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Abstract. In the domain of reconfigurable production systems, Cyber-Physical 
Matrix Production Systems (CPMPS) are recognized for their advanced levels of 
operational flexibility. Given the inherent flexible material flow, these loosely 
coupled systems are characterized by dynamic interdependencies and rapid 
changes in order sequencing and allocation. This leads to major challenges in 
production flow control including the emergence of instable behaviors decreas-
ing robustness and threatening overall performance.  

Traditional methodologies for assessing and enhancing the reliability and en-
suring the robustness of the system do not tackle the dynamic behavior of re-
configurable production systems. Due to rigid probabilistic assumptions, effi-
ciency decreases and reasoning in fault propagation is not apparent. For this rea-
son, dependable systems engineering embraces formal descriptions of the sys-
tems’ dynamical behaviors and continuous monitoring of system properties.  

This paper proposes the application of distributed artificial intelligences in the 
form of holonic multi-agent system (MAS) that integrate the concepts of depend-
ability as part of the system design. Multi-level monitoring of state properties and 
fault-tolerant control mechanisms are used to minimize deviation between the 
modelled and observed behavior, therefore ensuring robustness and securing the 
system's intended operation. The presented framework demonstrates feasibility 
by first implementations of dynamic interaction mechanisms for subsidiary deci-
sion improving makespan while remaining flexible. 

Keywords: reconfigurable production systems, fault-tolerant production flow 
control, holonic multi-agent systems, dependable systems engineering. 

1 Introduction 

In the rapidly evolving landscape of manufacturing technologies, reconfigurable pro-
duction systems stand out for their ability to adapt to changing product demands and 
production conditions rapidly. Rigid linear assembly systems struggle to adapt to the 
current demand for flexibility and can only be reconfigured with significant down-time. 
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Therefore, service-oriented and reconfigurable production systems emerge as suitable 
alternatives to existing production systems [1]. In the case of Cyber-Physical Matrix 
Production System (CPMPS), the inherent modular structure and flexible transportation 
between production entities leverages the ability to anticipate any deviations dynami-
cally through reconfiguration and therefore minimizing throughput loss caused by the 
linkage of failure rates [2, 3]. 

The high degree of freedom in CPMPS introduces significant complexity, making it 
challenging for traditional centralized control approaches to calculate optimal solutions 
in a reasonable timeframe [4]. Instead, agent-based control systems, which utilize mul-
tiple distributed autonomous agents, have emerged as suitable solutions and been suc-
cessfully implemented in various domains [5, 6]. These Multi-Agent Systems (MAS) 
can divide and conquer planning, scheduling, and control problems through negotiation 
and learning mechanisms [6, 7].  

Nonetheless, as highlighted by [7–9] complex networks of loosely coupled systems 
such as MAS, confront new threats through unpredictability and dynamic interdepend-
encies. The newly acquired degrees of freedom and flexibility lead to new complexities 
with unknown effects on the systems behavior. Purely data-driven approaches such as 
reward-based deep reinforcement learning (DRL) may solve the problem of complex-
ity, yet leave the effect of unknown emerging system behaviors due to possible non-
linear feedback and local minima. This threatens reliability of the system exposing the 
gap of combining this emerging technology with more reliable control methods [8–10].  

Therefore, the main objective of this research is based on MAS based production 
control of CPMPS and the integration of the principles of robustness and resilience, 
which are closely tied to the fundamentals of dependability [10]. This leads to the cen-
tral research question: How can MAS be designed to integrate mechanisms that asses 
and enhance the dependability of CPMPS? This addresses the gap in the understanding 
of flexible agent-based control in combination with required formal assessment of de-
pendability. To address these issues, the state of the art is examined for dependable 
agent-based solutions. Then, a generic methodology for applying principles of depend-
ability is utilized and adapted to design a holonic multi-agent systems (HMAS). Lastly, 
components and interactions are designed to enhance the overall robustness against 
failures and resilience of CPMPS and validated in experiments. 

2 State of the Art for Dependable MAS 

This section will introduce the fundamentals of MAS and the connection to the princi-
ples of the discipline of Dependable Systems Engineering. The final sub-section will 
provide an overview of existing approaches and their advantages as well as possible 
limitations to the system application. 

2.1 Multi-Agent Systems for Planning, Scheduling and Control 

MAS consist of multiple interacting agents, each with distinct behaviors, collectively 
working towards defined objectives. MAS offer a flexible and scalable approach for 
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control and coordination, essential for handling the high degrees of freedom and dy-
namic nature of systems such as CPMPS [11]. While MAS are generally effective for 
managing complex systems, the choice of control mechanisms significantly impacts 
scalability and system performance [7, 12]. MAS can be organized in centralized, de-
centralized, or hybrid forms representing entities in the production. Centralized MAS 
feature hierarchical agents overseeing the entire system, making global decisions. 
While providing optimal solutions, they suffer from scalability issues and single points 
of failure, making them less suitable for dynamic environments like CPMPS. Decen-
tralized MAS allow to operate autonomously with local context, enhancing scalability 
and response-time but potentially resulting in suboptimal global performance due to 
instable behavior. Hybrid MAS balance global optimization with local autonomy, 
where agents operate independently but are coordinated by higher-level agents [12]. 

However, when considering the integration of agent systems into industrial multi-
level environments, the robust and resilient control of the intended operation of the 
system is of uppermost priority [7, 8]. To achieve this goal, the HMAS approach of 
encapsulated systems of systems is suitable as it can solve a certain degree of global 
optimization combined with fast-responding local interaction [10, 13]. Nonetheless, de-
spite the flexibility offered by MAS, independent from the control paradigm, their per-
ceived intransparency and potential unreliability raise concerns about their dependabil-
ity [8]. As environments such as production systems are safety-critical, they demand 
full consideration of attributes like safety, reliability, maintainability and availability – 
dimensions that are essential for a system to be considered dependable [14]. 

2.2 Dependable Systems Engineering 

The discipline of Dependable Systems Engineering includes the Design and Implemen-
tation of highly-robust and resilient systems. The concept of dependability emerged as 
part of the need for a methodological approach of assessing a systems property and 
evaluate it’s intended and actual behavior. The focus is on model-based systems engi-
neering to enable a formal and safe integration [14]. This differs fundamentally from 
reliability as depicted in the comparison in Table 1. 

In order to maintain the aforementioned system attributes threatened by faults, errors 
and failures, several measures are employed. According to the general taxonomy by 
Laprie [14], fault prevention aims to prevent the occurrence of faults; fault tolerance 
ensures that the system continues to operate correctly despite faults; fault removal in-
volves reducing the number of existing faults; and fault forecasting estimates and pre-
dicts future faults and assesses their potential impact. Implementing these mechanisms 
is crucial for preventing fault propagation, thereby maintaining an acceptable level of 
performance and safety [14, 15] 

Traditional risk assessment methodologies in reliability engineering rely on proba-
bilistic assumptions to generate fault rates, leading to extensive experimentation, leav-
ing Boolean fault modeling inadequate for unexpected changes. Similarly, Markov 
Chains, which use probabilistic features to predict future system states, can lead to a 
combinatorial explosion of states when dealing with high degrees of freedom, thus con-
tradicting the dynamic nature of reconfigurable production systems [15]. 
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Table 1. Difference between Reliability and Dependability [15] 

Subject Reliability Dependability 
Modelling Probabilistic, based on random 

processes 
Deterministic, based on dynam-
ical behavior 

Assessment Function of failure probabilities Functional in the state deviation 
Means Decrease of failure probability 

by redundancies and diversity 
Decrease of state deviation by 
fault-tolerant control 

2.3 Related Work for Dependability with MAS 

When looking at the concept of reliability and dependability within production control 
with MAS, often the concept of holonic systems is found. One of the most prominent 
approaches tackling the challenge of chaotic behavior is found in the ADACOR² system 
by Barbosa et al. [16]. Here, the holonic approach is used and an advanced PID con-
troller for stabilization in the production control is integrated. Inspired by classical con-
trol theory this leverages adaptive self-organization of the holons, yet does not fully 
examine the dimensions of dependability as such. In contrast, this leaves room for re-
search on the design and training of controllers to enhance system dependability. 

Similarly, Heid et al. [17] shows a significant step forward in dependable production 
systems by incorporating flexibility to manage evolving risk assessment effectively. 
Here the multi-level design is suggested introducing a safety agent with pre-configured 
hazard rules for strategical, tactical and operational levels. Nonetheless, the focus is on 
control device level and lacks fault-tolerant implementation for other levels. Komesker 
et al. [4] developed a hybrid planning, scheduling and control architecture which serves 
as an enabler for multi-level mechanisms due to its fractal approach. Yet, it is noted 
that there is need for further exploration of fault tolerance mechanisms as the approach 
predominantly focused on the underlying system architecture. With a similar focus Ba-
yanifar [18] developed an Failure Mode and Effects Analysis (FMEA) method. None-
theless, uncategorized errors are neglected which especially in multi-level environ-
ments is dangerous as emerging behavior can’t all be categorized beforehand. 

Wannagat and Vogel-Heuser [19] apply Fault Tree Analysis (FTA) to enhance fault 
diagnosis, offering a structured method to assess and manage system failures. Here, 
especially the dependability requirements are examined and results show stabilization 
effects on the systems behavior in case of a physical fault. This approach focuses on 
control device level only and does not consider predictive dimension since it is based 
on predefined faults in FTA. Rehberger et al. [20] emphasizes the dimension of de-
pendability by aiming to improve planning processes and ensuring right timing for real-
time scheduling, yet does not consider the runtime control and emerging behaviors.  
As [8–10, 21] come to the conclusion that when it comes to complex networks of units, 
most existing safety-related approaches are not dynamic enough. They emphasize the 
need for safety-focused strategies for the control design. While this can set limitations 
on the flexibility, they have to be balanced out to enable dependable control. This comes 
together with the need for concepts to tackle emerging behaviors and not just catego-
rized faults to make these systems applicable for large-scale modular production sys-
tems [21]. The related work reveals possibilities and requirements for a combination of 
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adaptive control through MAS considering principles of dependability. However, ge-
neric holonic structures and formal methods for dependability assessment as well as 
unified reconfiguration are still not fully integrated. 

3 Approach for Integrating Principles of Dependable 
Systems Engineering into MAS for CPMPS 

One approach to cope with complexity and flexibility at the same time is the combina-
tion of model-based techniques for accessing the deterministic behavior attributes of 
the controlled system and the integration of data-driven methods for more flexibility 
and automatic model generation. While the latter can be used to quickly find new solu-
tions such as production order reconfigurations, these solutions can be checked for fea-
sibility and predictability by deterministic models. A generic system architecture 
(GSA) for the assessment of dependability in continuous and discrete systems has been 
developed in [15] which is based on the recursive-nested behavior control (RNBC) in-
troduced in [22]. This formal model-based methodology aims at controlling complex 
systems through behavior-based models, and therefore will be used in this work and 
examined for applicability to HMAS with Active Fault-Tolerant Control (AFTC). 

To enable the developed system for large-scale CPMPS, this framework is based on 
the holonic architecture by [4, 23] and will be extended to assess and leverage depend-
ability by using model-based behavior control while also enable data-driven flexibility 
inside the holons. Based on the GSA, the methodology starts with a Behavior-Based 
System Decomposition and Description, to assess system properties and composition, 
ensuring scalability by decomposing the system into controllable subsystems. Defining 
system behavior is crucial for dependability, allowing deviation assessment and ensur-
ing intended behavior. The System Architecture is then designed for control of the pro-
duction system, deriving a generic fractal architecture by matching components with 
the HMAS. In the subsequent sections, the Interaction Design for Multi-Level Moni-
toring and AFTC for dependable control by minimizing deviations is derived. 

3.1 Behavior-based System Decomposition and Description 

Since the ISA 95 layered architecture for automation systems struggles with the flexi-
bility accompanied by new modular production systems, the Reference Architecture 
Model Industry 4.0 (RAMI 4.0) is proposed for modern production systems [11, 24]. It 
has been demonstrated before that the nested behavior-based control structure, original 
developed for autonomous mobile robots, can be applied to other types of semi-auton-
omous systems such as rehabilitation systems, medical robots and unmanned air vehi-
cles. In the case of RAMI 4.0, it is possible to use different adopted model types for 
every hierarchy level, e.g. continuous state space models on the motion levels, hybrid 
models on the machine level and discrete event systems on the planning and scheduling 
levels as the environment in this work. These can be trajectories for robotics or compo-
site Key Performance Indicators as defined in ISO 22400-1 such as ratios, utilization 
ratios, efficiency, effectiveness or rates. Examples for behavioral information and time 
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increments for state updates can be cycle times for control devices in ms, makespan of 
products in hours or supply chain metrics on factory level, formed as sets of trajectories.  

Therefore, it is proposed to define the mission of a system, which represents the 
intended behavior of the system in a limited set of reference trajectories. Such trajecto-
ries are common practice in many engineering fields and similar forms such as trust 
vectors exist, yet mainly on control device level not discrete event levels [15, 17]. In 
the case of CPMPS these missions can be represented as trajectories of production met-
rics over time derived from production plans and orders. Defined as part of the produc-
tion planning the responsible planner will get a future state estimation of the expected 
intended behavior, by solving methods such as heuristics. Sub-missions can then be 
derived for further granularity and be used for dependability assessment on lower lev-
els. Plans will be formulated at top level and then divided and conquered defining the 
intended behavior of the system [4]. According to Wagner [15], the deviation from this 
intended behavior bref / mission can be defined as Dynamic Performance δp as depicted 
in Fig.1. The deviation from the pre-defined safety margins shigh/low can be defined as 
Dynamic Safety δs. 

 
Fig. 1. Exemplary Schematic Overview of Behavior Metrics adapted from [15] 

This integrated approach to describe the behavior and define thresholds to use for eval-
uation functions and triggers accordingly. The corresponding metrics can be combined 
to serve as a unified measure for dependability depicted in equation 1. This allows to 
compare control designs regarding a combined normalized measure of integrated de-
pendability measure (IDM). Given the discrete event-based updates in the production 
environment, the time-discrete version of the IDM over 𝑛𝑛 samples can be defined as 
follows. 

𝐷𝐷(𝑛𝑛) = 1 −  1
𝑚𝑚

 ∑ ∑ 𝑎𝑎𝑗𝑗�1 − 𝐴𝐴𝑗𝑗�𝑢𝑢(𝑘𝑘),𝑦𝑦𝑟𝑟(𝑘𝑘),𝑦𝑦(𝑘𝑘), 𝜃𝜃𝑗𝑗��𝑑𝑑
𝑗𝑗=1

𝑛𝑛
𝑘𝑘=1 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑎𝑎𝑗𝑗 = 1.𝑑𝑑

𝑗𝑗=1   (1) 

The IDM 𝐷𝐷(𝑛𝑛) shows the weighted discrepancy between the wanted and the actual 
behavior in terms of Dynamic Performance and Dynamic Safety. The IDM coefficients 
(acceptance functions) 𝐴𝐴𝑗𝑗(k) in the integral are time dependent functions of defined 
dynamic properties, which are normalized in the interval [0, 1] and weighted by the 
constant factors 𝑎𝑎𝑗𝑗, while the sum over all j = 1…d factors is unity. Further variables 
are the mission input trajectory 𝑢𝑢(𝑘𝑘), the reference output trajectory 𝑦𝑦𝑟𝑟(𝑘𝑘), and actual 
system output 𝑦𝑦(𝑘𝑘). The vector 𝜃𝜃𝑗𝑗 includes performance parameters [15]. 
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3.2 Dependable System Architecture utilizing HMAS 

As the examination of the state of the art and the related work suggests, the holonic 
system architecture is suitable for being established over several production layers. The 
system decomposition as suggested by the generic methodology, matches the system 
decomposition from the level specific control in the HMAS by [23], as it done accord-
ing to RAMI 4.0. The generic system architecture based on RNBC by Wagner is 
adapted to the principles of HMAS and depicted in the following architecture model in 
Figure 2. The RNBC of a system requires monitoring and reconfiguration components. 
If we match these controller elements with the agents from [23], the functionalities can 
be found in the Data Agent (DA), the Deviation Agent (DevA), the Process Orchestra-
tion Agent (POA) and the Production Flow Agent (PFA) which are extended by ser-
vices. Corresponding to the RNBC and the HMAS, the following generic component 
diagram results with their respective levels for HolonLn and two HolonLn-1. 

 
Fig. 2. Components of the HMAS for dependability integration: Monitoring (red), Reconfigura-
tion (green) and Control (blue) 

In the initial step the intended behavior bref, Ln is defined. According to the definition of 
missions and sub-mission, these are distributed over the several layers of the architec-
ture. The PFALn is used to split an assigned mission as part of the reference behavior 
bref,Ln to the holon and a reference bref,Ln-1  into several sub-reference behaviors. These 
are passed on to the corresponding holon via the POALn and are further processed ac-
cording to the fractal concept. The corresponding sub-mission bref, Ln-1 are forwarded to 
sub-holons or same-level commands send as output information yLn. The sampling rates 
for monitoring correspond to the levels and thus lead to fast inner feedback control 
loops and superordinate slower control loops as depicted in the following section.  

The DALn is subscribed to the Interholonic Communication Space with subordinate 
holons and thus takes over the monitoring task by receiving externally sensed input 
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information uLn from the same level and behavioral information bref, Ln-1 from sub-ho-
lons. Here, the DALn receives all information on the production and transportation en-
tities of the subordinate level. The events contain formatted information and are pre-
processed and used for metrics calculation such as the Dynamic Performance and Dy-
namic Safety for IDM and state estimations. Following the GSA and HMAS concept, 
the information is evaluated by the DevALn with the help of its Reconfigurations Ser-
viceLn for minimizing behavior deviation to restore the measurable dependability. 

4 System Design for Dependable Control of CPMPS 

The following section provides an overview over the production use case and the gen-
eral task to be fulfilled. Based on the problem description the interactions and signals 
for the agents are defined, implemented and validated in a simulation in section 5. 

4.1 Use Case Description 

The reconfigurable production system consists of a large-scale CPMPS with skill-based 
resources, grouped into stations and lane-based AGV for inter-station and smaller free-
roaming AGV for intra-station transfer of parts. Each resource includes multiple skills 
for production orders and has defined failure rates. According to the system architec-
ture, the developed HMAS utilizes services for solving the production mission which 
is the daily production program provided by the ERP and preceding planning. The sub-
sequent problem for the factory and the system of interest is defined as an np-hard 
flexible job shop scheduling (FJSS) problem which optimizes order allocation to re-
sources and sequencing on multiple levels for makespan. The primary goal is to secure 
the overall production mission by the heuristic method and the metrics defined within. 
To achieve this, the system will divide the initial reference plan from the ERP System 
to generate sub-missions for station and resource level and will use reconfiguration such 
as level-specific order reallocation and sequencing to adapt to deviations locally. 

4.2 Interaction Concept for Multi-Level Monitoring and Active Fault-
Tolerant Control 

As previously mentioned, the interaction mechanisms are the heart of MAS and pre-
dominantly influence the performance of the overall system [25]. The resulting signal 
diagram depicted in Figure 3 illustrates the coordination among different agents in a 
holonic multi-agent system for controlling the CPMPS. This system consists of the Pro-
cess Orchestration Agent (POA) for control, the Data Agent (DA) for monitoring and 
the Deviation Agent (DevA) plus Production Flow Agent (PFA) for reconfiguration of 
the system. Moreover, the exemplary Holonic Levels are now matched to the RAMI 
4.0 resource, station and factory for the use case problem from the previous section 4.1. 
and are shown encapsulating the introduced agents. 
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The sequence begins with the daily production plan ERP DataL1, ref of the ERP System 
being send to the HolonFactory transmitting the first reference information. The metric of 
products for the day is provided by a higher hierarchy of the ERP system that is not 
observed in the system but provides the production mission for the overall factory. 

Using the skill-based decomposition the PFA will generate suborders which will 
serve as production missions for lower levels as part of a BacklogL2, ref for multiple 
HolonStation. As this is the first reference, the PFA will generate sub-behaviors by using 
a heuristic service to solve the FJSS problem optimizing the overall makespan and get 
a first estimation of the model behavior. The DA of the HolonFactory will store the corre-
sponding TrajectoriesL1, ref in form of aggregated metrics over time and scheduled or-
ders for continuous monitoring. The sub-orders are sent as a command collection of 
orders OL2, ref via the POA controller and the Interholonic Communication Space to its 
loosely coupled child-holons. This down-stream information flow is continued inside 
the station level where the sub-orders of the orders are allocated and sequenced to the 
resources which will then executed the corresponding ProcessL3, ref. 

 
Fig. 3. Signal schemata for fast inner feedback control loops and slower outside feedback control 
loops with Monitoring (red), Reconfiguration (green) and Control (blue) 

Given that the RNBC is a feedback control, the process values UpdateProcess are col-
lected from the field devices to the resource level and forwarded bottom-up. The rele-
vant information for orders OL3 and resource states RL3 are processed by the DAL3 of 
the HolonResource. After pre-processing and monitoring the relevant information such as 
the IDM, these are forwarded to the internal DevA for reconfiguration activities which 
is a resequencing of orders OL3 as part of the internal BacklogL3, ref based on the evalu-
ation of the Dynamic Performance and Dynamic Safety. If another sub-level below 
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would be integrated an order reallocation to multiple field devices would be a suitable 
action here as well. State deviations occur in case of machine break-downs, late orders 
or full buffers due to uncertainties in the planning or non-linear feedback as part of 
emerging system behavior. 

The DevALn on every level plays a crucial role by assessing the behavior information 
to determine the necessary actions to reestablish reference behavior. Based on decision 
rules regarding the IDM including the Dynamic Performance and Dynamic Safety three 
potential outcomes can arise from the DevALn evaluation on every level: (1) Additional 
support is required beyond the local capabilities of the holon as the local production 
mission is not retrievable and no reconfiguration is feasible, a support request SRL2/L3 
is sent to a higher-level holon. (2) If the system decides for a feasible internal order 
reconfiguration to minimize deviation to the intended behavior, this information is for-
warded to the appropriate decision support services on the level for reconfiguration 
such as DRL agents or heuristics. (3) No action is taken as the deviation is in acceptable 
boundaries. Each reconfiguration service is provided with information about the local 
context of the system. The services for order allocation and sequencing differ in their 
horizon, speed and performance corresponding to the slow outer and fast inner control 
loops and will be presented in section 5.1 

5 Simulation Study 

The developed HMAS is connected to a discrete-event simulation for multi-method 
simulation to test the mechanisms in cooperation with the services. The setup for prov-
ing the feasibility is described in section 5.1 and the results are discussed after. 

5.1 Setup 

The simulation framework consists of the industrial-grade discrete event simulation 
tool Plant Simulation connected to the MAS framework Janus [26]. The connection is 
established via asynchronous OPC UA to account for delay in the subscription interval. 
Containerized and pre-trained DRL agents are spawned for each production entity re-
configuration commands and are continuously trained during simulation.  

For the simulation three different scenarios were compared: (1) Central: Fulfilling 
strictly the central reference schedule with minimum deadlock-avoidance techniques, 
(2) Active DRL: Using station-level reconfiguration for resource allocation and se-
quencing with higher-priority than initial schedule, (3) Passive DRL: Using station-
level reconfiguration for resource allocation and sequencing with lower priority than 
initial schedule. Each scenario works with same initial schedule and will have the same 
failure profiles for machines given the individual technical availability of 95 %. The 
ERP Data provides the initial daily plan for 200 products. The reconfiguration services 
in the DRL scenarios are configured with the same decision rules and allowed deviation 
of 30min per order when it comes to tardiness. The overall schema for the HMAS and 
DES integration are depicted in Figure 4 showing the system boundaries for an example 
on each level. 
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Fig. 4. Schematic overview of the developed HMAS (top) and DES (bottom) 

On the outer slower loop of the HolonFactory the overall throughput is continuously com-
pared to the initial reference. In case of large deviations as the systems runs empty, the 
reconfiguration is triggered releasing new orders from its backlog into the systems and 
optimizing the allocation and sequence to achieve the intended production mission of a 
number of products. For the reconfiguration for HolonStation an existing approach called 
auction-based online scheduling with reinforcement learning (ABOS RL) from [27] is 
used to manage local deviations. The ABOS RL is pre-trained on optimizing the 
makespan and minimizing tardiness within individual stations, ensuring the throughput 
is maintained even if there are disruptions. The DevA of the lower HolonStation will gain 
access to local products and orders as well as neighboring products that are within fea-
sible reach of the station both timely and spatially allowing the HolonStation to reconfig-
ure in its system boundaries with little horizontal overlap. For HolonResource mechanisms 
according to FIFO decision rules are used to reconfigure its own BacklogL3, ref and there-
fore sequence locally to improve local utilization for the intended production mission 
as long as the HolonStation is not intervening. The IDM for evaluation and triggering the 
reconfigurations is solely evaluated based on the difference in performance in a one-
dimensional trajectory as of current implementations. 

5.2 Results & Discussion 

The results as depicted Table 2 show a clear picture when it comes to overall makespan. 
The initial plan with no alternative paths has a throughput time of 13710 seconds for 



12 

the set number of products. The Active DRL can produce the same number of products 
in 12877 seconds and therefore needs more than 6% less than without any deviation 
detection. The Passive DRL has a more restrictive operation area and will have lower 
priorities then heuristic based orders showing negative effects in the makespan. 

Table 2. Simulation results for different deviation strategies 

Metric Central Active DRL Passive DRL 
Makespan [s] 13710 12877 13757 
Average throughput time [s] 6033.7 5748 5804.4 
Average tardiness [s] 1524 916.3 906.9 
AGV utilization (lane-based) [s] 419325 612134 666099 
σ of orders per resource [pc.] 234.7 175.3 157.3 

 
Average tardiness, describing the delay of orders is a factor to be evaluated and served 
as the main reference trajectory in the framework. Therefore, it shows the difference 
between the planned finish timestamp provided by a heuristic and the actual timestamp 
for order and its suborders accordingly. The results are to be expected as the Active 
DRL can catch up on the delays and reduce tardiness through reconfiguration, as illus-
trated in the left graph of Figure 5. This can help for short-term tardiness but can also 
eventually have negative consequences in the long term, as seen in the overall 
makespan for the Passive DRL. Other metrics related to transportation via AGV usage 
show increased activity for the DRL strategies. These strategies show a lane-based 
AGV utilization significantly higher than the central control strategy increasing trans-
portation effort but also leveraging makespan in the long-term. 

 
Fig. 5. Dynamic Performance on factory level for throughput (a) effects of order reconfiguration 
on station-level between Active DRL (blue) and Central strategy (orange) 

Figure 5 shows the average deviation of the orders collected over all stations for the 
factory for the two main strategies of the Central FIFO and Active DRL. Since all ma-
chines are equipped with availabilities of over 95% and the initial plan is optimized for 
an ideal production, the loss is inevitable and increases over the time. As it is evident, 
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the Active DRL manages to minimize the deviation of the individual orders from their 
intended start. The Central FIFO shows a much higher variance in the tardiness of in-
dividual orders due to higher vulnerability due to minimum deviation strategies and 
being unable to dodge any failures.  

The standard deviation in order allocation per resource indicates workload distribu-
tion balance and reconfiguration activities. The central control strategy has the highest 
deviation at 234.7 per resource which was the initial global optimum for a failure free 
production for the overall makespan of 200 products. The Active DRL reduces it sig-
nificantly, demonstrating more efficient workload distribution necessary as part of the 
deviations. This is also shown in Figure 5 (right) aggregated to stations for clarity.  

In conclusion, it is evident that the DRL strategies successfully minimize deviations 
to predicted performance for the observed period. This indicates that the combination 
of model-based behavior generation and evaluation with data-driven flexibility and 
speed can minimize delays, maintaining performance within acceptable limits even un-
der varying conditions and potential disruptions over multiple-levels. The implemented 
DRL strategies enhance the system's ability to adapt to changing conditions, ensuring 
that the performance remains within limits defined by configurable reference behaviors.  

6 Conclusion & Further Research 

In conclusion, the approach presented in this paper offers a promising solution to ad-
dressing the challenges faced in reconfigurable production systems, giving transpar-
ency and accessibility to the dimensions of dependability. By establishing a holonic 
control design, a nested control over the system dynamics is achieved, serving the 
multi-level CPMPS control. The fusion of HMAS with dependability principles creates 
a fault-tolerant system architecture, enhancing the overall performance. The developed 
interactions allow continuous IDM monitoring and control of the corresponding ho-
lonic systems and also allowing future extensive analysis on combinations of reference 
trajectories and reconfiguration services. Divided in fast inner loops and slow outer 
loops, this enables quick adjustments to deviations while also handling slower trends 
operating on larger time increments. Furthermore, the integration of self-similar com-
ponents ensures reusability within the system with reconfiguration services to minimize 
different aspects as part of the IDM in the future. Using the heuristic for reference be-
haviors grants transparency and therefore control over the system's operations.  

Future research should explore the multi-dimensional description of trajectory sets 
instead of a single trajectory. This will provide a more comprehensive understanding 
of the system behavior and fault-propagation across different levels. Another main fo-
cus in future work will be the existing trade-off between model-based restrictions and 
data-driven actions provided by DRL shown in the two different DRL configurations 
in this work. Balancing these aspects is essential to maximize the system's performance 
while maintaining flexibility, yet always assuring the dependability. This will benefit 
from a more extensive integration of the IDM which can be used to optimize the DRL 
policy according to dependability and evaluate different actions while maintain model-
based formalism for transparency. 
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