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Abstract—Quantum optimal control for gate optimization aims
to provide accurate, robust, and fast pulse sequences to achieve
gate fidelities on quantum systems below the error correction
threshold. Many methods have been developed and successfully
applied in simulation and on quantum hardware. In this paper,
we establish a connection between the iterative linear quadratic
regulator and quantum optimal control by adapting it to gate
optimization of quantum systems. We include constraints on the
controls and their derivatives to enable smoother pulses. We
achieve high-fidelity simulation results for X and cross-resonance
gates on one- and two-qubit fixed-frequency transmons simulated
with two and three levels.

Index Terms—quantum optimal control, iterative linear
quadratic regulator, gate synthesis for superconducting qubits

I. INTRODUCTION

Quantum optimal control (QOC) aims to design and ap-
ply precisely shaped pulse sequences of external fields to
achieve high-fidelity control of quantum systems as effi-
ciently as possible [1]. While possible applications for QOC
range from quantum metrology [2] to quantum sensing [3],
we focus on the field of gate optimization for quantum
systems [4]. Quantum control algorithms build on the rich
field of classical control theory, especially for trajectory op-
timization: Krotov’s method [5] is named after its classical
counterpart [6], PRONTO [7] is based on the Projection
Operator-based Newton method [8], and PICO [9] is based
on direct collocation [10]. Iterative linear quadratic regula-
tor (iLQR) [11] is a value-function-based shooting method
for trajectory optimization utilizing an approximation of the
Hessian to determine the control updates. In recent years, it
has become a state-of-the-art method in robotics, especially in
online trajectory optimization for complex robots [12] because
it obtains convergence guarantees by Levenberg-Marquardt
regularization, is fast because of the Hessian approximation,
handles nonlinear system dynamics via line-search, and obeys
the system dynamics at any iteration of the optimization.
In this paper, we adapt iLQR to the task of quantum gate
optimization. Our contributions include:

« Adaptation of iLQR to QOC with smoothed controls
o Providing an in-depth description of the algorithm

« Simulation results for high-fidelity one-qubit and two-
qubit gate synthesis for fixed-frequency transmons

o Comparison of our results to solutions obtained by L-
BFGS-B GRAPE

This paper is organized as follows: First, in Sec. II, we
provide a literature overview of QOC algorithms and recall
the one-qubit and two-qubit fixed-frequency transmon Hamil-
tonian for superconducting systems. Then, in Sec. III, we
introduce iLQR with the isomorphic representation and Padé
approximation. In Sec. IV, we demonstrate the performance
for gate optimization on the transmon Hamiltonians of increas-
ing difficulty and conclude in Sec. V.

II. BACKGROUND
A. Quantum optimal control

State-of-the-art methods for gate optimization for supercon-
ducting transmon architectures include analytic and numerical
methods. Prominent analytical methods are the Derivative
Removal by Adiabatic Gate (DRAG) [13] for single-qubit op-
eration, the cross-resonance (CR) gate [14], and its improved
echo CR [15] two-qubit operation. Both have shown remark-
able results for fixed-frequency transmon architectures because
of the opportunity to fine-tune the pulse shape with system
feedback data [16]. However, numerical optimization methods
promise to offer more flexibility to adapt to more complex
systems, specific control problems, experimental limitations,
and uncertainties [4].

Many numerical open-loop control methods have been in-
troduced in the last decades. In particular, two well-established
gradient-based methods include gradient ascent pulse engi-
neering (GRAPE) [17] and Krotov’s method [5]. GRAPE
updates all piecewise constant controls concurrently, i.e.,
based on the non-updated controls of the previous iteration
step, using first-order [17] or second-order approximations
by L-BFGS-B [18] of the loss gradients. The L-BFGS-B
GRAPE implementation is available in the qutip-gtrl
package [19] and has been tested on IBM superconducting
systems [20]. In addition, Krotov’s method [5], with its quasi-
Newton extension [21], updates all controls sequentially, i.e.,
by including updated controls within the same iteration step.
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Krotov’s method is available for time-continuous [22] and
time-discretized control functions [23]. However, the mono-
tonic convergence of Krotov’s method is guaranteed only for
the time-continuous case [5]. Like Krotov’s time-continuous
version, PRONTO [7] solves the optimal control problem
by sequentially solving ordinary differential equations and
is guaranteed to be monotonically convergent. In contrast
to previous Krotov’s methods, PRONTO employs a Newton
descent method to allow for quadratic convergence rates in
proximity of local minima by incorporating system dynamics
into a modified cost function using a projection operator. In
addition to these shooting methods, direct collocation has
recently been proposed [9] for quantum gate synthesis that
includes both the states and controls at each discrete time
step as a decision variable. Hence, in contrast to shooting
methods, the number of optimization variables scales with
the dimension of the Hilbert space. Additionally, the system
dynamics of the trajectory are obeyed up to a certain factor by
using them as a constraint during the optimization rather than
a strict forward rollout. For a more comprehensive overview
of recent progress in QOC, including machine learning and
reinforcement learning approaches, we refer the reader to [4].

The iLQR algorithm utilizes first-order derivatives of the
system dynamics in a Gauss-Newton approximation step
to determine the Hessian for updating piecewise constant
controls. Thereby linking it closely to differential dynamic
programming (DDP) [24], which requires second-order deriva-
tives for applying a full Newton step. However, the time
advantage of the quadratic convergence often diminishes by
the longer calculation time needed to determine second-order
derivatives [25]. Although iLQR is concurrent in the sense that
updates of piecewise constant controls are based on derivatives
of the previous iteration step, a fundamental difference in
comparison with GRAPE is that iLQR updates the controls
based on the value function, which assigns a cost-to-go to
each state and hence includes knowledge about future costs of
the current control in the update.

B. Transmon Hamiltonian

Closed quantum systems evolve according to the
Schrodinger equation. For time-dependent unitary operators
U(t) € C¥4 and a Hamiltonian H depending on m real-
valued controls u(f) € R™ the Schrodinger equation reads
ihU (1) = H(u())U(t). We set the reduced Planck’s constant
h =1 in the following. The solution for N time-discretized
controls u; € R™ and a constant time interval At is given by

N

Un (ur:n) = | | exp (=i H (u)Ar) Up. )
k=1

The discrete system dynamics are given by
U1 = (Ui, ux) = exp(—i H(ux) Ar) Uy (2)

Qubits can be physically realized by fixed-frequency trans-
mons dispersively and capacitively coupled to a quantum
resonator bus [26] that can be driven by microwave pulses [27].

A single transmon with transition frequency w between eigen-
states |0) and |1) and anharmonicity § can be described by the
Duffing oscillator

0
Hdufﬁng = (A)bTb + EbTb(bTb - 1) 3)

where 5" and b denote the creation and annihilation operators
of the quantum harmonic oscillator. The resonator is described
by a harmonic oscillator Hamiltonian w,c¢c with transition
frequency w, for all levels, and frequencies being far detuned,
1.e., W, > .

Transmons can be coupled capacitively to the resonator by
the Jaynes-Cummings Hamiltonian with coupling strength g;
in the dispersive regime, i.e. g; < |Ajr\ where Aj, = w; - w,
is the detuning. For two transmons coupled to the resonator,
the Hamiltonian reads

2 2

Hgys = (A)rCTC+ZHdufﬁng’j +Zgj(bj.c+bj07) 4)
j=1 Jj=1

The first resonator term and the six Duffing terms of the
system’s Hamiltonian are diagonal. Only the last two inter-
action terms are non-diagonal. Therefore, in the dispersive
regime, the following effective two-transmon Hamiltonian can
be derived via a Schrieffer-Wolf transformation and projection
on the zero-excitation subspace of the bus [28]

2
- Oj T
TNy (wjbj.b,- + bbb, 1)) 471 (b]b2+ b1b})

j=1

)

2
with dressed qubit frequencies @; = w;+ f—f and the effective

; : Jr

coupling to first-order Ji5 = 5 i ‘rgAZZr (A1 + Azy).

General microwave drive channels acting on the jth trans-
mon with in-phase quadrature uj,‘(t), off-phase quadrature
u}’(t), drive frequency wy, and phase ¢ are modeled by the

drive Hamiltonian

Ha(t) = r; (uj? (1) cos (wat +¢) +u” (1) sin (wat + ¢)) (b'+b))
(6)

where we include the Rabi strength factor r;, which acts as a
damping factor and is a property of the quantum system.

In the single-transmon case, the transmon is driven with
two quadratures in its dressed transition frequency wg = @
and the total system is described by Hauffing + Ha(t). The
transformation R = exp(—i(wqt + ¢)b'b) shifts to the rotating
frame,e which leads to the equation of one transmon driven
by a microwave pulse with the rotating frame approximation
(RWA)
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In the two-transmon case, a second drive can be added that acts
on the second transmon (b; + b;) at the frequency of the first
wq = @1. Driving one transmon (the control qubit) with the

(b;L +by)+r

+r



frequency of the other (the target qubit) is referred to as cross
resonance pulse [14]. Both drives have the same frequency,
i.e., @1, but act on different transmons. This enables a rotating
frame transformation by R = exp(—i (@1t + @) Z§=1 bj.b j).
With RWA and A,; = @, — @1, the two-transmon Hamiltonian
is given by
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C. Hardware parameters

On quantum systems, the arbitrary waveform generator

(AWG) creates the amplitudes for the pulses as piecewise con-

. X; Y, . . .
stant functions u,’ and u,” which are applied for the duration
At for each timestep k € {1,...,N}. We utilize the system
parameters of the IBM Eagle processor ibm_brisbane
for qubit 0 and 1, which can be obtained via the open
source library Qiskit Pulse [29]. Table I lists the rounded
parameters in angular frequencies.

A common native gate set for fixed-frequency transmon
architectures consists of single-qubit operations VX, X, and
Rz(6) and an entangling two-qubit operation like cross res-
onance, echoed cross resonance, or CNOT gate. The Rz(6)
gate can be implemented virtually by changing the phase of
the AWG [30]. The single qubit gates VX, X and the two-
qubit operation are implemented by AWG pulse envelopes.
We focus on the X gate for the one-qubit operation because
the method works analogously for the VX gate. For the
two-qubit operation, we consider the cross-resonance gate
Rxz(n/2) = exp(—inXZ/4), which is equivalent to the CNOT
gate up to a global phase by applying it together with one-
qubit gates CX,,q, = 1®Rz(-7/2)-Rxz(n/2)-Rx(-n/2)®1.
Note that, in our drive channel setup, the second qubit is the
control and the first qubit is the target.

III. METHOD

This section outlines the isomorphic representation, the Padé
approximation for approximating the matrix exponential, the
iLQR method, and its adaptations to obtain smoother control
shapes.

TABLE 1
FIXED-FREQUENCY TRANSMON PARAMETERS

qubit 1 dressed frequency  @;/(27) 47219 GHz
qubit 2 dressed frequency  @;/(27) 4.8151 GHz
qubit 1 anharmonicity 61/(2nx)  -0.3120 GHz
qubit 2 anharmonicity 8/(2n)  -0.3097 GHz
effective coupling Ji2/(2n) 0.0020 GHz
qubit 1 rabi strength ri/(2n) 0.0921 GHz
qubit 2 rabi strength r/(2n) 0.0974 GHz
minimal time interval At 0.5 ns

A. Isomorphic representation

We follow [9] and vectorize unitary matrices by an iso-
morphic representation of complex vector spaces. A complex-
valued vector |¥) € C¢ and matrix U € C%*? can be rewritten
as the following real-valued vector and matrix

- Re¥ ~ ReU -ImU
|T>_(Im‘{‘) and U_(ImU ReU)' ®)

The state space of complex-valued matrices can, there-
fore, be expressed by a 2d> real-valued vector x; =
(Re(Up), - - -, Re(Uga), Im(Ugy), - . - ,Im(Udd))T where xx
denotes the matrix values at timestep k. The discretized
forward step of Eq. (2) based on controls u; can also be
expressed in the isomorphic representation

Uyl = f(ﬁk,uk) = exp (—iI:I(Mk)At) Uy. (10)

B. Padé approximation

Calculating the matrix exponential in Eq. (2) is essential for
the forward propagation. While (quasi-)analytic expressions
are available for Lie groups SU(2), SU(3), and SU(4) [31], we
decide to use the Padé approximation for matrix exponentials
as described in [9] because it can be readily used for higher
levels. The Padé approximation is achieved by

exp(G) ~ B~ (G)F(G) (11)

where B(G) and F(G) are power series that can be chosen to
a certain degree. For example, the eighth-order power series
is given by

A 307 , A 5 A,
BG.A)=1-2tGgyorg2_Crgsy O 12
(G, A1) AT I AR T A
A, 3A7 A 3 A
FG.A)=1+2G+220G2 4 2063 4 2 64 (1b
(G A1) =1+ G+ 256+ 2107+ 1680 (12b)

C. Iterative Linear Quadratic Regulator

With the isomorphic representation of the forward step
in Eq. (10), the Padé approximation in Eq. (11), and the
vectorized form x of the unitary Uy, the QOC problem can be
formulated as an iLQR problem. As a trajectory optimization
method, iLQR encodes the search for a control trajectory
up:n-1 = (uy,...,uny—1) with a consistent state trajectory
x1:n = (x1,...,xn) over a horizon N which fulfills constraints
in an optimization problem of the shape

N-1
min J(x;.n, u1:n-1) = lp(xn) + Z I(xp,ur) (13a)
Ui:N-1 =1

subject to:  xg41 = f(xp,ux) Vke{l,..,N-1} (13b)

X1 =X (13C)

with the cost functional J, which usually can be split into a fi-
nal cost function /,, (xp) and a running cost function /(xg, ug).
The constraints enforce the discrete system dynamics between
the knot points and fix the initial state.

The value function V is defined as V, :=
miny, ,,_, J(Xr:N,Uk:n-1). Bellman’s

Vixe) =
optimality principle



states that for optimal solutions every individual step has to
be optimal, hence yields the recursive relation

Vie(xx) = ngn [ (xk, uie) + Viwr (f (xk, uie))]

= min O (xk, ug) (14)
with Vi = [¢(xy). The argument of the minimization is the
action-value-function Q (xg, uy). For small variations, Q (xx +
Oxg, Ug+0uy) can be approximated with a second-order Taylor
expansion, which requires the following terms

Qx,k = lx,k + Vx,k+1fx,k (153)
Qu,k = lu,k + Vx,k+1fu,k (15b)
Qxx,k = lxx,k + f)Z:kax,kax,k + Vx,k+1fxx,k (150)
Quu,k = luu,k + fuI:kax,kau,k + Vx,k+lfuu,k (15d)
qu,k = lux,k + fu]:kvxx,kﬂfx,k + Vx,k+1fux,k (156)
qu,k = sz’k (15D

where Oy x = 0xOlxiups Oxx.k = 020|x.u,» and accordingly
for all other combinations. DDP utilizes the full second-
order approximation, while iLQR ignores the second-order
derivatives of the dynamics function. With this approximation,
the Q-function can be minimized with respect to du yielding
the locally optimal update to the controls

Suy = argming,, O (xXx + 6xk, ug + 6ug)

-1 -1
= _Quu,kQu,k - Quu,kqu,kéxk

= ki + Kpoxy (16)

The value function can be updated by Vi; = QOxi —
Qu,kQ;‘i’kqu,k and Vxx,k = Qxx,k _qu,kQ;,i,kqu,k- USing
a backwards recursion for Vi and Vi starting from the final
condition Vy = [(xx) one can recursively compute updates
to the value function and the feedback gains x; and Ki. This
procedure is called the backward pass. The invertibility of O,
is ensured by including a Levenberg-Marquardt regularization
scheme [32]. During the forward pass, the feedback gains are
applied and a new control and state trajectory is calculated
starting from the fixed start state x"*V = x!

uﬁew =Uup + aky + Kk(xzew

new __ new new
Xper = SO uy

a7
(18)

- Xk)

A line-search with the parameter o and a Goldstein acceptance
criteria [32] prevent steps from going too far away from
the reference point around which the system dynamics are
linearly approximated. Backward pass and forward pass are
alternated until convergence. While the derivatives in the RHS
of Egs. (15) must be calculated backward for each timestep
k, these calculations can be performed in parallel.

D. Smooth controls

The original iLQR implementation, as presented in the
previous section, does not include explicit constraints and,
hence, optimizes over the entire, unconstrained control space.
Because of limitations of the AWG abrupt changes in the

controls should be avoided and starting and ending at zero is
beneficial. To retrieve results with these properties, we choose
the derivatives of the pulse envelopes as control variables
and extend the state space with the actual pulse values. The
derivative 1y changes the actual controls via ug.) = ug +urAt
for all k. With these modifications, we ensure that pulses
start at zero by setting the initial condition and enable the
penalization of the final pulse value, all intermediate pulse
values, and the rate of change for the pulse in the cost function.
Besides that, we do not impose further constraints on the
controls. The total problem formulation in the structure of
Eq. (13a) can be summarized as

N-1
min Ly Covsun) + ) LiCoeuo i) (19)
Uly.e.., Un-1 =1
subject to: Uy = e WMy (19b)

Uryel = U +urAt Yk (19¢)
Uy=1 and u; =0. (19d)
We use the quadratic costs
Ly (xp, g, ti) = iy Raiig +ug Reu (20)

Ln(en,un) = (xn —x0)TQp(xy —xg) +unRpuy (1)

with the cost matrices Qf € R24*x2d* and Ra,Rc, Ry €
R™*™M R, regularizes the rate of change for the pulses, R.
the pulse amplitudes and Ry the final control values up.
QO penalizes differences between the final unitary Uy =
[1;-," exp(=iH (ux)At)U; and the goal matrix U, computed
in their vectorized form xy — xg.

IV. RESULTS

This section presents the simulation results of four gate
optimization examples based on superconducting transmons
restricted to two and three levels. We utilize the system param-
eters of the IBM_brisbane Eagle processor as summarized
in table I and keep the minimal time interval Ar = 0.5 ns
constant. In addition, we start our numerical experiments by
selecting the number of timesteps slightly shorter than the gate
times implemented on the IBM_brisbane system for their
one- and two-qubit gates. We choose N = 80 time steps for
our 1-qubit experiments and N = 480 for our 2-qubit exper-
iments. We initialize all pulses with random values between
[-0.01,...0.01] and performed hyperparameter tuning of the
cost matrices. As a first step, we manually find four diagonal
values for the cost matrices Q ¢, Rq, R, and Ry, which lead to
good fidelities and relatively smooth pulses. For the one-qubit
and three-level model, as well as for both two-qubit models,
we perform a grid search by multiplying the four diagonal
values by {1/10,1/2,1,5, 10} to search through 625 different
parameter combinations. For the two-qubit model with three
level, we select the best run of the previous gridsearch, fix R,
and define a finer grid {1/10,1/4,1/2,3/4,1,2.5,5,7.5,10}
for the remaining diagonal values of the three cost matrices.
The remaining section presents the best results regarding gate
fidelity and the smoothness of the envelopes.
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Fig. 1. Simulation results for one transmon qubit with two levels with gate
infidelity of 4.0 - 10~°. Population probability obtained by state evolution of
the basis state |0) (top) under the optimal control sequence for the X-gate
(bottom).

A. One qubit with two levels

As a first example, we consider the two-level time-
discretized Hamiltonian of Eq. (7) with piecewise constant
controls. We choose U, = iox € SU(2) which equals the X-
gate up to a global phase. This task is analytically solvable
because only the uXox operation is required [13]: if U, =

iox = Un = 1" exp(—i%uXAtox) than ¥, uXAt = -Z
because of Euler’s formula for SU(2). Without including the
derivatives of the controls, iLQR reproduces the analytic bang-
bang solution with constant controls uf = —0.135722 for all
N =80 time steps k leading to a simulation rollout infidelity
of 1.3-107'3. The sum over all controls matches the analytic
factor up to 3 - 10~7. However, rapid changes of the AWG’s
amplitude, as they can, for example, appear if the controls start
and end with values different from zero, should be avoided
in practice. That is why smoother controls are preferred in
practice.

Fig. 1 shows the resulting controls and state propagation
for basis states |0) and |1) obtained in simulation by iLQR
including the derivatives of the controls for the smoothening
effect. The simulation rollout infidelity is 4-10~° and the sum
of the controls matches the factor up to 5.7 - 1077,

Similar results can be obtained with L-BFGS-B GRAPE. We
modified the code slightly to allow different initial pulses for
the controls. Starting with a Gaussian initial pulse type for uX
and zeros for u¥ leads to an almost ideal Gauss-like solution
with the sum being equal to the factor up to 3.9 - 1077 and a
simulation rollout infidelity of 1.9-10~'3. The Gaussian form,
compared to the solution obtained by iLQR, has the advantage
of smoother start and end regions.

B. One qubit with three levels

In the next example, we enable the possibility of leakage
into a higher level by utilizing the time-discretized Hamilto-
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Fig. 2. Simulation results for one transmon qubit with three levels with gate
infidelity of 2.1 - 1077, Population probability obtained by state evolution
of basis state |0) (top) under the optimal control sequence for the X-gate
(bottom).

nian of Eq. (7) with piecewise constant controls and three-
dimensional creation and annihilation operators. We choose

Ug =i (11) (0] +10) (1]) + [2) (2 € SU(3) (22)

which acts on the basis states |0) and |1) as an ordinary X-gate
up to a global phase. We use the derivative control to ensure
a smoother rise and decline in the amplitudes. Fig. 2 shows
the resulting controls and state propagation for basis states 10)
obtained in simulation by iLQR. The infidelity is 2.1 - 107’
and the sum over all controls }; qut equals the factor up
to 3.8 - 1074, The state propagation shows almost no leakage
into the higher excitation state |2). The off-phase quadrature
amplitude u” is roughly proportional to the derivative of the
uX amplitude, i.e. u¥ = —§;u%, which is, up to the factor,
in agreement with the DRAG procedure [13]. In our iLQR
setup, we force both in-phase and off-phase quadratures to go
towards zero at the start and end. For many hyperparameters
and system values, iLQR provides X solutions that are more
parabola- than Gaussian-shaped. For parabola solutions for u*,
the derivatives at the start and end are highest, which means
that u¥, especially at the beginning and end, is not proportional
to the derivative.

As a comparison, when initializing L-BFGS-B GRAPE with
a Gaussian pulse shape for X and u¥ = —§,u%, we obtain
solutions that mainly stay in their initial shapes with a gate
infidelity of 1.6 - 10719,

C. Two qubits with two levels

For the two-qubit gate experiments, we start by restricting
the Hamiltonian in Eq. (8) to two levels and choose to optimize
for the cross-resonance gate

Uy = exp(—i%o-x ® O'Z) e SU(4) (23)

where the first qubit is the target qubit and the second is the
control qubit. Fig. 3 shows the resulting controls and state
propagation for basis state |00) obtained in simulation by
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Fig. 3. Simulation results for two transmon qubits with two levels with gate
infidelity of 1.1- 1078, Population probability obtained by state evolution of
basis state |00) (top) under the optimal control sequence for the 240 ns XZ-
gate (bottom).

iLQR. The infidelity is 1.1 - 107 with a gate duration of
240 ns. Four configurations in the grid search lead to lower
infidelities than 10~7. They have slightly less smooth controls
with varying amplitudes for all four controls such that the
state’s population probability evolves more periodically until
it reaches its goal.

D. Two qubits with three levels

As our last example, we consider the two-transmon time-
discretized Hamiltonian of Eq. (8) restricted to three levels.
We choose to optimize the following extended CR gate

1
— 17 1
je{(;SA} V2 j€{2§3,7,8}
+ %(@ (0] +10) (3]) + %(w A1+ @) 4

Ug = 1) Gl +

which is an element of SU(9). Fig. 4 shows the resulting
controls and state propagation for basis state |00) obtained
in simulation by iLQR. The infidelity is 5.9- 107> with a gate
duration of 240 ns. The finer grid search includes three runs
with infidelities better than 10~*. None of them have smoother
controls or more direct state population probabilities.

V. CONCLUSION

In this work, we demonstrated that iLQR can be used
in quantum optimal control, especially for superconducting
gate synthesis. We have focused on the single- and two-
qubit operations, X and CR gates, among the basis gates
for fixed-frequency transmon qubits. The algorithm optimizes
the derivatives indirectly influencing the controls to ensure
smoother piecewise constant controls. Additionally, this allows
us to constrain the start and end controls closer to zero. In
particular, the optimizer finds smooth solutions with high gate
fidelities for the X gate 40 ns pulses, and the CR gate 240 ns
pulse controls. The design of the quadratic cost has had more
impact on the results than the initial pulse shapes. Hence, our
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Fig. 4. Simulation results for two transmon qubits with three levels with gate
infidelity of 5.9 - 107>, Population probability obtained by state evolution of
basis state |00) (top) under the optimal control sequence for the 240 ns XZ-
gate (bottom). In the top plot, only the 2-level states are depicted because the
contribution of the third level was much smaller with an average probability
of 5.8-1073 and a max value of 5.8- 1072 of all five higher-level basis states.

iLQR setup leads to high-fidelity solutions without requiring
knowledge about an approximate solution. In contrast, the
shape of the L-BFGS-B GRAPE solution depends heavily on
the input pulse. While L-BFGS-B GRAPE finds solutions with
even higher fidelities for a wide range of initial pulses, for
reasonable initial pulses, the solutions tend to stay close to
the initial pulse shape. Hence, we see the potential to use
iLQR for solving QOC problems where no analytical solution
is known a priori.

The iLQR gates are still relatively long, so optimizing for
shorter pulses under realistic AWG constraints is a crucial
next step. This might be made possible by using more sophis-
ticated cost functions, for example, time-dependent running
control costs for the controls R. and their derivatives Ry to
enforce different pulse envelopes. Additional work is needed
to incorporate the fidelity directly in the cost function, which
could further improve the solution’s fidelity. Moreover, our
proposed method can be applied to different hardware system
architectures. One example of another superconducting system
is fixed-frequency transmons coupled to a tunable transmon,
which naturally allows for iSWAP or CZ gates [33] as their
fundamental two-qubit operation. Open-loop numerical meth-
ods like the one presented in this work rely on accurate model
and control signal descriptions, which are especially difficult
to satisfy for superconducting transmon quantum systems. One
approach to deal with the model’s inaccuracy is to incorporate
hardware feedback [34]. As a next step, we will investigate
how iLQR can integrate hardware feedback to obtain pulses
specialized to specific quantum systems.
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