
determined groups are then used to construct a PFG entailing equivalent semantics as the input FG G.

Figure 6 illustrates ACP on an example input FG. In this example, all randvars are Boolean and
there is no evidence available (i.e., E = ∅). Initially, ACP assigns all randvars the same colour (e.g.,
yellow) because they have the same range (Boolean) and evidence (no evidence at all). As ϕ1 and ϕ2
encode equivalent semantics (they represent identical potentials), they are assigned the same colour
(e.g., blue). The colours are then passed from variable nodes to factor nodes and as each factor has
two neighbouring randvars, all factors receive the same messages. After recolouring the factors,
their colour assignments remain identical to their initial assignments as they all received the same
message. The purpose of the recolouring is mainly to reduce communication overhead. Afterwards,
the factor nodes send their colours to their neighbouring variable nodes. Each message from a factor
to a randvar contains the position of the randvar in the factor if the factor is not commutative3, else
the position is replaced by zero. For simplicity, there is no commutative factor in the example shown
in Fig. 6. Thus, A receives a message (blue, 1) from ϕ1, B receives a message (blue, 2) from ϕ1 as
well as a message (blue, 2) from ϕ2, and C receives a message (blue, 1) from ϕ2. Consequently, A

3A commutative factor is a factor which maps its arguments to the same potential value independent of the
order of a (sub)set of its assigned values (Luttermann et al., 2024e).

13

Lifted Model Construction without Normalisation

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

A

B

C

ϕ1

ϕ2

ϕ′1

R(X)

B

C B ϕ2(C,B)
true true φ1

true false φ2

false true φ3

false false φ4

A B ϕ1(A,B)
true true φ1

true false φ2

false true φ3

false false φ4

R(X) B ϕ′1(R(X), B)
true true φ1

true false φ2

false true φ3

false false φ4

Figure 6: A visualisation of the steps undertaken by Alg. 2 on an input FG with only Boolean
randvars and no evidence (left). Colours are first passed from variable nodes to factor nodes, followed
by a recolouring, and then passed back from factor nodes to variable nodes, again followed by a
recolouring. The colour passing procedure is iterated until convergence and the resulting PFG is
depicted on the right. This figure is reprinted from (Luttermann et al., 2024c).

and C receive identical messages (positions are not shown in Fig. 6) and after the recolouring step, A
and C share the same colour while B is assigned a different colour. The groupings do not change in
further iterations and the resulting PFG is shown on the right (where X has domain {A,C}).
For more details about the colour passing routine and the grouping of nodes, we refer the reader to
(Luttermann et al., 2024c). The authors also demonstrate the benefits of a lifted representation in
terms of speedup for probabilistic inference.

C Missing Proofs
Theorem 2. Let ϕ1(R1, . . . , Rn) and ϕ2(R′

1, . . . , R
′
n) denote two factors. If ϕ1 and ϕ2 are ex-

changeable, then it holds that Dcos(ϕ1, ϕ2) = 0.

Proof. If ϕ1 and ϕ2 are exchangeable, there exists a scalar α ∈ R+ and a permutation π of {1, . . . , n}
such that for all r1, . . . , rn ∈ ×n

i=1range(Ri) it holds that ϕ1(r1, . . . , rn) = α ·ϕ2(rπ(1), . . . , rπ(n)).
Without loss of generality, assume that the arguments of ϕ2 are rearranged such that for all
r1, . . . , rn ∈ ×n

i=1range(Ri) it holds that ϕ1(r1, . . . , rn) = α · ϕ2(r1, . . . , rn). Then, entering
ϕ1(r1, . . . , rn) = α · ϕ2(r1, . . . , rn) into Eq. (3) yields

Dcos(ϕ1, ϕ2) = 1−
α ·

∑
a∈×n

i=1range(Ri)

ϕ2(a)
2

√
α2 ·

∑
a∈×n

i=1range(Ri)

ϕ2(a)2 ·
√ ∑

a∈×n
i=1range(Ri)

ϕ2(a)2
(12)

= 1−
α ·

∑
a∈×n

i=1range(Ri)

ϕ2(a)
2

√
α2 ·

√ ∑
a∈×n

i=1range(Ri)

ϕ2(a)2 ·
√ ∑

a∈×n
i=1range(Ri)

ϕ2(a)2
(13)

= 1−
α ·

∑
a∈×n

i=1range(Ri)

ϕ2(a)
2

α ·
∑

a∈×n
i=1range(Ri)

ϕ2(a)2
(14)

= 0. (15)

14

Lifted Model Construction without Normalisation

D Checking Collinearity of Vectors without Division Operations

Let ϕ⃗1 = (φ1, . . . , φn) and ϕ⃗2 = (ψ1, . . . , ψn) denote two vector representations of factors ϕ1 and
ϕ2. Our goal is to check whether ϕ⃗1 and ϕ⃗2 are collinear, that is, whether there exists a scalar α
such that ϕ⃗1 = α · ϕ⃗2, without using division or square root operations. By doing so, we avoid
floating point arithmetic issues. In particular, if the potential values φ1, . . . , φn and ψ1, . . . , ψn are
integers (which is the case if the initial FG is learned from data by counting occurrences of specific
assignments), then no floating point numbers are involved in our calculations during exchangeability
checks. Note that, even if we apply the cosine distance to check for collinearity, the model itself can
still consist only of integer potential values and only the check for exchangeability involves floating
point arithmetics in this case (as opposed to a model where potential values are normalised at the
beginning, which results in floating point numbers for its potential values).

We next provide the technical details to check whether ϕ⃗1 = α · ϕ⃗2 holds by using only multiplication
operations. If ϕ⃗1 and ϕ⃗2 are collinear, we have φ1 = α ·ψ1, . . . , φn = α ·ψn and hence α = φi / ψi

for all i ∈ {1, . . . , n}. Since α = φi /ψi holds for all i ∈ {1, . . . , n}, we can enter α = φ1 /ψ1 into
the equation φi = α · ψi and obtain

φi =
φ1

ψ1
· ψi (16)

⇔ φi · ψ1 = φ1 · ψi. (17)

In consequence, we can check whether ϕ⃗1 and ϕ⃗2 are collinear by verifying whether φi ·ψ1 = φ1 ·ψi

holds for all i ∈ {1, . . . , n}. Verifying this equation involves only multiplication operations and
hence avoids floating point arithmetics as much as possible.

To supplement Sec. 3.2, we next show that the aforementioned approach can also be extended
to handle permutations of arguments. In case there exists a permutation π of {1, . . . , n} such
that for all r1, . . . , rn ∈ ×n

i=1range(Ri) it holds that ϕ1(r1, . . . , rn) = α · ϕ2(rπ(1), . . . , rπ(n)),
it does not necessarily hold that α = φi / ψi for i ∈ {1, . . . , n}. However, we know that α =
maxi∈{1,...,n} φi /maxi∈{1,...,n} ψi (analogously for min instead of max). At the same time, we
know that in the first bucket, there is only a single potential value, which remains the same for all
possible permutations π of {1, . . . , n} because the corresponding assignment assigns all arguments
the same range value (e.g., true). We thus have α = φ1 / ψ1 again, regardless of the order of
arguments. Consequently, when searching for possible swaps to obtain ϕ≻1 (b) = α · ϕ≻2 (b) in Line 7
of Alg. 1, we can find identical potential values up to the scalar α for each φi ∈ ϕ≻1 (b) in ϕ≻2 (b)
by iterating over all potential values ψi ∈ ϕ≻2 (b) and checking whether φi · ψ1 = φ1 · ψi holds.
Having found identical potential values up to α, possible swaps to obtain ϕ≻1 (b) = α · ϕ≻2 (b) are
again determined by the positions of the identical potential values (up to α) in the ordered multisets.
In particular, if φi = α · ψi holds for φi ∈ ϕ≻1 (b) and ψi ∈ ϕ≻2 (b), then φi and ψi must be located at
the same position in ϕ≻1 (b) and ϕ≻2 (b), respectively, to achieve that ϕ≻1 (b) = α · ϕ≻2 (b).
Finally, we remark that this approach can be further extended to allow for a small deviation between
potential values that are considered identical. More specifically, instead of requiring that the equality
φi = α ·ψi holds for all i ∈ {1, . . . , n}, we can allow for a small deviation of factor (1+ ε) between
potential values and require that φi ∈ [α ·ψi · (1− ε), α ·ψi · (1+ ε)] holds for all i ∈ {1, . . . , n}. To
check whether φi lies in the specified interval, we need to ensure that the following inequalities hold:

φi ≥ α · ψi · (1− ε), and (18)
φi ≤ α · ψi · (1 + ε). (19)

By entering α = φ1 / ψ1 into Eqs. (18) and (19), we obtain

φi · ψ1 ≥ φ1 · ψi · (1− ε), and (20)
φi · ψ1 ≤ φ1 · ψi · (1 + ε). (21)

Note that in general, it holds that ε ∈ [0, 1] is a small floating point number. To avoid floating point
arithmetics, we can restrict ε to be a rational number, which does not limit the practical applicability
of this approach, as ε can still be chosen arbitrarily small (e.g., 1 / q for some arbitrary q ∈ Z). In
particular, if ε is a rational number, it can be represented by a fraction ε = p / q where p ∈ Z and

15

Lifted Model Construction without Normalisation

30

50

100

0 250 500 750 1000
d

tim
e

(m
s)

α-ACP

ACP

0.0

0.1

1.0

2 4 8 16 32 64 128 256 512 1024
d

β

Figure 7: Average query times of lifted variable elimination run on the output of ACP and α-ACP
where the input FGs contain a proportion of p = 0.01 scaled factors (left), and the distribution of the
number β of queries after which the offline overhead of α-ACP amortises on input FGs containing a
proportion of p = 0.01 scaled factors (right).

q ∈ Z are integers. Making use of this property, entering ε = p / q into Eq. (20) yields

φi · ψ1 ≥ φ1 · ψi · (1− ε) (22)
⇔ φi · ψ1 ≥ φ1 · (ψi − ψi · ε) (23)
⇔ φi · ψ1 ≥ φ1 · ψi − φ1 · ψi · ε (24)

⇔ φi · ψ1 ≥ φ1 · ψi − φ1 · ψi ·
p

q
(25)

⇔ φi · ψ1 · q ≥ φ1 · ψi · q − φ1 · ψi · p (26)

and analogously for Eq. (21), we get

φi · ψ1 · q ≤ φ1 · ψi · q + φ1 · ψi · p. (27)

Again, these inequalities can be checked by using only multiplication operations, thereby allowing us
to check for exchangeable factors independent of the scale of their potentials while at the same time
allowing for arbitrary permutations of arguments and even a small deviation between potential values
without using any floating point arithmetics (if the potential values themselves are integers).

E Additional Experimental Results
In addition to the experimental results provided in Sec. 4, we give further experimental results in
this section. We again evaluate the run times of running lifted variable elimination on the output of
ACP as well as of running lifted variable elimination on the output of α-ACP and also investigate
the average number β of queries after which the additional offline overhead of α-ACP compared to
ACP amortises. The instances used in this section are identical to those used in Sec. 4 but we do
not average the results over the proportion p ∈ {0.01, 0.05, 0.1, 0.15} of scaled factors. Instead, we
present separate results for each individual choice of p to highlight the effect of p on both the run
times for online query answering as well as on the offline overhead for constructing the PFG.

The results are illustrated in Figs. 7 to 10. Unsurprisingly, the run times of lifted variable elimination
on the output of α-ACP remain constant for all choices of p because α-ACP is able to detect arbitrarily
many scaled factors without forfeiting compression. At the same time, ACP is not able to detect
exchangeable factors on different scales and thus, the run times of lifted variable elimination on the
output of ACP increase as the proportion p of scaled factors increases. Regarding the amortisation
of the offline overhead (depicted in the plots on the right), we can observe the same behaviour as
in Fig. 5 (negative values for β are again omitted). The median value for β is always below one
and there are no notable differences between the different choices of p. Even though the values of
β slightly deviate between different choices for p, the deviation can be considered negligible and it
seems as the deviation stems from noisy measurements. In conclusion, the additional offline overhead
of α-ACP amortises after a single query most of the time, highlighting the efficiency of α-ACP.

16

Lifted Model Construction without Normalisation

30

100

300

1000

0 250 500 750 1000
d

tim
e

(m
s)

α-ACP

ACP

0.0

0.1

1.0

10.0

2 4 8 16 32 64 128 256 5121024
d

β

Figure 8: Average query times of lifted variable elimination run on the output of ACP and α-ACP
where the input FGs contain a proportion of p = 0.05 scaled factors (left), and the distribution of the
number β of queries after which the offline overhead of α-ACP amortises on input FGs containing a
proportion of p = 0.05 scaled factors (right).

30

100

300

1000

3000

0 250 500 750 1000
d

tim
e

(m
s)

α-ACP

ACP

0.0

0.1

1.0

10.0

2 4 8 16 32 64 128 256 5121024
d

β

Figure 9: Average query times of lifted variable elimination run on the output of ACP and α-ACP
where the input FGs contain a proportion of p = 0.1 scaled factors (left), and the distribution of the
number β of queries after which the offline overhead of α-ACP amortises on input FGs containing a
proportion of p = 0.1 scaled factors (right).

100

1000

10000

0 250 500 750 1000
d

tim
e

(m
s)

α-ACP

ACP

0.0

0.0

0.1

0.3

2 4 8 16 32 64 128 256 512 1024
d

β

Figure 10: Average query times of lifted variable elimination run on the output of ACP and α-ACP
where the input FGs contain a proportion of p = 0.15 scaled factors (left), and the distribution of the
number β of queries after which the offline overhead of α-ACP amortises on input FGs containing a
proportion of p = 0.15 scaled factors (right).

17

	1 Introduction
	2 Background
	3 Avoiding Normalisation During Lifted Model Construction
	3.1 Dealing with Scaled Potentials
	3.2 Dealing with Permutations of Arguments

	4 Experiments
	5 Conclusion
	A Probabilistic Inference in More Detail
	B Formal Description of the Advanced Colour Passing Algorithm
	C Missing Proofs
	D Checking Collinearity of Vectors without Division Operations
	E Additional Experimental Results

