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Abstract—3D semantic scene graphs (3DSSG) provide compact
structured representations of environments by explicitly modeling
objects, attributes, and relationships. While 3DSSGs have shown
promise in robotics and embodied AI, many existing methods
rely mainly on sensor data, not integrating further information
from semantically rich environments. Additionally, most methods
assume access to complete scene reconstructions, limiting their
applicability in real-world, incremental settings. This paper intro-
duces a novel heterogeneous graph model for incremental 3DSSG
prediction that integrates additional, multi-modal information,
such as prior observations, directly into the message-passing
process. Utilizing multiple layers, the model flexibly incorpo-
rates global and local scene representations without requiring
specialized modules or full scene reconstructions. We evaluate our
approach on the 3DSSG dataset, showing that GNNs enriched
with multi-modal information such as semantic embeddings (e.g.,
CLIP) and prior observations offer a scalable and generalizable
solution for complex, real-world environments. The full source
code of the presented architecture will be made available at
https://github.com/m4renz/incremental-scene-graph-prediction.

Index Terms—3D Semantic Scene Graphs, Graph Neural
Network, Heterogeneous Graph Learning, RGB-D Sequence

I. INTRODUCTION

Semantic scene graphs (SSGs) offer a structured and com-
pact representation of visual environments by explicitly mod-
eling objects, their attributes, and inter-object relationships in
a semantically rich way. Initially developed for 2D image
understanding, the extension of SSGs into the 3D domain [1]
has gained significant traction, particularly in robotics, where
spatial reasoning and situational awareness are critical. 3D
semantic scene graphs (3DSSGs) enable environmental mod-
eling by incorporating geometric and topological information.
In consequence, this allows for a more accurate interpretation
of complex scenes.

Furthermore, 3DSSGs serve as a powerful bridge between
raw sensory input and high-level semantic understanding by
facilitating the integration of multi-modal information, such as
additional sensory data and even common-sense knowledge.
As a result, they are increasingly adopted in robotics research
as a foundational representation for embodied AI systems that
require both perceptual grounding and semantic reasoning. The
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construction or generation of 3DSSG from sensor data has
therefore become a prominent topic in machine learning and
robotics [2]–[4].

With progress in 3DSSG inference using Graph Neural
Networks (GNNs), a variety of approaches have emerged
that integrate 3DSSG generation with additional information
sources. These methods leverage supplementary data to refine
object and relationship predictions, enhance generalization
across environments, and support downstream tasks such as
navigation [5], exploration [6], or task planning [7]. However,
while all integration approaches independently show promis-
ing results, they lack a generalized mechanism that is agnostic
to the modality of the utilized information, making them
highly dependent on the utilized training data.

Moreover, most existing approaches focus on inferring
3DSSGs from fully reconstructed scenes, where complete
geometric information is available at inference time [8]. This
makes these approaches impractical for many real-world tasks,
where a scene is typically captured incrementally from a
stream of sensor data. Incremental SSG generation requires
models to utilize information acquired from prior observations
to predict and interpret new sensor inputs.

In this work, we present a method for incremental 3DSSG
generation by integrating the sub-tasks required for the SSG
construction into a multi-layered architecture. This design
allows for flexible incorporation of multi-modal information
into the model architecture without the need for specialized
modules. This is not only limited to new features, it also
extends to topologically different graphs.

Central to our approach is a heterogeneous scene graph
design that fuses sensor data and observations from previous
time steps across global and local layers. Global layers
provide spatial, geometric, and semantic context for the en-
tire scene, while local layers integrate current sensor data.
The proposed model efficiently stores and integrates spatial,
geometric, and semantic features by embedding them directly
into the message-passing process, eliminating the need to store
numerous point-cloud segments or time-series data.

The main contributions of our work are summarized as
follows:

• We propose a novel heterogeneous graph model for
3D scene graph generation that integrates multi-modal
information for incremental prediction.

• We evaluate the proposed model on the 3DSSG dataset
for per-frame incremental scene graph prediction.

• We demonstrate the robustness of our model against
erroneous predictions in prior observations.

https://github.com/m4renz/incremental-scene-graph-prediction


II. RELATED WORK

SceneGraphFusion [9] was the first approach to generate
scene graphs incrementally. The authors infer local 3D scene
graphs from partial point cloud segments derived from indi-
vidual RGB-D frames in the 3DSSG dataset [8]. These local
scene graphs are subsequently fused into a global graph. A
variation of this method has also been applied using only RGB
image sequences [10]. However, the proposed model utilizes
only the updated geometrical information when predicting
novel frames. The existing global scene graph, generated from
previous frames, remains invisible to the model. As a result,
the model does not benefit from prior knowledge of the
scene structure and instead predicts each frame independently.
In our approach, we directly integrate prior predictions by
linking instances from frames to previously predicted nodes,
thus enabling our model to benefit from earlier observations
without the need to store the fully segmented point cloud.

Most similar to our idea, Feng et al. [11] incorporate histor-
ical predictions for incremental scene graph generation, using
a recurrent mechanism to integrate the last m processed graphs
and embedding a global graph representation as a one-hot
encoded matrix into the prediction process. In contrast, we do
not encode global information explicitly; instead, we integrate
it directly into the message passing by linking past predictions
and matching node instances. This approach allows newly
integrated information to directly enhance downstream SSG
prediction. Furthermore, we explore the use of heterogeneous
GNNs to improve the integration of semantically relevant
information.

In the context of multi-modal integration, several recent
approaches have investigated heterogeneous graph structures
and external knowledge sources. Ma et al. [12] infer rela-
tionship types based on three top-level categories from the
3DSSG dataset and apply heterogeneous message passing on
the learned graph structure. Directed Spatial Commonsense
Graphs (D-SCG) [13] incorporate heterogeneous information
from ConceptNet [14] with 3DSSGs to localize objects in
partial 3D scenes. Knowledge-Scene Graph Networks [15]
integrate external knowledge curated from multiple sources
using GB-Net [16], embedding this knowledge directly into the
message passing process. While these approaches successfully
integrate multi-modal information for their respective tasks,
none have been applied to the problem of incremental 3DSSG
generation.

III. METHOD

A. Dataset and Preprocessing

To train and evaluate our proposed method, we utilize the
3DSSG dataset, which extends the 3RScan dataset [17] with
scene graph annotations for over one thousand indoor 3D
scenes created using RGB-D reconstruction.

We use the RIO27 label set, which features a total of 27
object categories and 16 relationship categories derived from
[18]. After filtering out invalid scenes, we obtained a total of
1,320 usable 3D scenes from the dataset. Each scene consists

of an annotated reconstruction of the geometry, available as a
3D mesh, the complete scene graph, as well as the raw RGB-D
frames and their poses used to reconstruct the scene.

Since, for incremental scene graph prediction, neither the
full scene geometry nor the complete graph is available to
the model at inference time, we extracted for every RGB-D
frame Ft the visible geometry as a point cloud with instance
annotations, along with the currently visible portion of the
ground-truth scene graph. Additionally, for each frame Ft,
we included the partial scene graph constructed from the
preceding frames {F0, . . . , Ft−1} (see Section III-B).

B. Graph Model

The core intuition behind our heterogeneous modeling ap-
proach is to connect previously observed objects in the sensor
data stream to the same objects in newly recorded frames.
This enables the model to leverage information from earlier
observations during prediction.

When represented as a scene graph, this results in a two-
layer architecture: a global scene graph that accumulates
observations, objects, and relationships from previous frames,
and a local scene graph constructed from the sensor data of
a single frame. The target task is to predict the classes and
relationships in the local scene graph by utilizing both the
sensor data and the global scene graph.

Assuming a partial global scene graph with already clas-
sified objects and predicates, as provided by the dataset
preprocessing (see Section III-A), the first step is to perform
object segmentation on the current frame to identify visible
object instances for the local graph. For this work, we use the
ground-truth segments from the 3DSSG dataset. To construct
the local graph, we convert the depth frame into a point
cloud and add bidirectional edges between objects that are less
than 0.5 meters apart, following the approach in [9]. During
training, we also use ground-truth information to match local
nodes to previously seen nodes in the global graph.

Nodes and edges in the global and local scene graphs are
modeled as distinct node and edge types within a single
heterogeneous graph. Additional edges connect global and
local nodes for all matched node pairs (see Fig. 1), allowing
information to flow from the global to the local graph.

The node features are similar to those used in [9]. For each
object, 256 points are sampled from the point cloud. Addi-
tionally, a hand-crafted descriptor is computed, consisting of
the center c and standard deviation std of the sampled points,
bounding box side lengths l, w, and h, the maximum bounding
box length L, and the bounding box volume V . Global nodes
also include information from previous predictions, either as
a class label or as a CLIP [19] embedding of the predicted
label.

To merge the local scene graph into the global one, the
points of matched nodes are downsampled again to 256 points,
and the descriptor is recalculated. Ground-truth labels and
instance identifiers remain unchanged. New nodes and edges
are added directly to the global graph.



Fig. 1. Example of the heterogeneous scene graph. The left image shows
the RGB-D frame from [8], the middle shows the segmented frame with the
unpredicted local scene graph, and the right shows the already predicted global
scene graph. Dashed lines represent the edges between matched nodes.

C. Graph Neural Network Architecture

Each node’s feature representation is constructed by em-
bedding 256 sampled points using a PointNet encoder [20],
and concatenating the resulting point feature with a geometric
descriptor vector. For global nodes, an additional feature vector
is included based on the ground truth label, either as a one-
hot encoded class index or a CLIP embedding of the text
label. Edge features are computed by subtracting centroid
and standard deviation offsets, and applying logarithmic ratios
of bounding box dimensions, following the approach of [9].
Specifically, the edge feature vector for an edge eij between
nodes i and j is defined as:
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and is passed through a two-layer MLP. Message passing is
performed using a two-layer GNN, either a heterogeneous
GraphSAGE [21], [22] or HGT [23]. Node classification is
conducted via a two-layer MLP applied to the updated node
features. For edge classification, the updated source and target
node features are concatenated with the edge feature vector.
Note that edge features are not used during message passing
due to limitations of the employed GNN layers. All layers use
ReLU activation, layer normalization, and a dropout rate of
0.5, except for the final layers of each sub-network.

As baselines, we include homogeneous GraphSAGE and
SGFN [9] applied only to the local frame graph. Additionally,
we evaluate a homogeneous version of the global-local het-
erogeneous graph, where missing label features in local nodes
are replaced with −1, and missing CLIP embeddings with
zero vectors to ensure consistent feature dimensions. Edges
between global and local nodes in this setting do not carry
ground truth labels. We also test a variant of the heterogeneous
architecture without ground truth features in the global layer.
To assess robustness, we additionally train the homogeneous
SAGE and HGT/heterogeneous SAGE with 20 % and 50 %
falsified global labels, resulting in incorrect CLIP embeddings.

D. Training Details

The model is trained using a composite loss function that
combines a weighted node classification loss and a weighted
binary edge classification loss, scaled by a factor α = 40 for
positive edge classes. The total loss is defined as

L = wnLn + αweLe, (1)

where the weights are computed based on the inverse log-
frequency of class occurrences, i. e.,

wn =
10

log(nn)
, we =

10

log(ne)
+ 1. (2)

Only predictions for local nodes and edges are considered
during loss and gradient computation across all models. Note
that node classification is treated as a multi-class problem,
with only one correct ground truth class per object, whereas
edge prediction is a multi-label task, allowing multiple valid
ground truth labels per edge.

Training is conducted for up to 100 epochs, with early
stopping triggered if the validation loss does not improve
for 5 consecutive epochs. For SAGE models, a learning rate
of 0.0001498 is used with a step scheduler (decay factor
γ = 0.05, step size = 30), while HGT models are trained
with a learning rate of 0.0001 and a step scheduler with
γ = 0.05 and a step size of 20. The SGFN model follows
the training procedure of the GraphSAGE model, using the
hyperparameters and loss function described in [9].

IV. EVALUATION

We train all models on the preprocessed dataset described
in Chapter III-A, following a 0.8/0.1/0.1 split for training,
validation, and test data. For all models, we predict and
evaluate only nodes and edges within the local frame, and not
in the global graph. Additionally, we evaluate models trained
on data with 20 % and 50 % falsified ground truth labels in
the global layer to assess the robustness of the approach.

A. Metrics

We evaluate four aspects of incremental scene graph pre-
diction: (1) Node classification, measured by mean accuracy
across all local nodes; (2) Edge classification, evaluated using
mean recall; (3) Relationship prediction, measured by the
number of correctly predicted ground truth triples using the
ng-Recall@k metric [24], which determines the fraction of
detected ground truth triples among the top-k predicted triples
of the local scene graph; and (4) Node classification for
previously unseen nodes, i.e., nodes appearing for the first
time in the sequence and not yet present in the global graph,
also evaluated using mean accuracy.

B. Scene Graph Prediction

Our results (see Table I) highlight several key findings.
Models that operate solely on individual frames, such as
SGFN and GraphSAGE, achieve the highest accuracy on
previously unseen nodes, indicating that the introduction of



Fig. 2. Pipeline of the proposed approach. At timestep t, a local frame graph is constructed from a segmented RGB-D frame based on a neighborhood graph
and segment-specific node features. The local graph is then connected to a globally constructed scene graph from frame t− 1. After message passing, node
and edge classes are predicted, and the local graph is merged into the global graph.

TABLE I
RESULTS FOR THE INCREMENTAL 3D SCENE GRAPH GENERATION. THE FIRST SECTION SHOWS RESULTS FOR HOMOGENEOUS GNNS, THE SECOND

SECTION FOR HETEROGENEOUS GNNS AND THE THIRD SECTION FOR HETEROGENEOUS GNNS WITH ADDITIONAL EDGES.

Acc@1 Acc@5 Rec ng-R@50 ng-R@100 U-Acc@1 U-Acc@5

SGFN 0.48 0.80 0.31 0.00 0.00 0.40 0.83
SAGE 0.28 0.65 0.64 0.00 0.00 0.37 0.80
SAGE+label 0.92 0.98 0.81 0.02 0.01 0.30 0.70
SAGE+clip 0.98 0.99 0.80 0.14 0.18 0.36 0.79

HetSage-plain 0.34 0.76 0.6 0.07 0.09 0.31 0.71
HGT-plain 0.42 0.81 0.63 0.16 0.20 0.21 0.58
HetSAGE+label 0.73 0.98 0.74 0.53 0.61 0.31 0.70
HGT+label 0.95 0.95 0.69 0.71 0.78 0.24 0.62
HetSAGE+clip 0.98 0.99 0.75 0.58 0.69 0.33 0.75
HGT+clip 0.98 0.99 0.77 0.80 0.84 0.29 0.73

HetSAGE+clip+add 0.98 0.99 0.76 0.68 0.76 0.32 0.76
HetSAGE+clip+add-only 0.98 0.99 0.73 0.51 0.61 0.34 0.78

prior classifications can impair generalization in node classifi-
cation. However, these models perform poorly in predicting the
overall scene graph structure. Incorporating a heterogeneous
scene graph without additional semantic features (HetSAGE-
plain and HGT-plain) yields only minor improvement on the
relationship prediction, suggesting that structural information
alone is insufficient. In contrast, enriching node features with
simple labels or CLIP embeddings leads to consistently better
performance, where clip embeddings lead to better results in
all cases. Homogeneous models perform equally well or better
than heterogeneous models on node and edge prediction met-
rics, while heterogeneous models excel in relationship predic-
tion. Among these, the HGT+label/CLIP models achieve the
highest relationship prediction performance, with HGT+CLIP
also showing competitive results across other metrics. These
results suggest that heterogeneous models are well-suited for
capturing the rich semantic structures present in 3DSSGs.

C. Robustness Against False Labels

When introducing falsified labels into the global scene
graph, we observe a general decline in performance across all
metrics, except for mean edge recall, which slightly improves
under 20 % falsified labels for all models except HGT. The
most pronounced drop occurs in relationship prediction, with
reductions ranging from 0.06 to 0.34 for 20 % falsified labels
and from 0.11 to 0.46 for 50 % falsified labels at k = 50
and 0.07 to 0.37 for 20 % falsified labels and from 0.13
to 0.52 for 50 % falsified labels at k = 100. Interestingly,
the accuracy on previously unseen nodes is less affected,
showing only a modest decline between 0.02 and 0.07, sug-
gesting that the models still effectively learn to generalize
prior classification features. Similar to the evaluation with
correct labels, the homogeneous GNN with integrated prior
observations outperforms its heterogeneous counterparts on
node and edge prediction metrics. In contrast, heterogeneous
models achieve better performance in relationship prediction.
However, they also show the largest performance drop in this



Fig. 3. GNN architecture for 3D scene graph generation. For node features,
the sampled points are passed through a PointNet encoder and concatenated
with a geometric descriptor. For edge features, the descriptor for an edge
eij connecting nodes i and j is formed by concatenating descriptors di and
dj , which are then passed through two linear layers. After message passing,
node classes are predicted using two linear layers applied to the updated node
features. For edge classification, the edge feature of eij is concatenated with
the updated node features of nodes i and j, and passed through two linear
layers as well.

category when label noise is introduced. Despite 20 % falsified
labels representing a substantial level of noise, the relatively
minor performance degradation in node and edge classification
tasks across all models indicates a degree of robustness.
However, the drop for relationship prediction suggests a strong
reliance on prior observations, which has to be mitigated for
real application scenarios. For most metrics (excluding unseen
node accuracy), models trained with 20 % falsified labels
consistently outperform those trained with 50%, reinforcing
the notion that the learned prior features remain informative
even under moderate label corruption.

D. Integration of additional layers

To evaluate the flexibility of our heterogeneous structure,
we introduce an additional edge type between global nodes,
providing information about the centrality of objects within a
scene, derived from geometric data. This layer is computed
by performing geometric collision checks between objects in
a scene using the FCL library [25]. Based on the amount
of overlap between pairs of colliding objects, a hierarchy

is derived using the harmonic centrality metric [26]. This
hierarchy is then integrated into the heterogeneous model as a
new edge type between global nodes, providing a topologically
different subgraph.

Since GraphSAGE and HGT do not natively support edge
features, we implement a specialized edge layer for this edge
type, which updates the target node using only the edge
features:

x′
i = γ(xi) +

∑
j∈N (i)

ϕ(xji), (3)

where N (i) denotes the neighbors of node i, x′
i is the updated

node feature, xi is the original target node feature, xji is the
edge feature, and γ and ϕ are learnable linear transformations.
The edge feature xji consists of the amount of geometric
overlap between nodes, their respective bounding boxes, and
the difference in harmonic centrality as described above. For
all other edge types, GraphSAGE message passing without
edge features is used.

We evaluate this new layer both as an additional edge type
between global nodes and as a substitute for the original edges
resulting from the integration of local SSGs into the global
SSG.

Results (see tab. I and II) show that adding this addi-
tional information between global nodes yields performance
comparable to HetSAGE+CLIP, with a slight improvement
on previously unseen nodes and relationship prediction when
using the additional edge type together with the integrated
global edges. The same tendency is seen in the evaluation
with falsified labels.

Although the improvements in the reported metrics are
relatively modest, the results demonstrate that the proposed
model can seamlessly integrate multi-modal information into
the message passing process without requiring external mod-
ules.

V. CONCLUSION

We present a heterogeneous graph model that enables the
integration of multi-modal information for incremental 3D
scene graph generation. Specifically, we connect information
from sensor data frames to a concise global scene graph model
built from previous observations. We show that the integration
of these prior observations benefits the overall prediction
performance on both homogeneous and heterogeneous GNN
architectures.

The proposed model demonstrates strong predictive perfor-
mance for heterogeneous GNN architectures. The integration
of additional information sources yields comparable results,
indicating that the model effectively incorporates multi-modal
data. While homogeneous GNNs achieve high performance
on straightforward classification tasks, heterogeneous GNNs
are more suited to capture the heterogeneity of multi-modal,
semantic information. Furthermore, the heterogeneous graph
learning framework offers flexibility for incorporating task-
specific information or external knowledge graphs without
altering the core architecture.



TABLE II
RESULTS FOR THE 3D SCENE GRAPH PREDICTION WITH FALSIFIED FEATURE CLASSES IN THE GLOBAL LAYER. THE FIRST SECTION SHOWS MODELS
TRAINED WITH 20 % RANDOMLY FALSIFIED LABELS, THE SECOND SECTION SHOWS MODELS TRAINED WITH 50 % RANDOMLY FALSIFIED LABELS.

Acc@1 Acc@5 Rec ng-R@50 ng-R@100 U-Acc@1 U-Acc@5

SAGE+clip+0.2 0.94 0.99 0.82 0.08 0.11 0.34 0.78
HetSAGE+clip+0.2 0.91 0.98 0.76 0.33 0.38 0.29 0.72
HGT+clip+0.2 0.89 0.98 0.74 0.5 0.59 0.24 0.65
HetSAGE+clip+add+0.2 0.88 0.98 0.75 0.34 0.4 0.28 0.72
HetSAGE+clip+add-only+0.2 0.89 0.98 0.73 0.24 0.27 0.30 0.73

SAGE+clip+0.5 0.86 0.98 0.81 0.03 0.05 0.33 0.76
HetSAGE+clip+0.5 0.8 0.96 0.73 0.19 0.23 0.27 0.70
HGT+clip+0.5 0.81 0.96 0.73 0.37 0.44 0.23 0.64
HetSAGE+clip+add+0.5 0.79 0.96 0.72 0.22 0.25 0.29 0.70
HetSAGE+clip+add-only+0.5 0.76 0.95 0.64 0.18 0.21 0.30 0.71

Future work will explore applying this architecture to full-
scale 3D semantic mapping for real-world robotics tasks,
integrating additional prior knowledge sources to enhance
inference and support explainability.
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