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Abstract
Image captioning is an AI-complete task that bridges computer vi-
sion and natural language processing. Its goal is to generate textual
descriptions for a given image. However, general-purpose image
captioning often does not capture contextual information, such as
information about the people present or the location the image was
shot. To address this challenge, we propose a web-based tool that
leverages automated image captioning, large foundation models,
and additional deep learning modules such as object recognition
and metadata analysis to accelerate the process of generating con-
textualised and personalised image captions. The tool allows users
to create personalised and contextualised image captions efficiently.
User interactions and feedback given to the various components are
stored and later used for domain adaptation of the respective com-
ponents. Our ultimate goal is to improve the efficiency and accuracy
of creating personalised and contextualised image captions.

CCS Concepts
• Human-centered computing → Interactive systems and tools; •
Computing methodologies → Natural language generation;
Computer vision tasks.
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1 Introduction
Image captioning involves automatically generating textual de-
scriptions for visual images, leveraging advancements in computer
vision and natural language processing. Although current state-of-
the-art models excel at producing basic image descriptions (e.g.,
assisting visually impaired individuals or automotive applications),
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they often fail when confronted with additional contextual informa-
tion not captured by the image itself. This limitation is particularly
pertinent when integrating user-specific details or external context,
prompting the consideration of interactive and human-in-the-loop
approaches that engage human participation.

Our proposed system, CUTIE, which stands for Contextual Under-
standing and Tailoring for Image Explanations, integrates interactive
and contextualised image captioning within a photobook-editing-
style interface. We introduce a novel tool that facilitates eliciting
user-specific and contextual information to generate tailored and
context-aware captions. By synergising object detection, metadata
extraction, and large foundation models in an intelligent user in-
terface, our approach effectively incorporates additional context
beyond the information in the image.

2 Related work
Previous approaches in interactive image captioning have focused
on improving general-use captions by integrating various interac-
tive components: [9] present an interactive-predictive system for
generation tasks, including image captioning, which considers user
feedback and integrates online learning for adaptation. [7] involve
the human-in-the-loop by providing incomplete sequences as input,
in addition to each image, during inference time. [3] extend the
Show, Attend, and Tell [14] architecture by combining high-level and
low-level features, which provide explainability and beam search
during decoding time. [2] propose an interactive image caption-
ing pipeline integrating data augmentation and continual learning
to avoid overfitting and catastrophic forgetting during repeated
training. [13] integrate interactive prompts for improved caption
inference. More recently, [5] extend LLaVA by creating a model that
allows users to mark images and interact with them with visual
prompts.

Contextualised image captioning considers additional context to
generate an image caption that describes the image’s content and
includes relevant external information. The context provided is, in
most cases, in text form. [4] and [12] use news articles as context;
the former uses a template-based architecture, and the latter uses
an end-to-end architecture, considering additional features such as
face and object detection. A modified version of the model proposed
by [12] is used in [8] for image captioning on Wikipedia [11].
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Figure 1: Screenshot of our intelligent user interface for personalised/contextualised image captioning.

3 System design
We demonstrate a web-based tool for interactive image captioning.
Human-in-the-loop is essential for generating personalised and
contextualised image captions. The tool allows users to process
images in a photo-editing-like interface (Figure 1). We integrate
various deep learning modules to extract information that the user
needs to provide. Contextual information and user feedback are
incorporated via large language models (LLMs) and stored for fine-
tuning the deep learning components (Figure 2).

User interface. The user interface includes four main compo-
nents, as seen in Figure 1: the left bar for uploading new images or
selecting old ones for captioning, as well as choosing the models for
image caption generation and contextualisation; the top central box,
showcasing clickable object detections, which the user can then
use to enter person names; the middle central box for metadata and
temperature selection; and the bottom central boxes for the man-
ual addition of context information, caption rating, and feedback
incorporation. The generation of a contextualised image caption
occurs in three stages. In the first stage, the user uploads an image
(users can also re-caption existing images) and selects a model com-
bination for captioning and contextualisation. The image is then
processed for (a) object detection and (b) image captioning. In the
second stage, the user can provide more information for personalisa-
tion and contextualisation, as well as feedback: The uploaded image
is displayed on the interface, along with detected objects marked
with a red bounding box. Users can click on detected persons to
initiate annotation. After selecting a detected person, a text input
field appears in the designated annotation panel on the right. Users
can then enter the name of the person being annotated. Each time
a new person is selected for annotation, an additional text input

field is dynamically generated within the annotation panel. This
allows multiple persons to be annotated simultaneously. The base
caption generated by the image captioning component is displayed
below. The user can edit and save the improved version if the initial
caption contains errors. The detected metadata, namely date, time,
and location, are shown in the central component. Users can adjust
the generation temperature on the right part before generating
the personalised and contextualised caption. Additionally, they can
provide additional information relevant to the captioning process.
During the third stage, personalised and contextualised image cap-
tioning occurs, based on person names, base captions, metadata,
and further context. The initial generated caption is displayed in
the left section of the bottom central component. Users can rate
the quality of the generated caption on a scale from 1 to 10 and
propose improvements, which are incorporated into the updated
caption shown in the bottom-right section of the interface.

Implementation. Our presented tool employs multiple deep learn-
ing components to generate personalised and contextualised im-
age captions. The two main components are an image captioning
system, which extracts visual information from the input image
in the form of a base caption, and an LLM, which leverages con-
textual information to transform the base caption into a person-
alised/contextualised caption. We follow the two-step contextualised
caption generation procedure proposed by [1], with additional com-
ponents to extract and elicit relevant information not present in
the image. While this two-stage approach can, in theory, be substi-
tuted by using visual/multimodal LLMs, we argue that it provides
increased controllability and interpretability and lower inference
costs.

Initially, the input image is processed by both the object detection
component and the image captioning one. For object detection, we
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Figure 2: Overview of the architecture of our interactive image captioning system.

utilise a Faster R-CNN model1 [10] provided by Torchvision. For
image captioning, the user can select between two pre-trained
models: BLIP-22 and ViT-GPT23, both provided by Huggingface.
Furthermore, if the image file contains metadata, this is extracted
using the EXIF library in Python3. To convert the information for
latitude and longitude into an exact location, Geopy is additionally
used. After the user inputs information about the people present,
the correctness of the base caption, the necessity of metadata in
the caption, and the temperature for generating the caption, the
user feedback is used as input into the LLM chosen by the user. The
user can choose between GPT-4o, provided by the OpenAI API, and
llama3 [6], provided by Ollama4. An initial caption is generated,
conditioned on the image description from the image captioning
component, people’s names, and additional information inferred
from the image metadata or manually entered by the user. The user
can rate the quality of the caption and suggest improvements or
changes. The first version of the caption is passed to the LLM, along
with the proposed changes, and an updated caption is generated.
In parallel, user input and corrective feedback are stored in the
backend. In the future, this information can be used to fine-tune
the deep learning components individually.

To improve scalability and performance, the system parallelises
computations using a ThreadPoolExecutor. It reduces redundant
tasks with Flask-Caching backed by an in-memory cache, ensur-
ing faster response times for multiple simultaneous image process-
ing requests.

4 Conclusion
We designed and implemented a tool for AI caption co-creation
that seamlessly integrates deep learning components with human

1https://pytorch.org/vision/main/models/generated/torchvision.models.detection.
fasterrcnn_resnet50_fpn_v2.html
2https://huggingface.co/Salesforce/blip2-opt-2.7b
3https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
4https://ollama.com/

input in an intuitive interface. The tool provides captions based on
deep learning detections, which can be updated based on the user’s
feedback. By reducing the time and effort required for manual
annotation, we aim to make the creation process more efficient
and effective. We plan to conduct a user study to investigate the
efficiency and effectiveness of our approach.
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