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Abstract

The multimodal nature of camera and radar sensor data enables various automa-
tion and surveillance tasks, where one sensor compensates for the limitations of
the other sensor: cameras capture high-resolution color data, while radar mea-
sures depth and velocity of targets. Calibration is essential to fuse these data
modalities effectively. This work presents a robust extrinsic calibration algorithm
for camera-radar setups, extending standard geometric constraints with eleva-
tion information to enhance optimization. Unlike existing methods, this approach
relies solely on camera and radar data without requiring complex targets or
external measurements. The 3D calibration enables the estimation of the target
elevation which is lost when using 2D radar. We evaluate our results against a
sub-millimeter ground truth system, demonstrating superior performance com-
pared to more complex algorithms. Leveraging these accurate calibration results,
we subsequently employ monocular depth estimation and instance segmentation
techniques to perform camera-radar data fusion, allowing 3D target and scene
reconstruction. github.com/mahdichamseddine/CaRaCTO.
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1 Introduction

Environment sensing plays a crucial role in various modern applications. Whether in
robotics, surveillance [1, 2|, autonomous driving, or assistive driving [3, 4], sensors such
as cameras, radar, and lidar are employed to detect and classify objects and obstacles
within the environment. These sensors possess distinct characteristics that comple-
ment rather than replace one another. Cameras offer high-resolution color imagery,
texture, and contextual information, while lidar and radar provide depth and dimen-
sional data. Although lidar data typically has a higher spatial density compared to
radar data, radar is more resilient to adverse weather and lighting conditions and can
measure velocities.

To achieve a comprehensive understanding of the environment, data from these
different sensors are often fused. This fusion enables the detection of various objects
and obstacles using multimodal features, such as dimensions, position, velocity, and
orientation [5-8]. However, before sensor fusion can occur, a crucial calibration step
is required to align data from all sensors within a common reference frame, ensuring
accurate data association. This calibration is thus a fundamental step in any data
processing problem.

Despite their advantages, lidar sensors remain expensive, limiting their commercial
adoption compared to cameras and radar sensors, which have been in use for a longer
time. Although high-resolution 3D radar sensors are gaining popularity [9, 10], 2D
radar sensors are still the most widely used type of radar in commercial applications
due to their lower cost. Therefore, the calibration method presented in this work
focuses on a 2D radar and camera setup, taking into account their affordability and
widespread use.

This paper introduces an extrinsic calibration algorithm for camera-radar sys-
tems. Unlike other approaches that project radar data onto a 2D plane, this method
retains elevation information, using the camera to estimate and reconstruct targets in
3D. Additionally, the proposed approach aims to enhance the robustness of the opti-
mization process against poor initialization, simplify the calibration setup, and make
it more accessible, all while maintaining or improving upon the quality of existing
algorithms.

Furthermore, we introduce a scene reconstruction pipeline that makes use of the
extrinsic calibration as well as recent advancements in instance segmentation and
monocular depth estimation to fuse the camera and radar data to generate a 3D
point cloud of the scene. Scene reconstruction is a popular computer vision task where
the 3D point cloud of a scene is estimated from a single or multiple images [11-13]
and has several applications in augmented reality, robotics, autonomous driving, and
construction. One challenging aspect of scene reconstruction is the absence of a metric
scale reference, and this is where a depth sensing sensor such as the radar proves
beneficial.

In the previous work [14] that this paper is building upon we presented the
following contributions:

e Extrinsic camera-radar calibration that does not require external sensing.
® Improved optimization formulation for added robustness.
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Fig. 1: The different types of calibration as described by Oh et al. [15]. Our approach
belongs to the third category (extrinsic calibration). (Figure from [14])

® Extensive evaluation showing stability and significant improvement.

We extend it to present the additional contributions:

A method for camera-radar correspondence detection using an instance segmenta-
tion model.

Full 3D scene reconstruction using a monocular depth estimation model combined
with radar measurements for recovering metric scale.

Extended experiments on robustness of the calibration algorithm and qualitative
results of the target matching and 3D reconstruction.

The rest of the paper is structured as follows: Section 2 summarizes the related
work and previous contributions to the field. In Section 3 we define the calibration
problem and present our proposed approach. Section 4 presents the correspondences
matching and our scene reconstruction pipeline. Sections 5 and 6 discuss the quanti-
tative evaluation of the calibration and the qualitative results of the reconstruction.
Finally, concluding remarks are given in Section 7.

2 Related Work

2.1 Camera-Radar Calibration

Multiple studies have been published on camera-radar calibration. A comparative
work by Oh et al. [15] categorizes camera-radar calibration methods into three main
types (see Figure 1): affine transformations, projective transformations, and extrinsic
calibration, the latter of which is the focus of our work.

Wang et al. [6] and Kim et al. [8] propose methods where an affine transformation
is computed between 2D radar points and their corresponding pixel locations in the
image. In their approach, a pseudo-inverse is employed to solve a least-squares problem
for the two-dimensional affine transformation. The quality of this transformation is



evaluated by measuring the image distance between the transformed radar points and
their corresponding image points.

Contrary to the 2D affine transformation calibration which estimates only six out
of nine transformation parameters, the 2D projective transformation method esti-
mates the complete 3 X 3 homography between the radar and camera planes. The
use of projective transformation for camera-radar calibration was presented by Sugi-
moto et al. [5] and Wang et al. [7]. Sugimoto et al. filtered for the points that belong
to the “radar measurement plane” to yield a more accurate calibration. Although
those approaches can yield more accurate calibration results than affine transfor-
mations, they do not account for the 3D nature of the data, providing only point
correspondences between the radar and camera planes.

The third category is extrinsic calibration, which can be further divided into
two types: multi-sensor extrinsic calibration, involving camera, lidar, and radar, and
camera-radar only extrinsic calibration.

Domhof et al. [16] treat radar data in 2D, using Euclidean error to solve the
optimization and compute the extrinsic parameters. Additionally, they designed a
complex joint target for camera, lidar, and radar calibration.

In contrast to other camera-radar calibration methods, Persi¢ et al. approach the
problem with the assumption that 2D representations in both the image and radar
data correspond to targets in 3D space. They first introduced a radar-lidar calibra-
tion [17] then extended it to also work with a radar-camera system [18]. To estimate
the radar elevation they used the known radar cross section of the target.

Similarly, El Natour et al. [19] utilizes the distance between multiple targets to
recover the full 3D representation from 2D sensors. This enables 3D reconstruction of
targets once the system is calibrated. However, achieving this result requires multiple
targets with accurately measured distances between them. The authors attempt to
mitigate this limitation in [20] by moving the sensor system while keeping the targets
fixed, and incorporating sensor trajectory estimation.

There are other methods that applied 3D extrinsic calibration using sensors
capable of inherently capturing elevation information, making them less directly com-
parable to our setup. These include methods leveraging 3D radar or LiDAR, where
elevation is measured rather than estimated. For instance, Wise et al. [10, 21] propose
a continuous-time radar-to-camera calibration framework using 3D FMCW radar,
which provides true elevation and Doppler measurements. Cheng et al. [22] introduce
a flexible and accurate method for 3D radar-camera co-calibration using a target-
based approach, which also assumes 3D radar data availability. Additionally, Wang
et al. [23] present LVI-ExC, a target-free LIDAR-visual-inertial calibration framework
that integrates elevation directly from LiDAR. While these methods are more recent
and demonstrate high accuracy, they rely on sensing modalities that differ fundamen-
tally from our 2D radar sensor, where elevation must be inferred during the calibration
process itself.

Our work presents an extrinsic calibration algorithm designed to estimate the
rotation and translation between camera and radar sensors using the 3D represen-
tation of the targets. Unlike previous approaches, our method requires only a single
retroreflector and does not necessitate complex target designs and does not rely on



the radar cross section value which is not always measured by the radar. Additionally,
our algorithm is robust even with sub-optimal initialization, due to the incorpora-
tion of elevation constraints. The results are validated against previous works using a
high-quality ground truth system, marking the first time such evaluations have been
performed in this context.

2.2 Monocular Depth Estimation

Monocular depth estimation is a technique that enables depth perception from a
single image, reducing hardware costs and complexity. It is essential for applica-
tions like autonomous driving [24], robotics [25], and augmented reality [26], where
understanding the spatial layout of an environment is crucial. Early depth estimation
methods relied on handcrafted features and traditional techniques, which struggled
with complex scenes [27-29).

The arrival of deep learning improved the quality monocular depth estimation
by enabling the learning of depth representations from annotated data. A sig-
nificant advancement came from Eigen et al. [30], who introduced a multi-scale
fusion network for depth regression. This innovation led to further improvements
through classification-based approaches [31, 32], the introduction of priors [33-35],
and enhanced objective functions [36, 37].

Depth Anything by Yang et al. [38] introduced a robust monocular depth esti-
mation model using unlabeled images, excelling in depth estimation and serving as
a strong foundation for downstream tasks. The authors then introduced Depth Any-
thing V2 [39] which improves upon this by offering more precise depth predictions,
supporting a wider range of applications with varied model sizes, and enhancing fine-
tuning capabilities. In our work we make use of Depth Anything V2 for 3D scene and
target reconstruction.

2.3 Instance Segmentation

Image instance or object segmentation is a computer vision task that distinguishes
each instance of an object within an image as a separate entity. This method provides
pixel-level masks for each object instance, allowing for the identification of a single or
multiple objects, which is particularly useful in complex scenes with overlapping or
closely packed objects.

First advancements in instance segmentation are largely driven by Mask RCNN-
based methods [40]. These region-based architectures predict masks on a low resolution
grid which often blurs the fine details of larger objects. Even though bottom-up
approaches, which group pixels to form object masks, can produce more detailed
outputs, they generally lag behind region-based methods in performance [41, 42].
TensorMask [43], a sliding-window technique, offers high-resolution masks for large
objects but with slightly lower accuracy. The introduction of transformers [44] and
their subsequent use in image processing [45] ushered significant improvements in
instance segmentation [46-48].



Building upon the transformer architecture, Kirillov et al. introduced the Segment
Anything model [49] (SAM), a promptable foundation model for image segmenta-
tion trained on a large amount of data. We use SAM for detecting the camera-radar
correspondences.

3 Camera—Radar Calibration

Extrinsic calibration involves determining the transformation—comprising both rota-
tion and translation—between the coordinate systems of different sensors. This
transformation allows for the projection of points from one coordinate system to
another and enables the reconstruction of 3D positions.

In radar calibration, a specific target is employed to capture and reflect the radar
signal. This target, known as a retroreflector, is characterized by its ability to reflect
radiation back to the source (i.e., the radar) with minimal scattering. In this study,
a corner reflector is utilized, featuring a pyramidal shape composed of three right
isosceles triangles joined at their vertex angle (see Figures 3 and 9).

3.1 Notation

In this section we define the notation to be used in the rest of the paper. We adopted
the notation defined in [50] to describe the different relations between the coordinate
systems for extrinsic calibration.

Let m, = (24, Ya, za]—r be a point m in a Cartesian coordinate system A. We define
the transformation from system A to system B as Ry, and b, respectively where Ry,
represents the rotation from coordinate system A to B and b, is the origin of system
B represented in system A. Thus the transformation of m and its inverse can then
be written as

my = Rba(ma - ba),

(1)

m, = Rab(mb - (1},),
where R, = Rb_a1 = R;l and ap = —Rpqb,. Thus, my can be expressed as
my, = Ry,m, + ayp. (2)

Finally, the homogeneous transformation H, from coordinate system A to B can
then be expressed as

3)

| Rpe ay
Hba|:0 1:|

3.2 System Model

The sensor setup consists of a radar and a camera that are rigidly connected, with
a short baseline that is significantly smaller than the distance to the target being
measured. To ensure clarity in terminology, we define the camera coordinate systems
as C and the radar as S (sensor). Consequently, R.s and Ry represent the rotations
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Fig. 2: The different coordinate systems used in defining the camera-radar calibration
problem. (a) presents the pinhole model showing how objects in 3D can be described
in the camera coordinate system with the pixel position on the image plane. (b) shows
the radar data measured in spherical coordinates and its representation as Cartesian
coordinates. (c¢) combines the relationships between (a) and (b) and shows how an
object visible in both the camera and radar frames can be defined as well as the
possible transformation between the systems. (Figure from [14])

from the radar coordinate system to the camera coordinate system and its inverse,
respectively. Similarly, ¢, denotes the origin of the camera in the radar coordinate
system, while s, represents the origin of the radar in the camera coordinate system.
The pinhole camera model, shown in Figure 2a, is used to project a point m, =
[Te, Ve, 2¢] | in the camera coordinate system onto the image plane as p = [u,v,1]T.

zep = Kmg,

u fo 0 uo| |z (4)
ze || =10 fy Vo Ye | »

1 0 0 1 Ze

where K is the intrinsic parameters matrix of the camera estimated using the standard
method in [51] and u and v are the pixel coordinates of the point m in an image.
The radar sensor used is a frequency-modulated continuous-wave (FMCW) radar,
capable of measuring range, azimuth, Doppler velocity, and radar cross section (reflec-
tion amplitude). For calibration, we will only use the range and azimuth (p,6)
measurements. It is worth noting that the radar does not provide elevation informa-
tion ¢, where ¢ denotes the angle relative to the positive z-axis. We define the point
ms = [Ts,Ys, zs]—r in the radar coordinate system as shown in Figure 2b as follows

Ty = psin¢cos,
Ys = psin¢gsinb, (5)

Zs = pCos ¢.



Existing approaches [5-8, 16, 18] interpret radar data in 2D and assume that ¢ = 7/2
since it is usually unknown (unmeasured).

We can transform a radar point in the radar coordinate system to the camera
coordinate system using

m. = Rcsms + S,
6
or {mc} _H. {ms} . (6)

We combine Equation (4) with Equation (6) to obtain a relationship describing the
transformation between the radar and image data as shown in Figure 2c

op = (K O[T @

the H matrix is 4 x 4 (see Equation (3)), so K is extended by a zero column to match
the dimensions.

3.3 Proposed Approach

Our objective is to establish a system of equations to calculate the residuals required
for the optimization process. The residuals are minimized by determining the parame-
ters for the extrinsic calibration. We begin by defining the geometric relationships that
characterize the measurements, followed by formulating the optimization problem.
Finally, we reconstruct the 3D point cloud using the estimated calibration parameters.

3.3.1 Geometric Constraints

By applying the measurement principles of the sensors in use, various constraints and
relationships become evident. When the distance to a target is measured by the radar,
the target’s position is confined to a sphere with a radius of p, centered at the radar

x2 4yl + 22 =pP (8)

Given the azimuth angle of the target relative to the radar’s positive x-axis, the
target lies on a plane that passes through the radar center and is perpendicular to
the xy-plane. The normal vector to this plane is defined by the angle (6 +7/2). So we
represent the unit normal vector to the plane passing through the target point and
the radar center as

7w = (cos (0 + 5),sin (0 + 5),0)

= (—sin#,cosb,0), 9)
or 7 = (sinf, — cos 0,0).



We can limit the locus of the target in the radar coordinate system to the
intersection between the sphere defined in Equation (8) and the plane

Tgsinf —y,cosf =0,z > 0, (10)

the condition x5 > 0 ensures that the target is in front of the radar and belongs to
the positive semi-circle .

Finally, the target lies on the line that passes through the camera center and the
point (u,v), which is the target’s projection on the image plane. This line intersects
the semicircle defined by Equations (8) and (10) at a single point, corresponding to
the target’s position in 3D space.

3.3.2 Optimization Formulation

We setup an optimization system using Equations (8) and (10) and based on the
defined constraints as follows

2 2 2 2
Ts+ys t25 —p” =6,

(11)

Tgsinf — ys cos = eq,

such that €; and e are the residuals to be minimized as to ensure the 3D radar points
satisfy the constraints. We then use the position of the target in the image to derive
the representation of m, = [x4, s, 25] | in terms of (u,v) and H 4. using Equation (7)

as
mg _ —1 ZcKilp
]

H, [ZCKllp} (12)

_ R, c, ZcKilp
10 1 1 ’

where R, = R,RgR, and «, 3, and 7 are the rotation angles around z, y, and z
respectively. Thus, the parameters to be estimated are the three rotation angles and
the three translations represented by cs = [z, , Ye,, 2c.] -

The final unknown variable to be estimated in Equation (12) is z.. Previous work
addressed this challenge by different ways: In [19], the approach involves using at least
six fixed targets and accurately measuring the distances between them to determine
Zc. On the other hand, the method presented in [20] requires the ability to move the
entire radar-camera system, incorporating the estimation of z. into the optimization
process. In contrast, this work introduces two new methods that estimate z. using
only a single target measured at various positions, significantly simplifying the setup.

Method 1 (Using radar range as an estimate for z.) Given that z. represents the depth
of a target relative to the camera and considering that the radar can directly measure the



Fig. 3: (left) shows the detection of the calibration target corners, we need a minimum
of 4 points to solve the PnP problem. (right) shows the reprojected solution of the
PnP problem (green). (Modified from [14])

target’s depth, it is reasonable to leverage the multi-modal measurement capabilities of the
sensor system by setting z. = p. This assumption holds true when the baseline between the
camera and radar is significantly smaller than the distance being measured and when the
camera and radar are positioned in close proximity to each other.

Method 2 (Using camera correspondences to calculate z.) This method addresses the short-
comings of the first approach by eliminating the need for a short baseline. By utilizing the
known dimensions of the radar retroreflector along with the intrinsic calibration matrix K,
the perspective-n-point (PnP) problem can be solved to determine the 6 DoF pose within
the camera coordinate system [52]. The Euclidean distance to the center of the retroreflector
is then considered as zc.

The target is detected and matched to a labeled template to align the corners
using the GMS Feature Matcher [53], after which the PnP problem is solved based
on the aligned corners. It is important to note that limiting the search area enhances
the reliability of the matching process. Figure 3 illustrates the reprojection of the
reflector corners. A minimal reprojection error signifies accurate pose estimation. The
matching procedure is explained in detail in Section 3.4.

For the PnP formulation, we used the iterative PnP implementation [54] on the
7 target points detected (center, and 2 on each axis). The optimization nature of the
PnP solver decreases the overall error for all the points and thus reduces the effect of
pixel noise or misalignment of a particular target.

3.3.3 Elevation Constraint

In addition to the residuals outlined in Equation (11), an additional residual is incor-
porated as a stabilizing term in the optimization process. This term helps to restrict
deviations in the pitch angle 8 and accelerates convergence. Radar sensors typically
have a relatively narrow vertical field of view (£15°), which results in data being pri-
marily concentrated around the zy-plane. The stabilizing residual is formulated based
on these characteristics

25| = €3, (13)

10



The system of optimization equations is solved using the Levenberg-Marquardt
(LM) non-linear least squares optimization [55]. The goal is to find the set of parame-
ters o, 8,7, Te, , Ye. , 2c.] (rotation angles and translations) that minimizes the sum of
squared residuals from Equations (11) and (13), (€1)?+(e2)7+ (e3)?, for each measured
target .

Finally, we can formulate the objective function as

arg min 2(61)12 + (€2)7 + (e3)7. (14)

avﬂa')/yzcs sYecgrZeg Vi

3.4 Target Matching in Camera Frames

In this section, we will provide a detailed explanation of the process for automatically
detecting the calibration target, including the identification of its corners and center,
as required by Method 2. This task is independent of the calibration algorithm and
can be accomplished using various alternative methods.

Fig. 4: (a) sample frame where the corner targets must be detected. (b) patch of
the calibration target and a masked version of the patch used for template matching.
(Modified from [14])

3.4.1 Template Matching

Given an example input frame, as illustrated in Figure 4a, the goal is to first identify
the target’s location within the frame. This step is crucial to narrowing down the
search space for feature matching, thereby enhancing its robustness.

To locate potential positions of the target within the input frame, a template
(Figure 4b) is employed. The process involves applying template matching [56] to the

11
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Fig. 5: The pipeline used for target detection in images: (1) generate candidate posi-
tions using image template matching. (2) combine patches to get best candidate.
(3) detect matches between the candidate patch and used template using a feature
matcher. (4) compute homography to align the patch and template, the red dots show
the known corner positions. (5) refine corner positions using optical flow method, the
yellow dots show the refined position of the corner. (6) calculate the center of the
retroreflector using the intersection of the lines connecting the aligned corners. (7)
project the center to the original image. (Figure from [14])

input frame across various scales and rotations of the template. Our experiments indi-
cate that masking out the surrounding clutter in the template, as shown in Figure 4b,
significantly improves detection robustness.

The template matching process generates multiple candidate positions, which are
then merged based on their overlap values. Each merged patch receives a vote, cor-
responding to the number of candidates combined at that position. The outcomes of
steps (1) and (2) in Figure 5 illustrate the candidate positions both before and after
merging, as well as the final selected patch within the input frame.

3.4.2 Template Alignment

After identifying the target patch, we employ the GMS Feature Matcher [53] to estab-
lish correspondences between the template and the selected patch. The GMS Matcher
enhances the robustness of feature matching between these two patches. Figure 5
illustrates the outcome of this feature matching process (3), which is conducted after
resizing the patches to comparable dimensions and applying edge-enhancing filtering.

The matched features are then used to compute the homography [57], facilitating
the alignment of the template with the image patch. In Step (4) of Figure 5, the
aligned template is superimposed onto the image patch, with red dots indicating the

12



known corner positions in the template. The figure highlights that some refinement is
required to achieve accurate corner alignment.

3.4.3 Corner Refinement

To enhance the accuracy of the corner positions within the image patch, we employ
the Lucas-Kanade method [58] for sparse optical flow. This approach assumes mini-
mal displacement of the corner positions between consecutive images and is applied
individually to each corner to achieve more reliable results. As depicted in Figure 5,
the yellow markers (5) indicate the refined corner positions. The circle surrounding
the initial red corner position has a radius of 50 pixels, with the image being upscaled
by a factor of 3.5.

3.4.4 Center Detection

Once the corners of the target are detected, determining the center is a straightforward
process. This is achieved by connecting the corners of both triangles and calculating
the average intersection point of the three lines, as illustrated in Figure 5. Figure 6
displays the location of the center point as identified in the original image.

Fig. 6: The projection of the target points on the original image. (Figure from [14])

4 Point Cloud Reconstruction

In order to obtain the 3D position of radar targets and then potentially the complete
point cloud of scenes, we first need to be able to perform data association between
the radar and camera sensors. Unlike during the calibration when the target shape
and dimensions are known and thus easy to detect in the camera as demonstrated

13



in Section 3.4, a potential radar target can have any arbitrary shape or dimensions in
other scenarios (e.g. chair, human, car)

4.1 Camera-Radar Correspondences

The task of finding the camera-radar correspondences can be described as finding the
camera pixel position p = [u,v, 1]T corresponding to a specific radar target (p,0).
With the help of a pre-trained instance segmentation model such as the Segment
Anything model (SAM) [49] and the extrinsic calibration computed in Section 3, it is
possible to use projected radar measurement as an input prompt to the segmentation
model. Finally, we average the output segmentation mask to obtain p.

4.1.1 Prompt Calculation

The SAM model [49] accepts different types of prompts such as points, masks, boxes,
or text to indicate to the model which objects to segment. Since the elevation of a
radar measurement is unknown, it is not sufficient to assume ¢ = 7/2 as this can
lead to an incorrect prompt, the point could be too high or too low and thus miss the
correct object.

A better approach to prompting is using a box prompt and provide the model
with a bigger search area for segmentation. Knowing the azimuth resolution of the
radar as well as the elevation FOV, it is possible generate a meaningful bounding box.
Given a radar measurement (p, 6), we define the corners of the prompt in the spherical
coordinate system as

boxmm:(p,g—d—a,z—@)ad

2°2 2 (15)
b :( 6)+d—‘9 Z+@)
OLmax - \ P> 99 9/

where df is the azimuth resolution and d¢ is the elevation resolution. Since the radar
has no resolution in the elevation, d¢ = FOV. Using Equation (5), we can transform
the limits defined in Equation (15) to the radar coordinate system and then project
them on to the image by applying the extrinsic and intrinsic calibration matrices as
defined in Equation (7). Figure 7 shows the resulting bounding box prompt on the
image and the depth map.

4.1.2 Depth Segmentation

Monocular depth estimation models can estimate an unscaled depth map of a scene
from an input image. One such model is the Depth Anything model [38, 39] which
can generate high quality disparity maps.

Even though the instance segmentation can perform well when applied to the raw
image, by applying the segmentation to the estimated depth or disparity’ map we are
emphasizing more the foreground objects in a scene because they are more prominent

1Depth and disparity are inversely related.

14



Fig. 7: The depth estimated using [39] allows the foreground objects to be more
reliably segmented from the background. The white bounding box prompt area is used
for instance segmentation.

in the depth map. This emphasis aligns with the assumption that the radar signals
will reflect off of the foreground objects rather than penetrate them.

Figure 7 compares a generated depth map with its original input image. It shows
that the depth map makes the object position and dimensions more distinguishable
from the background.

4.2 Target Reconstruction

Given the camera-radar correspondences (see Sections 3.4 and 4.1), we use the com-
puted extrinsic calibration to fuse the radar and camera measurements and estimate
the 3D coordinates of targets, similar to [19]. Using the pinhole model in Equation (4),
we represent a point m. in terms of the image coordinates and the intrinsic calibration
matrix K

me. = ch_lp = zZc4, (16)
where ¢ = [q1,q2,q3]] = K “1p. To compute z., the equation of the sphere
in Equation (8) is used in the camera coordinate system and replacing the values for
m. as in Equation (16)

(zc — msc)Q + (Ye — ysc)2 + (2e — ZSC)E = 102
=220} + 65 + 43) — 22c(q1 s, + Q2Ys, + G3%s,) (17)
+ (@2 +yl +22 —p)=0.
The solution to the quadratic equation in Equation (17) yields two possible solu-

tions. The correct solution is the one that gives a closer results of my; = Hy.m,
to Equation (5) with ¢ = 7/2.

15



Fig. 8: (a) Original 3D point cloud reconstruction prior to optimization. (b) Planes
detected using RANSAC plane fitting [60].

4.3 Scene Reconstruction

The Depth Anything V2 model estimates a disparity map of the input image based
on an arbitrary baseline. A baseline is the distance between two camera centers in
a stereo or multi-view setup, and the disparity is the difference in pixel positions of
an object between the camera frames [59]. The equation describing the relationship
between depth and disparity is
_bxf
ZC - d b
where z. is the Cartesian depth of a point in meters, b is the baseline in meters, f is
the focal length of the camera, and d is the disparity value at that point.

After obtaining the 3D position of a known point using the method described
in Section 4.2, and knowing the focal length of the camera, it is possible to solve for the
baseline b using Equation (18). We then use the calculated b to apply Equation (18)
on each disparity value in the image to get the resulting scene point cloud. Figure 8a
shows an initial reconstruction result prior to optimization.

(18)

4.3.1 Manhattan World Assumption

Using the raw disparity d output of the Depth Anything model generates an oddly
shaped and elongated point cloud as seen in Figure 8a. This is an expected behavior
of deep learning models since the output is usually not scaled and is influenced by the
data used during training.

To obtain the new disparity d’ we introduce an optimization to find the optimal
g(d) such that

g:d+k,where k € N

19
= d =d+k, 19)
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where k is a constant offset to be determined through minimizing the appropriate loss.

We base our loss on the Manhattan World assumption [61], which is a concept in
computer vision that posits that many scenes, particularly urban and indoor environ-
ments, can be approximated by a 3D Cartesian grid. This means that the dominant
structures in these scenes, like walls, tend to be aligned with the Cartesian axes
(z,y,2). In particular, we assume that opposite walls are parallel to each other and
perpendicular to the floor and ceiling.

Using the Random Sample Consensus algorithm [60] (RANSAC) for plane detec-
tion, we detect the 4 most dominant planes in the estimated point cloud: two opposite
walls, ceiling, and floor seen in Figure 8b. Knowing that each plane defined by a
normal vector 7 and a scalar, we then define the Manhattan loss €, as

1 | m) -7 | for | @} - n |< cos45°
em=§Zeij where €;; = ¢ || n—z—i—@ || for n-n.<0 (20)
Vi,j |\n_>i—nj||forn_>i-nj>0

Equation (20) is minimized when the walls are perpendicular to the ceiling and floor
and their normal vectors 7, and n—; are opposite and equal. Since g(d) is a linear
function, the optimal k£ that minimizes the Manhattan loss €,, can be found through
a simple linear search.

5 Calibration Evaluation

The algorithm’s results are compared to the work of El Natour et al. [19], which is
the only existing method for 3D camera-radar calibration specifically designed for 2D
radar devices in static scenarios (i.e. calibration targets are static). In contrast to [19]
that evaluated only on simulated data, we performed our evaluation on real data. In
addition to that, we also use simulations, to evaluate specific aspects of the method,
such as the robustness to input noise levels. The methods have been evaluated using
highly accurate ground truth data obtained from an optical tracker.

5.1 Ground Truth Acquisition

The evaluation of calibration algorithms and 3D reconstruction requires a highly accu-
rate and precise method for measuring ground truth values. To achieve this, an optical
motion capture system (OptiTrack) capable of errors of less than 1 mm is utilized. It
is worth noting that this system is used solely for the quantitative evaluation of the
calibration results and is not used in the calibration algorithm itself.

Eighteen OptiTrack Flex 132 cameras are mounted to cover the area where the
calibration target is positioned. Reflective markers are attached to both the sensor
and the calibration targets, enabling detection by the cameras. The setup ensures that
both the camera-radar system and the calibration target remain within the cameras’
field of view (FOV) at all times, allowing for precise measurement of their relative
positions.

Zhttps://optitrack.com/cameras/flex-13/
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Fig. 9: (top) the camera-radar setup with the reflective markers, the calibration
target, three of the OptiTrack cameras used for ground truth target pose measurement.
(bottom) a 3D view showing the calibration target in green and the sensor in blue
detected by the OptiTrack cameras. (Figure from [14])

As the motion capture system relies on infrared light to detect the reflective mark-
ers, calibration measurements using this ground truth method can only be conducted
indoors.

To align the OptiTrack measurements with the camera-radar system, we used the
reflective markers placed on the radar (as shown in Section 5.1) to calculate the radar
plane and its transformation to align with the yz-plane and centered at (0,0,0). We
then used this transformation to shift all the measurements to a common reference
frame with the center of the radar being its center. Since the scenes are static, no
temporal synchronization was needed. The OptiTrack measurements over each static
scene where averaged for each reflector to further improve the detection reliability.
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5.2 Hardware Setup

The radar sensor utilized in this study is the Analog Devices TinyRad?, an evaluation
module operating at 24 GHz, offering a range resolution of 0.6 m and an azimuth
resolution of 0.35 rad.

The camera used in the setup is equipped with a 2 megapixel sensor, capable of
capturing full HD images (1080p) at 30 frames per second (FPS) with a field-of-view
(FOV) of 78°.

The sensors are mounted with the camera positioned above the radar, separated
by a short baseline of approximately 5 ¢m, as shown in Figure 9.

5.3 Initialization

Given the known differences in coordinate system orientations between the camera
and radar, an initial parameter vector of [y, 50,70, 0,0,0] is used to align the axes,
thereby accelerating the convergence of the calibration optimization.

While [19] relies on stereo-based 3D reconstruction to derive both their ground
truth and the necessary a prior:i inter-target distance, we instead use the more precise
OptiTrack data to replicate their approach. The inter-target distance is required for
solving an initial optimization problem that calculates the z. values needed to solve
the primary calibration task.

Additionally, it was not feasible to reproduce and converge the z. solution from [19]
using a zero vector as the initial condition for the optimization. Since the original
authors did not provide instructions for reproducing their results, the radar range p
is used for initialization to obtain accurate estimates. Alternatively, manually mea-
suring the distances could be considered, although this would further complicate the
calibration setup.

5.4 Calibration Results

We used various criteria to assess the quality of calibration in both 3D and 2D. The
optimization convergence is evaluated through different initialization parameters, and
the calibration quality is evaluated in relation to the number of measurements required
and the noise level in the measurements. Additionally, we performed an ablation study
to highlight the significance of the elevation constraint.

In 3D, the error is defined as the distance between the estimated 3D reprojection
of the target as described in Section 4.2 and the ground truth as determined by the
OptiTrack system. In 2D, the error is measured as the distance between the projection
of the estimated 3D target and the ground truth on the zy-plane.

In our previous work [14], the LM optimization was used to estimate the offset
to the initialization vector [ag, S0, 70,0,0,0] in order to ensure the convergence to
the smallest parameter vector and avoid any non-linearities that can arise from the
periodic nature of angles. After running more experiments, we found out that this
had some side effects that prevented [19] to converge properly. We have then switched

3https://www.analog.com/en /resources/evaluation-hardware-and-software/evaluation-boards-kits /eval-
tinyrad.html
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to solving the minimization problem around the initialization vector instead and we
present the updated results.

5.4.1 Evaluation of the Initialization

To assess the impact of initialization on calibration, we conducted optimization using
various starting parameters while keeping the experimental setup consistent across
all trials. We repeated the experiment a total of 250 times to achieve more sta-
tistically significant results. Table 1 demonstrates that our method achieved lower
average errors and standard deviations across all initialization scenarios and signifi-
cantly outperformed the competing approach for moderate and bad initializations.
The initialization levels are defined as

Best: [ag, S0, 70,0,0,0],
Moderate: [, 5o, 70,0,0,0] + ft1 6,

Bad: [0, S0, 70,0,0,0] + V16, (21)
1rad,1 rad] & py.q € [—0.1,0.1]

[
where pq.4 €]
[-2 rad,2 rad] & wv4e € [—0.5,0.5],

and vq.3 €[—
the components of p and v are uniformly sampled from the respective ranges and
added to the initialization parameters described in Section 5.3.

Table 1: Mean error comparison between our method and [19] for different initial-
ization setups to evaluate the sensitivity of the optimizations to their initialization.
Where Best: [ag, 0,7, 0,0,0], Moderate: [ag,80,70,0,0,0] + p1.6 2 {pt1.5 €
[-1 rad,1 rad] & pys € [—0.1,0.1]}, and Bad: [ag, 80,70,0,0,0] + v1x6 3 {r1.3 €
[-2 rad,2 rad] & v46 € [—0.5,0.5]}. The errors are shown in meters. All errors are
calculated with respect to the OptiTrack ground truth measurements.

Method Error Initialization

Best Moderate Bad

3D 0.175 m 0.242 m 0.346 m
Using camera +0.049 +0.104 +0.155
correspondences (ours)

0.129 m 0.167 m  0.167 m

2D +0.065 +0.062 +0.062
3D 0.236 m 0.880 m 0.988 m
El Natour et al. [19] +0.102 +0.451 £0.478
9D 0.131m 0.206 m 0.225 m

+0.061 +0.111 +0.106
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3D Mean Error Statistics For 250 Runs
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Fig. 10: Comparison of the statistics of 250 runs of the initialization experiment. From
left to right, the plots correspond to the best, moderate, and bad initialization for
our Method 2 and [19] respectively. The grey line corresponds to our method’s best
result from Table 1. The black circles are the outliers.

Our method consistently achieved superior results regardless of the initialization,
excelling in both 3D and 2D projections on the radar and image planes. Notably, the
lower standard deviation coupled with reduced error suggests greater confidence and
a better fit to the data. Additionally, Figure 10 shows that our method consistently
converges to the optimal solution compared to [19] for the best and moderate ini-
tialization, except for a few outliers. In case of the bad initialization, most of the runs
converged to the optimal solution, which can be seen by the median being identical
to the previous results.

5.4.2 Evaluation of the Number of Targets

Another experiment was conducted to examine how the calibration algorithms depend
on the number of measurements required. The LM implementation [55] requires
that the number of residuals must be at least equal to the number of parame-
ters being estimated. As noted in Section 3.3.3, we are estimating six parameters
[, B, 7, Te, s Yoo » 2c.], With each measured target position generating three residu-
als. Therefore, the theoretical minimum number of target positions required is two.
However, our experiments demonstrated that, in practice, three target positions are
necessary to achieve convergence to a valid solution. This aligns with the broadly
accepted knowledge and best practice in sensor calibration.

The results presented in Figure 11 indicate a significantly lower dependence on
the number of targets for our approaches. While additional measurements offer some
improvement, the calibration with just three measurements produced an error similar
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to [19] when using 36 measurements for 3D reconstruction. The 2D error is also
lower across all experiments for our methods. This experiment was repeated 250 times
for each n € [3,36] measurements, with measurements randomly sampled without
replacement from the set of 36. The results were then averaged over all runs.
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Fig. 11: Comparison showing how the number of measurements affects the calibration
and the quality of the 2D and 3D reconstruction. Our methods (in red and green) show
similar reconstruction error and better results even for a low number of measurements.

The poor performance of El Natour’s method [19] on our data is not unexpected,
considering that their real-data evaluation, as reported in [19], shows an error several
orders of magnitude higher than that observed in simulated data. In their real-data
evaluation, [19] reports a mean error of 0.63 m, even over a longer range and in an
outdoor setting, where multi-path interference is less of a factor.

5.4.3 Simulations of Noise Levels

To evaluate the robustness of our calibration we simulated three main sources of noise:
radar range measurement p, radar azimuth measurement 6, and camera pixel error
(u,v). We use OptiTrack ground truth measurements as a baseline (level — 0) and
simulated different levels of noise defined for each target i as

pir = pig + N(0,(0.05 x 1)?),
0:1 = ;0 + N(0,(0.01 x 1)?), (22)
(wir, vir) = (uio +N(0,1%),v50 + N(0,1%)),

where [ is the noise level, A is the normal distribution, and I € [1,10], and p;q, 6;0,
and (u;g, vi) are the level — 0 measurements.

We repeated the experiment for 250 times for all noise levels, and demonstrate our
methods’ robustness to noise. Our methods outperforms [19] for all levels of noise in
3D reconstruction as seen in the results in Figure 12. In the case of 2D reconstruction,
all three methods start off with very close reconstruction error for level — 0 noise, but
the method by El Natour et al. [19] quickly diverges from level — 4 noise.
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Fig. 12: Comparison showing the susceptibility to measurement noise levels. Our
methods are more resilient to the increasing noise levels in 2D and 3D reconstruction
compared to [19] which performs between 4 and 10 times poorer at noise level 10 in
3D reconstruction and 2D reconstruction. We achieve a worst case of 0.5 m mean
error for 3D reconstruction.

5.4.4 Ablation Study of the Elevation Constraint

To prove the significance of the elevation constraint defined in Equation (13), we
conducted an ablation study on both of our range calculation methods. This study
was carried out using the Best initialization parameters outlined in Equation (21),
with the results presented in Table 2. The mean errors observed when the elevation
constraint was omitted were higher compared to when it was included. Furthermore,
the errors without the constraint from Equation (13) closely align with the results
reported in [19], as shown in Table 1.

We did another experiment without the elevation constraint but using the result
of the optimization with Equation (13) as an initial condition, we show in Table 2
the results are very similar to the optimization with the elevation constraint for the
camera correspondences method while performing slightly worse for the radar range
method. The errors indicate that our elevation constraint allowed us to find a more
optimal result. The error in the first method can be explained by the fact that it
assumes the radar and camera centers to be equidistant with respect to the target.

5.5 Decoupled Noise Simulations

In addition to the experiments discussed in Section 5.4.3 regarding the combined
noise levels, we conducted three additional experiments to investigate the isolated
effects of the introduced noise. Similar to the procedure described in Section 5.4.3,
each experiment was repeated 250 times at each noise level, with the results aver-
aged across all runs. The noise was defined according to Equation (22), and for each
experiment, noise was added to only one parameter while keeping the other two at a
baseline noise level level — 0. Results are presented in Figure 13.
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Table 2: Mean reconstruction error comparison showing the significance of adding the
elevation constraint defined in Equation (13) to the optimization using both our meth-
ods. We ran the experiments with the Best initialization parameters [, 80,70, 0, 0, 0]
as starting condition. The third column shows the result without the elevation con-
straint but using the initial condition as the result of the optimization with the
elevation constraint.

Method Error Results
Without With Without Eq. (13)
Eq. (13) Eq. (13) & optimal init.
3D 0.262 m 0.180 m 0.236 m
Using radar range +0.136 +0.052 +0.127
(ours)
9D 0.134 m 0.133 m 0.135 m
+0.065 +0.067 +0.065
Using camera 3D 0.223 m 0.175 m 0.164 m
+0.099 40.049 +0.071
correspondences
(ours) op  0130m  0.129m 0.130 m
+0.064 +0.065 +0.063

Radar Range Noise — Simulations focusing on radar range noise revealed a
similar trend of increased 3D mean error for both our methods and those presented
by [19]. As illustrated in Figure 13a, our methods outperformed that of El Natour et
al. [19] across all noise standard deviation values.

Radar Azimuth Noise — Figure 13b shows that noise in the radar azimuth
measurements has the most significant impact on the performance of [19], whereas
our methods showed considerably more robustness to this type of noise. Notably, the
mean reconstruction error for [19] exceeded 2 m when the noise standard deviation
reached 0.1 rad, while our methods maintained an error of less than 0.25 m within
the same noise range.

Camera Pixel Noise — Introducing noise of up to 10 pixels had the smallest
impact on all methods tested with errors remaining flat throughout the experiment.

Overall, these experiments highlight the robustness of our methods to various noise
sources, with radar range noise exerting the greatest influence on our 3D reconstruc-
tion outcomes. In contrast, the approach used by [19] was notably more sensitive to
variations in radar azimuth measurements and demonstrated lower overall accuracy
in 3D reconstruction of the measurement targets.
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Fig. 13: Decoupled noise simulation results showing 3D mean reconstruction error as
a function of increased standard deviation of the noise added to (a) radar range noise,
(b) radar azimuth noise, and (c¢) and camera pixel noise. Our methods are much less

sensitive to the azimuth noise as seen in (b) while generally outperforming [19] in all
three simulations.

6 Qualitative Results

In this section we evaluate our contributions to the camera-radar matching using

instance segmentation as well as the 3D scene reconstruction from monocular depth
estimation.

6.1 Correspondences

The correspondences detection between the camera and radar is an essential step to
be able to apply the target reconstruction in an unconstrained environment, i.e. in
scenarios where the shape and dimensions of the target are unknown.
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Fig. 14: Examples of the prompt bounding box calculated from the radar projection.
The depth estimation shows a clear destinction between the foreground and the back-
ground and the instance segmentation results in a target mask for the camera-radar
correspondences.

To localize the potential object in the image, we first estimate the depth of the
image using the Depth Anything V2 model [39], then calculate the prompt area using
the method described in Section 4.1.1 and Equation (15) and finally use it along
with the estimated depth as inputs to the Segment Anything model [49] for instance
segmentation.

Figure 14 shows some examples of the object detection in the image frame. The
masks are afterwards averaged to a single pixel corresponding to the radar target.
The figure also shows how the area prompt varies in size and shape depending on the
detected depth and location in space. The depth estimated is applied to the full image
and not only to the prompt area.

6.2 Scene Reconstruction

Following the detection of the correspondences, we reconstruct the 3D position of the
target following the method detailed in Section 4.2, and then use it in combination with
the estimated disparity map to generate the point cloud. To retrieve the optimized
point cloud, an iterative search for the disparity shift minimizing the Manhattan loss
€ 1s used as described in Section 4.3.1.
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Disparity Shift vs Manhattan Loss
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Fig. 15: Sample minimization plot of the Manhattan loss using linear parameter

search, the disparity shift corresponding to the minimum loss is used in the scene
reconstruction.

The Manhattan loss needs to be minimized for each scene separately due to the
uncertainty in the depth estimation. Figure 15 shows a sample loss plot from one
scene, the optimal disparity shift corresponding to the minimum loss value.

For the loss minimization we found that integer shifts to the disparity are sufficient
to obtain a good quality reconstruction, however, finer search values could potentially
be used. Additionally, multiple iteration can generate smoother loss curves at the
expense of longer optimization times.

Following the estimation of the optimal disparity shift, we apply Equation (18)
to generate the scene point cloud, Figure 8 shows the scene point cloud before opti-
mization then Figure 16 shows the same scene after applying the Manhattan World
assumption.

7 Conclusion

In this work, we introduced a new method for extrinsic calibration of a camera-
radar system. This method was validated against a high-precision motion capture
system, which provided the ground truth data. Our setup stands out for its simplicity,
as it works independently without external sensing, while also delivering superior
results. Even when starting with less accurate initial parameters and using fewer
measurement points, the additional optimization constraints we implemented enable
effective calibration convergence. We utilized the calibration results to reconstruct 3D
targets based on data matched by the camera-radar system. Our streamlined setup,
which relies on fewer calibration targets and a single standard retroreflector, eliminates
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Fig. 16: (a) Optimized 3D point cloud shows a proper scene structure. (b) Planes
detected in the optimized point cloud following the Manhattan assumption.

the need for more complex target designs. Although our current method is limited
to static targets and scenes, incorporating a moving target during calibration could
enhance radar target detection. However, this would introduce additional complexity,
particularly in the setup and target detection stages of the process.

Furthermore, as this is a static calibration method, we assume a controlled environ-
ment with no interfering objects. Future research could incorporate online calibration
techniques that improve the calibration over time and prevent any misalignment of
sensor measurements that could occur due to physical and environmental changes.

Additionally, we implemented a camera-radar matching algorithm that utilizes
pre-trained foundation models for instance segmentation and depth estimation. And
combined the depth estimation with our calibration and matching results to create
an end-to-end scene reconstruction pipeline capable of generating metric scale scene
point clouds.
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