
Evaluating Speech Enhancement Performance Across Demographics and
Languages

Jose Giraldo1, Alex Peiro-Lilja1,2, Carme Armentano-Oller1, Rodolfo Zevallos1,
Cristina España-Bonet 1,3

1Langtech Lab, Barcelona Supercomputing Center, Spain; 2Centre de Llenguatge i Computació,
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Abstract
Speech enhancement models have traditionally relied on

VoiceBank-DEMAND for training and evaluation. However,
this dataset presents significant limitations due to its limited di-
versity and simulated noise conditions. As an alternative, we
propose and demonstrate the usefulness of evaluating the gen-
eralization capabilities of recent speech enhancement models
using CommonPhone, a multilingual and crowdsourced dataset.
Since CommonPhone is derived from CommonVoice, it allows
to analyze enhancement performance based on demographic
variables such as age and gender. Our experiments reveal sig-
nificant performance variations across these variables. We also
introduce a new benchmark dataset designed to challenge en-
hancement models with difficult and diverse speech samples,
facilitating future research in universal speech enhancement.
Index Terms: speech enhancement, evaluation, multilingual

1. Introduction
The task of speech enhancement has a wide range of real-world
applications. Some examples include real-time enhancement
for video conferences, audio restoration of historical recordings
as well as hearing aid and intelligibility improvement. For such
applications, it is highly desirable to assess the generalization of
the models to a worldwide population. However, the majority
of speech enhancement models are benchmarked on the widely
known dataset Voicebank-DEMAND (VB-DMD) [1] which has
a limited diversity on demographic variables such as age and
language. The training set contains only 28 speakers (14 per
gender) with ages predominantly between 20-24 years, except
for one 38-year-old male speaker. The test set is even more re-
stricted, containing just two speakers aged 23-24 years. While
alternative datasets such as DNS [2, 3] and CHiME [4, 5, 6] im-
prove upon VB-DMD by offering greater speaker diversity and
more varied noise conditions, they are restricted exclusively to
English. Similarly, the EARS dataset [7] addresses some of
VB-DMD’s limitations by providing approximately 100 hours
of recordings with 111 speakers covering a broader age range
(18 to 75 years). Although these datasets enhance several key
aspects, such as speaker age diversity, acoustic environment va-
riety, and the amount of training data available, they remain
monolingual, and the noisy examples continue to follow the
simulation paradigm.

To overcome these limitations, CommonPhone (CP) [8]
provides a diverse, multilingual, crowdsourced dataset that al-
lows speech enhancement models to be evaluated beyond En-
glish. In addition to offering linguistic diversity, its rich demo-
graphic metadata enables analysis of model performance across
different age groups and genders, while its phoneme-level an-
notations facilitate studies on content preservation. However,

despite its advantages, CP has not yet been widely adopted for
benchmarking speech enhancement models.

In this paper, we leverage CommonPhone to conduct a com-
prehensive evaluation of speech enhancement models, assessing
their generalization across languages and demographic groups.
By analyzing performance variations related to age and gender,
as well as examining content preservation through phoneme-
level annotations, we provide deeper insights into potential bi-
ases and the impact of enhancement methods on speech intel-
ligibility and accuracy. Additionally, we extend CP by adding
Catalan, the language with the most hours of recorded speech
on CommonVoice to date.

Our study introduces three major contributions: (1) estab-
lishes a systematic evaluation of speech enhancement models
on a demographically diverse, multilingual dataset, (2) pro-
vides detailed insights into model generalization across differ-
ent speaker groups and languages, and (3) offers a new lan-
guage, gender and age balanced dataset to benchmark speech
enhancement in real world scenarios. These findings will be
crucial for developing more robust and inclusive speech en-
hancement systems that perform consistently across diverse
speaker populations and linguistic contexts.

1.1. Universal speech enhancement

Past works [9, 10] addressing Universal speech enhancement
have focused on models that can handle a wide range of audio
distortions. Following the same direction, the research com-
munity has recently proposed the URGENT challenge [11] to
evaluate models in more realistic conditions with variations of
sampling rates and distortions. Although it started using only
English, the 2025 edition has expanded its scope to include data
from 5 languages, thereby improving the assessment of model
generalization under more diverse conditions. Unlike previ-
ous benchmarks such as the DNS Challenge [2, 3], the CHiME
Challenge [4, 5, 6], and the Clarity Challenge [12], which have
focused on specific tasks such as noise suppression, speech en-
hancement in reverberant environments, and intelligibility im-
provement for hearing aids, the new challenge takes a broader
approach by adding bandwidth extension and clipping removal.
However, true universality requires not only addressing various
types of degradation but also ensuring robustness across speaker
characteristics. While the performance of enhancement mod-
els across different audio conditions has been extensively stud-
ied, their behavior with respect to speaker diversity has received
limited attention. Only recently multilingual test sets have been
added [13], yet non-English languages remain underrepresented
in evaluation frameworks.
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2. Experimental Setup
2.1. Dataset

We use the full CommonPhone (CP) dataset (train, dev, and
test) for evaluation. CP contains 76,307 speech samples from
six different languages: English (en), French (fr), Italian (it),
Spanish (es), German (de), and Russian (ru). The dataset com-
prises recordings from 11,246 unique speakers, amounting to
116.5 hours of speech. To extend our study, we introduce a new
language, Catalan, by incorporating the CommonVoice (CV)
Benchmark Catalan Accents dataset.1 This dataset consists of
16,405 audio samples from 1,531 speakers, totaling 25 hours of
audio. Like CP, it is also gender balanced and sourced from CV.

By merging both datasets, we create a joint benchmarking
corpus with a final duration of 141.5 hours. Given that CV cap-
tures a broad spectrum of speaker profiles and real-world acous-
tic conditions, it presents an ideal scenario for testing univer-
sal audio enhancement strategies. The dataset includes various
types of audio degradations, such as band limitation, loudness
and dynamic variations, equalization differences due to record-
ing setups, additive background or electrical noise, and rever-
beration effects. Additionally, it contains common speech ar-
tifacts such as clipping, plosiveness, and sibilance, further en-
riching the challenges faced by speech processing models.

2.2. Models

Model selection for evaluation was based on multiple criteria.
We selected the top 4 models w.r.t. PESQ[14] performance on
the VB-DMD dataset, prioritizing those with open source im-
plementations and VB-DMD pretraining. These models were
chosen to ensure architectural diversity across different training
paradigms. For comparison with signal processing approaches,
we included a spectral gate baseline implemented in noisere-
duce [15]. See Table 1 for descriptions of all selected models.

Table 1: Models selected for benchmarking.

Model Params. Type of Training Input

SEMamba[16] 2.25M Adversarial Mag+phase
Mp-Senet[17] 2.05M Adversarial Mag+phase
Openuniverse++[18] 84.24M Adversarial+Diffusion Waveform+Mel
SGMSE+[19] 65.59M Diffusion Complex

2.3. Metrics

2.3.1. Speech quality metrics

Following evaluation pipelines of previous works, PESQ [14],
STOI [20] and SI-SDR [21] are chosen. Due to the lack of clean
reference audio, we estimate these metrics with the SQUIM
model [22]. PESQ is useful for the evaluation of generative
speech enhancement in low-SNR [23]. Considering the exten-
sive scale of the evaluation dataset, conducting a comprehen-
sive subjective listening assessment is infeasible. Instead, we
include UTMOS [24] , SCOREQ [25] and NISQA [26] which
have been shown to correlate well with MOS ratings.2

1doi:10.57967/hf/5679
2Opening Remarks Urgent 2024 Challenge https://neurips.

cc/virtual/2024/102916

2.3.2. Content metrics

To analyze the capacity of enhancement models to main-
tain speech information, we computed Word Information Loss
(WIL) and Word Error Rate (WER) to evaluate the predicted
transcriptions from enhanced samples. WIL improves upon
WER by weighting errors based on their impact on meaning,
aligning better with human perception. Equation 1 describes
WIL, where N and P represent the total number of target and
predicted words, respectively, while C denotes the number of
correct words.

WIL = 1− C

N
∗ C

P
(1)

The predicted transcriptions were generated using
Conformer-CTC Large speech-to-text models from NVIDIA
NeMo’s platform,3 which provides pre-trained models for all
the languages explored in this work and does not rely on a
language model for corrections. Moreover, we were able to
compute Phoneme Error Rate (PER) to evaluate the samples
at a more fine-grained level. The original Wav2Vec2 model
fine-tuned on the six CP languages for phoneme recognition
from [8] was performed on enhanced samples. For Catalan,
we applied Facebook’s fine-tuned multilingual Wav2Vec24 to
predict phoneme sequences, which were later compared with
those obtained from the eSpeak5 rule-based phonemizer.

2.3.3. Linguistic distance metrics

To compare the performance of speech enhancement models in
different languages with their proximity to English, we quan-
tified the distance between languages using the URIEL+ li-
brary [27]. This tool represents languages through various fea-
tures, and allows the calculation of the distance between lan-
guages considering multiple linguistic factors.

Table 2: Language distances to English, lower is nearer.

Distance de es fr it ru ca

Phonological 0.37 0.28 0.46 (no data) 0.28 0.20
Phonemic Inv. 0.44 0.55 0.48 0.51 0.56 0.46
Phylogenetic 0.64 0.94 0.94 0.93 0.89 0.93

For this study, we specifically considered Phonological dis-
tance, Phonemic Inventory distance and Phylogenetic distance.
Phonological Distance refers to the characteristics in the sound
systems of languages, covering both segmental and supraseg-
mental features. In contrast, Phonemic Inventory Distance is
based on the set of phonemes for each language. Phylogenetic
distance refers to the shared membership in language families,
based on the world language family tree in Glottolog [28]. The
distances considering these characteristics between English and
the analyzed languages are reported in Table 2.

3. Evaluation
3.1. Demographic analysis

3.1.1. Age and gender

For the analysis, we discard speakers older than 79 years old as
there are only 10 English speakers in that age band. The rest

3https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt (ca,
de, en, es, fr, it, ru) conformer ctc large

4https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft
5https://github.com/espeak-ng/espeak-ng
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Table 3: Comparison of models in terms of information loss (L), PER, and WIL by language, with all scores in percentage.

en ca de es fr it ru

L PER WIL L PER WIL L PER WIL L PER WIL L PER WIL L PER WIL L PER WIL

MPS 24.5 38 36.6 20.0 40 32.3 29.2 32 34.9 16.5 32 33.6 36.7 32 40.1 17.7 35 37.4 31.5 21 30.7
OpU 40.1 54 46.0 33.4 50 41.2 46.7 46 43.8 37.6 46 42.9 52.0 46 48.0 39.9 48 46.6 47.2 37 42.5
SMb 23.8 37 35.2 18.8 39 31.3 28.1 31 33.5 14.5 27 29.6 36.0 30 38.6 15.7 30 32.9 30.6 20 30.3
SGM 29.6 42 39.1 27.0 43 36.2 35.3 35 37.1 24.6 35 34.9 41.4 35 41.4 28.0 38 39.2 37.7 28 35.6

SpGt 26.4 42 35.0 22.7 43 32.9 35.9 34 33.8 19.1 27 27.0 38.9 34 38.8 20.5 31 30.6 37.5 26 32.6

of the languages have speakers in all of the age bins, except
for Russian that only has speakers up to 50 years old. Figure
1 shows a decrease in performance as age increases for both
NISQA and SCOREQ metrics. In the case of UTMOS, while
this decrease is less pronounced for the best model (SGMSE+),
the remaining models maintain the trend of decreasing per-
formance. For UTMOS and SCOREQ, although the Baseline
(spectral gate) method shows slight fluctuations, it does not ex-
hibit a decreasing trend, which aligns with expectations given
its non-data dependency. Openuniverse++ is also the model
with the highest decrease in performance w.r.t age in SCOREQ.

Statistical analysis using Kruskal-Wallis tests, conducted
separately for each model and language, confirmed significant
(χ2(6) = 22.46, p < .001) age-related differences across
all three metrics (NISQA, SCOREQ, and UTMOS). Post-hoc
comparisons using Conover revealed that there are several age
groups for SGMSE+ and spectral gate where no significant dif-
ference was found in UTMOS and NISQA, suggesting that the
performance of those models is less affected by the age vari-
able. Finally, the best performing age group is 20-40, which
coincides with the age range of the train dataset (VB-DMD).

Figure 1: Comparison of speech enhancement systems per age
groups averaged over all languages. 95% CI on shaded region.

We next examine whether speech enhancement perfor-
mance differs by speaker gender, in Figure 2 the value of the
NISQA, SCOREQ and UTMOS is always higher for males on
SEMamba, MP-Senet and SGMSE+. The greatest differences
are observed in the UTMOS metric, even for spectral gate. A
Mann-Whitney U test per each model and age band was per-
formed to evaluate whether NISQA, UTMOS and SCOREQ
differed by gender. The results indicated that males had sig-
nificantly (p < 0.001) higher values than females, except for
Openuniverse++ on NISQA and SCOREQ, as well as Spectral
gate on SCOREQ.

3.1.2. Language

Table 4 presents the performance metrics across different mod-
els and languages. Although STOI was also computed we the
results on the table because the values are the same (0.96) for
all rows. As expected, English, that is the same language of the

Figure 2: Comparison of speech enhancement systems per gen-
der groups.

training dataset, has the highest scores in the non-reference met-
rics (SCOREQ and UTMOS). However, for PESQ and SI-SDR
the best performing language alternates between Catalan, Ital-
ian, and Russian but the differences are less pronounced com-
pared with non-reference metrics. Finally, SGMSE+ ranks first
in all metrics.

Table 4: Language performance comparison.

SCOREQ UTMOS PESQ SI-SDR
Mod. Lan

M
p-

Se
ne

t

ca 3.17 ± 0.01 1.93 ± 0.01 2.97 ± 0.01 19.86 ± 0.11
de 3.44 ± 0.01 2.29 ± 0.01 2.96 ± 0.01 20.06 ± 0.11
en 3.68 ± 0.01 2.63 ± 0.01 2.96 ± 0.01 19.97 ± 0.11
es 3.22 ± 0.01 1.95 ± 0.01 2.92 ± 0.01 19.09 ± 0.11
fr 3.21 ± 0.01 2.11 ± 0.01 2.87 ± 0.01 20.05 ± 0.11
it 3.26 ± 0.01 2.06 ± 0.01 2.95 ± 0.01 19.77 ± 0.10
ru 3.42 ± 0.01 2.22 ± 0.01 2.95 ± 0.01 20.33 ± 0.11

O
pe

nu
ni

ve
rs

e+
+ ca 2.78 ± 0.01 1.95 ± 0.01 2.94 ± 0.01 18.13 ± 0.10

de 3.01 ± 0.01 2.22 ± 0.01 2.98 ± 0.01 18.47 ± 0.10
en 3.26 ± 0.01 2.53 ± 0.01 2.94 ± 0.01 18.45 ± 0.10
es 2.74 ± 0.01 1.90 ± 0.01 2.88 ± 0.01 17.53 ± 0.10
fr 2.78 ± 0.01 2.08 ± 0.01 2.89 ± 0.01 18.66 ± 0.10
it 2.74 ± 0.01 1.99 ± 0.01 2.98 ± 0.01 18.29 ± 0.10
ru 2.94 ± 0.01 2.14 ± 0.01 2.97 ± 0.01 18.60 ± 0.10

SE
M

am
ba

ca 3.18 ± 0.01 1.95 ± 0.01 2.91 ± 0.01 19.66 ± 0.11
de 3.40 ± 0.01 2.32 ± 0.01 2.94 ± 0.01 20.14 ± 0.11
en 3.64 ± 0.01 2.65 ± 0.01 2.94 ± 0.01 20.14 ± 0.11
es 3.19 ± 0.01 1.98 ± 0.01 2.92 ± 0.01 19.40 ± 0.11
fr 3.17 ± 0.01 2.14 ± 0.01 2.85 ± 0.01 20.24 ± 0.10
it 3.24 ± 0.01 2.10 ± 0.01 2.96 ± 0.01 20.16 ± 0.09
ru 3.40 ± 0.01 2.26 ± 0.01 2.94 ± 0.01 20.44 ± 0.11

SG
M

SE
+

ca 3.21 ± 0.01 2.08 ± 0.01 3.16 ± 0.01 20.99 ± 0.09
de 3.46 ± 0.01 2.41 ± 0.01 3.05 ± 0.01 20.51 ± 0.11
en 3.73 ± 0.01 2.75 ± 0.01 3.06 ± 0.01 20.60 ± 0.11
es 3.26 ± 0.01 2.08 ± 0.01 3.02 ± 0.01 19.88 ± 0.11
fr 3.24 ± 0.01 2.24 ± 0.01 2.98 ± 0.01 20.87 ± 0.10
it 3.35 ± 0.01 2.23 ± 0.01 3.11 ± 0.01 20.93 ± 0.09
ru 3.44 ± 0.01 2.34 ± 0.01 3.04 ± 0.01 20.89 ± 0.10
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Figure 3: Model comparison vs. spectral gating by language, for samples with WIL greater than 50%.

3.2. Content and linguistic analysis

3.2.1. Linguistic distance

We compare the model’s performance using different met-
rics in various languages, considering their distance from En-
glish. Regarding the distance in phonological inventory, we ob-
serve a weak negative (-0.21) correlation when considering the
SCOREQ and UTMOS metrics, excluding the fact that Cata-
lan yields anomalously low results in some of the models used
and Russian anomalously high ones. This can be explained
by the fact that the Catalan dataset has 30% speakers over 50
years old, while Russian does not have any (as mentioned in
Section 3.1.1). The relationship between the model’s perfor-
mance and phylogenetic distance appears clearer with the ag-
gregated values in Figure 4, but still yields a weak negative cor-
relation (-0.17), especially considering that the distance differ-
ences among the Romance languages are minimal. Finally, con-
trary to our expectations, we do not observe a clear relationship
between phonological distance and the model’s performance.
Nevertheless, we believe that a sample of seven languages is
not significant enough to draw definitive conclusions.

Figure 4: Relation between speech quality metrics and phyloge-
netic distance to English.

3.2.2. Information loss

Some samples showed partial or total loss of speech after being
processed by the enhancement models. To analyze this phe-
nomenon in more detail, we collected samples with a WER
higher than the values reported in NeMo model evaluations for
the CV test data for each language.: 9.4% (en), 4.27% (ca),
6.68% (de), 6.9% (es), 9.63% (fr), 7.2% (it), 4.3% (ru). The
amount of enhanced samples that surpass these scores were
considered data with information loss (L). WIL and PER were
computed for these subsets, per language and model. The over-
all percentage results are shown in Table 3. We clearly ob-
serve that SEMamba (SMb) is the model that loses the least
information across all languages. On the other hand, Openuni-
verse++ (OpU) performs the worst in all aspects for all lan-
guages. SGMSE+ (SGM) appears to lose more information
than spectral gating (SpGt) signal processing, despite achieving

the best scores in terms of audio quality.
Figure 3 presents the distributions of the worst samples per

language and model (those with a WIL higher than 50%). The
four enhancement models are compared with spectral gating.
SGM and Mp-Senet (MPS) show varying sensitivity depend-
ing on the language, while SEMamba exhibits a lower me-
dian among the worst cases. Surprisingly, Catalan displays the
largest quartiles across all models, despite being one of the lan-
guages least affected by information loss.

3.3. CommonPhone-SE

We introduce a benchmark subset of 5242 challenging speech
samples to encourage more robust model development. The
sampling rationale was to select audios that remain difficult for
state of the art models, both in terms of speech quality metrics
and content preservation, hence, we selected the worst 40 exam-
ples w.r.t. to UTMOS, SCOREQ and WIL per each language,
age band and gender. Finally, the duplicates were dropped to
arrive at a final evaluation dataset of 8.24 hours. The dataset is
released in Huggingface 6 to facilitate access to a wide commu-
nity with a webpage to share audio examples 7.

4. Discussion and future work
We found that the model ranking on VB-DMD does not directly
transfer to a more diverse and realistic dataset, highlighting the
limitations of using a single, simplified benchmark. SGMSE+
demonstrates superior performance in signal quality metrics and
shows remarkable stability across different speaker ages. A crit-
ical finding is the potential overfitting to PESQ scores, as ob-
served in MP-Senet and SEMamba which explicitly optimize
for this metric. This aligns with recent work [29] question-
ing the reliability of PESQ optimization. A key takeaway is
that neural models often compromise intelligibility for percep-
tual quality and models achieving excellent quality scores often
perform poorly in content retention, as also observed in [30].
Surprisingly, for languages like Spanish and Catalan, which
score lower on quality metrics, models demonstrate better con-
tent preservation. The traditional signal processing approach
of spectral gating, while uncompetitive in quality metrics, out-
performs neural models in information preservation in several
languages. Based in the findings about spectral gate for content
preservation, we believe in the potential of hybrid approaches
for enhancement strategies which we will explore in the future.

Significant statistical differences across age, gender and
language were found in the evaluation, supporting the need for
multilingual and diverse datasets in speech enhancement eval-
uation and training. The released dataset will serve to the re-
search community as tool to achieve Universal speech enhance-
ments for a diverse population.

6https://huggingface.co/datasets/BSC-LT/CommonPhone-SE/
7https://github.com/langtech-bsc/commonphone-se
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ity enhancement challenge for hearing aid speech intelligibility
enhancement: Overview and outcomes,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5.

[13] R. Cutler, A. Saabas, B. Naderi, N.-C. Ristea, S. Braun, and
S. Branets, “Icassp 2023 speech signal improvement challenge,”

IEEE Open Journal of Signal Processing, vol. 5, p. 662–674,
2024. [Online]. Available: http://dx.doi.org/10.1109/OJSP.2024.
3376293

[14] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual eval-
uation of speech quality (pesq)-a new method for speech quality
assessment of telephone networks and codecs,” in 2001 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Process-
ing. Proceedings (Cat. No.01CH37221), vol. 2, 2001, pp. 749–
752 vol.2.

[15] T. Sainburg, “timsainb/noisereduce: v1.0,” Jun. 2019. [Online].
Available: https://doi.org/10.5281/zenodo.3243139

[16] R. Chao, W.-H. Cheng, M. La Quatra, S. M. Siniscalchi, C.-H. H.
Yang, S.-W. Fu, and Y. Tsao, “An investigation of incorporating
mamba for speech enhancement,” in 2024 IEEE Spoken Language
Technology Workshop (SLT). IEEE, 2024, pp. 302–308.

[17] Y.-X. Lu, Y. Ai, and Z.-H. Ling, “Mp-senet: A speech en-
hancement model with parallel denoising of magnitude and phase
spectra,” in INTERSPEECH 2023. ISCA, Aug. 2023. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2023-1441

[18] R. Scheibler, Y. Fujita, Y. Shirahata, and T. Komatsu, “Universal
score-based speech enhancement with high content preservation,”
2024. [Online]. Available: https://arxiv.org/abs/2406.12194

[19] J. Richter, S. Welker, J.-M. Lemercier, B. Lay, and T. Gerkmann,
“Speech enhancement and dereverberation with diffusion-based
generative models,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 31, pp. 2351–2364, 2023.

[20] J. Jensen and C. H. Taal, “An algorithm for predicting the intelligi-
bility of speech masked by modulated noise maskers,” IEEE/ACM
Transactions on Audio, Speech,and Language Processing, vol. 24,
no. 11, pp. 2009–2022, 2016.

[21] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey,
“Sdr - half-baked or well done?” 2018. [Online]. Available:
https://arxiv.org/abs/1811.02508

[22] A. Kumar, K. Tan, Z. Ni, P. Manocha, X. Zhang, E. Henderson,
and B. Xu, “Torchaudio-squim: Reference-less speech quality
and intelligibility measures in torchaudio,” 2023. [Online].
Available: https://arxiv.org/abs/2304.01448

[23] J. Pirklbauer, M. Sach, K. Fluyt, W. Tirry, W. Wardah, S. Moeller,
and T. Fingscheidt, “Evaluation metrics for generative speech en-
hancement methods: Issues and perspectives,” in Speech Commu-
nication; 15th ITG Conference, 2023, pp. 265–269.

[24] T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi,
and H. Saruwatari, “Utmos: Utokyo-sarulab system for
voicemos challenge 2022,” 2022. [Online]. Available: https:
//arxiv.org/abs/2204.02152

[25] A. Ragano, J. Skoglund, and A. Hines, “Scoreq: Speech
quality assessment with contrastive regression,” 2025. [Online].
Available: https://arxiv.org/abs/2410.06675

[26] G. Mittag, B. Naderi, A. Chehadi, and S. Möller, “Nisqa:
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