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Population health studies increasingly collect longitudinal, patient-reported symptom data via mobile 
devices, offering unique insights into experiences outside clinical settings, such as pain, fatigue or 
mood. However, such data present challenges due to ordinal measurement scales, irregular sampling 
and temporal autocorrelation. This paper introduces two novel summary measures for analysing 
ordinal outcomes: (1) the mean absolute deviation from the median (Madm) for cross-sectional analyses 
and (2) the mean absolute deviation from expectation (Made) for longitudinal data. The latter is based 
on a latent cumulative model with penalized splines, enabling smooth transitions between irregular 
time points while accounting for the ordinal nature of the data. Unlike black-box machine learning 
approaches, this method is interpretable, computationally efficient and easy to implement in standard 
statistical software. Through simulations, we demonstrate that the proposed measures outperform 
standard methods when the assumptions of normality or stationarity are violated. Application to real-
world data from a national smartphone study, Cloudy with a Chance of Pain, highlights the utility of 
these measures in characterising symptom variability and trends over time. The methods developed 
here provide intuitive tools for analysing patient-reported outcomes in longitudinal studies, with 
potential applications in prediction modelling, causal discovery and evaluation of interventions.

Background
Advances in digital health have enabled the collection of intensive longitudinal data from patient-reported 
outcomes, particularly through smartphones and wearable devices. These developments have promised to 
transform population health research for over a decade1 through ‘mobile health’ or mHealth, which can reach 
more patients than conventional methods2, and across different contexts, via ecological momentary assessment3. 
Such data offer unique opportunities to study subjective phenomena such as pain, fatigue and mood outside 
clinical settings.

Symptoms can be logged daily, as seen successfully in national smartphone studies including Cloudy with a 
Chance of Pain4 and the CoViD Zoe Symptom Study5. Such insights are invaluable for understanding day-to-
day variability, predicting disease flares and assessing the effectiveness of interventions in real-world conditions.

Despite these benefits, analysing such data poses unique challenges. Patient-reported outcomes are often 
measured on ordinal scales (e.g. ‘none’, ‘mild’, ‘moderate’, ‘severe’) and are collected at irregular intervals, 
introducing complexity in handling variability, trends and temporal dependencies. Traditional methods, designed 
for continuous, regularly sampled, complete data, often fail to respect the ordinal nature of measurements or 
capture non-linear trends over time.

Challenges in analysing longitudinal ordinal data
Analyses of patient-reported outcomes can address descriptive, ætiological and predictive questions. Descriptive 
analysis includes quantifying how symptoms fluctuate and identifying ‘typical’ levels and the variability around 
them, which may not be common across patients. The prediction of time-varying patterns has the potential to 
identify moments of interest, such as a disease flare, in order to enable a just-in-time adaptive intervention6. 
Ætiological questions need to correlate more than one stream of data to another, allowing us to understand how 
a time-varying exposure can influence a time-varying outcome. However, limited guidance is available on how 
best to process longitudinal, subjective symptom ratings.

1Centre for Epidemiology Versus Arthritis, School of Biological Sciences, Faculty of Biology, Medicine and Health, 
University of Manchester, Manchester, UK. 2Present address:  Department of Data Science and its Applications, 
German Research Centre for Artificial Intelligence (DFKI), Kaiserslautern, Germany. 3 Salford Royal Hospital, 
Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK. 
email: david.selby@dfki.de

OPEN

Scientific Reports |        (2025) 15:34151 1| https://doi.org/10.1038/s41598-025-13993-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-13993-2&domain=pdf&date_stamp=2025-9-22


Recording patient symptom data outside the clinical setting throws up several important challenges: (i) 
subjectivity in reporting symptom severity; (ii) irregular measurement timing (even with dedicated participants 
and automated reminders)7,8; (iii) temporal autocorrelation, with symptoms exhibiting smooth, gradual changes 
of time, poorly modelled by methods assuming independence between observations; and (iv) non-alignment in 
time, wherein patients describe their day-to-day experience, not necessarily following a common intervention.

To address these challenges, robust statistical methods are needed that respect the ordinal structure of the 
data, account for temporal autocorrelation and irregular sampling, and provide interpretable results that are 
accessible both to epidemiologists and clinicians.

The challenges described above can be addressed using generalized linear mixed models (GLMMs) for ordinal 
data [see e.g9., which can account for irregular measurement timing and subject-specific variation through the 
inclusion of random effects. However, GLMMs typically require the analyst to prespecify the functional form 
of time’s effect on the outcome (e.g. as a linear or polynomial term). This assumption can be difficult to justify 
for complex symptom data, where trajectories can be highly non-linear. The penalized spline approach we 
adopt is a special case of a generalized additive mixed model, offering a more automated, data-driven method 
for modelling these complex trends without strong a priori assumptions. Furthermore, our focus is not just 
on modelling but on deriving simple, interpretable summary statistics to quantify variability around flexible, 
subject-specific trajectories. This provides a clinically intuitive tool to complement existing models.

Contributions of this paper
Though it may sometimes be reasonable to treat ordinal data as continuous (e.g. if the number of levels is 
large)10, it is often unjustified, leading to reduced statistical power and erroneous conclusions10,11. In this paper, 
we propose summary measures of variation for ordinal outcomes with a small number of measurement levels. 
The first, the mean absolute deviation from the median (Madm), is an ordinal analogue to standard deviation, 
applicable for cross-sectional analyses or when the average (median) reported symptom scores do not appear 
with vary with time.

Using a latent cumulative model allows for the possibility of ordinal levels that are unequally distributed in 
the latent space. For dynamic longitudinal data, a penalized spline approach enables smooth transitions between 
irregular time points, with minimal input from the analyst on choice of hyperparameters or arbitrary thresholds, 
and while remaining more interpretable than a black box machine learning framework. Moreover, the latent 
spline model can be easily fit in existing standard statistical software with minimal lines of code, and is readily 
visualized on either the latent symptom or observed measurement scales. A derived summary measure the mean 
absolute deviation from expectation (Made) is proposed for intensive longitudinal ordinal data where symptom 
reports appear to vary over time and where the mean scores are estimated using such a latent spline model.

In an empirical analysis, the derived indices will be applied to eight simulated individuals, chosen to illustrate 
different aspects of the indices. This is followed by a real-world application to data from a national smartphone 
study of people living with chronic pain: Cloudy with a Chance of Pain4.

Methods
Motivating example
Consider eight simulated example subjects, who each provide up to 100 consecutive daily reports of their self-
assessed pain severity on a five-level ordinal scale: 1 (no pain), 2 (mild pain), 3 (moderate pain), 4 (severe pain) 
and 5 (very severe pain), shown in Figure 1. Further simulation details are given in Appendix A. Subjects a, b 
and c all have a constant median pain level, with different levels of variability in the observations. Subjects d and 
e have pain that is, respectively, increasing or decreasing over time. The remaining three subjects experience 
sinusoidal patterns with different amplitudes and frequencies.

If marginalising over time, any summary of the distribution of such data is based on estimating the ‘average’ 
measurement and the variability around it. Frequently, intra-individual pain variability is measured using the 
intra-individual standard deviation (ISD)12. However, estimating a standard deviation also requires estimating 
a sample mean, which is defined for continuous interval measurements but not for ordered categorical data: 
the pain severity level ‘2’ is surely greater than ‘1’ and less than ‘3’ but not necessarily halfway between them. 
Alternatives to the mean include the mode and the median, with the latter possibly a more robust useful measure 
of central tendency (see Appendix B).

This motivates the derivation of an index similar to ISD, but based on the median rather than the mean scores. 
The useful mathematical properties of mean squared differences from the mean (i.e. variance) do not hold for 
mean squared differences from the median, however. Hence we suggest a simpler and more interpretable index, 
the mean absolute deviation from the median (Madm), defined

	
Madm = 1

n

n∑
i=1

|xi − median(x)|

where xi is the pain level reported by a given subject on the ith measurement occasion, i = 1, . . . , n. The Madm 
may be interpreted as the mean ‘distance’ (number of ordinal levels) from the median value. The larger the 
Madm, the more variable a subject’s pain reports. Figure 1 gives the Madms for each of the eight simulated 
subjects, all of whom have a median pain score of 3. Using the median absolute deviation, rather than the mean, 
would offer far less discrimination, since it would need to take the value of one of the pain levels for each subject, 
so in our example could only take 5 different values in any sample.

However, neither the Madm nor the ISD can describe or offer evidence of systematic variation over time, even 
if trends were readily apparent from a simple graphical summary. Moreover, a sequence of ordered categorical 
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values may not be satisfactorily imputed with an overall sample median or mode, as it may introduce sharp 
discontinuities in the temporal trajectory. Hence, we build a statistical model to estimate the level of pain (or 
other reported symptoms) over time, based on patient reports.

The methods proposed here involve assuming a smooth underlying trajectory of pain (equivalently: fatigue, 
mood or other symptoms), based on the assumption that pain is a latent phenomenon in continuous space that 
varies between discrete measurement times, and that discrete ordinal levels are a property of the measurement 
device rather than the biological process.

Fig. 1.  Reported pain severity over time for eight simulated example patients.
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Latent ordinal spline models
A simple ordinal logit or probit regression model of pain against time, while easy to fit, would assume a linear 
trend with time: an heroic assumption that (as we will see) is unlikely to hold for real data from patients with 
musculoskeletal conditions. Using a spline basis for time allows for an arbitrary amount of variation in the 
predicted pain level over time, though typically requires an analyst to decide how much variation would be 
allowed by choosing how many segments (often referred to as control points, knots or bins) in which to to divide 
the follow-up time: more bins allows for more variability at the expense of model complexity.

One proposed method to make this process more robust is penalized splines or P-splines13,14. This approach 
divides the follow-up time into a very large number of bins, more than should be required to model the changes in 
reported pain over time. Then a penalty term is calculated from the magnitudes of the changes of the coefficients 
from one bin to the next, and this penalised likelihood is maximised to estimate the coefficients, effectively 
determining the number of knots (and implicitly the amount of variation) automatically from the data.

Fitting a simple spline model will produce a different coefficient for each bin, giving the model the same 
number of degrees of freedom as the number of bins. With a penalised spline model, coefficients for adjacent 
bins are constrained to be close to each other, reducing the number of degrees of freedom in the model. The 
model will report an “effective degrees of freedom”: the larger this number, the wigglier the association between 
pain and time and the more complex the spline model15. An effective degrees of freedom of 1 corresponds to a 
straight line, or a linear association with time.

Coefficients of a spline basis may be difficult for clinicians to interpret, but a graphical representation can 
illustrate the model clearly. As well as a smooth curve in the latent space, the output of an ordered categorical 
model includes a set of estimated probabilities, one for each ordinal pain level, representing the probability 
of reporting pain at that level on that day. These may be visualised as a heatmap, where the shading of tiles 
corresponds to the probability of reporting each pain level at each time point.

This set of probabilistic predictions may be complemented by a single “expected” pain level at each time 
point. Conventionally, we could report the pain level with the highest probability, i.e. the mode, as the expected 
level. Alternatively, we could use the “median” pain level based on the cumulative probabilities: the first level 
such that the probability of being at that level or lower is at least 50%.

To compare our latent ordinal spline model with the implied baseline (a constant median model), we derive 
an alternative to the Madm, the mean absolute deviation from the expectation (Made), which measures observed 
deviations from a dynamic model making variable predictions over time,

	
Made = 1

n

n∑
i=1

|xi − x̂i| ,

where x̂i is the median pain severity level predicted by a (spline) model at time point i.
The interpretation of the Made is the same as for the Madm: how many steps from the expected value is the 

observed value on average. If the Made is not much less than the Madm, the model has not improved prediction 
much: observed values are no closer to the predicted value than they are to the median. The Made can even be 
larger than the Madm for a poor model. However, the relative reduction in absolute deviation (1 − Made

Madm ) may 
make a reasonable statistic for the explanatory power of a model.

The results of fitting penalised spline ordinal regression models to the 8 example subjects are shown in 
Table 1 and Figure 2. It is not possible to fit a regression model to subject 1, whose reported pain was the same 
for every time point.

As expected, a time-varying model offers little improvement for subjects (b and c) who exhibit no systematic 
changes in symptoms over time: the Made is not noticeably smaller than the Madm, and this is further quantified 
with the χ2 likelihood ratio test statistic. Subjects d and e show a steady change in pain over time, upwards and 
downwards respectively. This is clear in Figure 2, but can also be read from Table 1. The likelihood ratio statistic 
is highly significant, but the effective degrees of freedom are 1 in both cases, suggesting a linear trend. Subjects f, 
g and h all show non-linear changes in pain levels over time, for which simple linear models would offer a poor 
fit.

The median, Madm, latent ordinal spline model and the derived summary statistics now provide a strategy for 
describing and grouping individuals according to how their pain changes with time. Statistically non-significant 

Subject Madm Made EDF
LR χ2 Dev. 

Expl.
1 − Made

Madm

a 0 - - - - -

b 0.66 0.66 1.00 0.8 .004 0

c 1.19 1.16 1.22 3.7 .012 .025

d 1.19 0.64 1.00 154.9 .428 .462

e 1.21 0.51 1.00 178.8 .458 .579

f 0.72 0.65 4.28 30.2 .112 .097

g 0.73 0.66 5.61 26.8 .096 .096

h 1.06 0.70 5.52 104.9 .308 .340

Table 1.  Summaries of ordinal regression models fitted to simulated subjects.
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Fig. 2.  Results of ordinal regression models in example subjects. Blue curves represent the smooth function 
in the latent space; the grey scale shows the estimated probability of each of the five ordinal levels at each time 
point, with red lines indicating the most probable such level.
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coefficients in the penalised spline model suggest symptoms that do not vary with time, whilst effective degrees 
of freedom less than 2 indicate a linear trend, and effective degrees of freedom more than 2 imply non-linear 
fluctuations in reported symptoms over time, which can be visualised with heat maps or predicted curves.

Results
We illustrate this approach to investigating intraindividual variability in pain by applying it to data taken from the 
Cloudy with a Chance of Pain study16. A total of 10,430 subjects contributed to this study, but many were ‘tourists’ 
who only provided a few days of data16. This analysis was restricted to the 2,197 subjects who contributed at 
least 60 days of data, and reported at least two different pain levels within that data. These subjects contributed 
between 60 and 449 observations each, with 75% contributing at least 89, 50% contributing at least 235 and 25% 
contributing at least 196.

Subjects were asked to report a number of potentially painful conditions; in this analysis we are concerned 
with four: rheumatoid arthritis, osteoarthritis, ‘other arthritis’ and chronic widespread pain. Subjects were 
divided into six groups according to the self-reported presence or absence of these conditions, as follows: 

	1.	 Rheumatoid arthritis and no other condition
	2.	 Osteoarthritis and no other condition
	3.	 ‘Other arthritis’ and no other condition
	4.	 Chronic widespread pain and no other condition
	5.	 Chronic widespread pain plus at least one other condition
	6.	 None of the four conditions

The numbers of subjects with each condition are given in Table 2. A total of 323 subjects did not fit into any of 
these groups, i.e. reported two or more types of arthritis, but all groups with particular combinations of types 
were small and excluded from the analysis.

The median pain reported was higher for the two ‘chronic widespread pain’ groups than the arthritis groups 
or the no condition group (see Table 2). The Madm was lower in the arthritis groups than the other conditions, 
but the between-group differences were not nearly as statistically significant as the between group differences 
in median.

Overall, 20% of subjects showed no significant changes of pain over time, but this varied significantly between 
the condition groups (p < 0.001), being lower in the RA and other arthritis groups (see Table 3. There was no 
difference between the condition groups in the proportion of subjects showing a linear trend in pain, which was 
markedly less (7.5%).

Penalized spline models were fitted using the function gam() from R package mgcv17; with a P-spline term 
and ordered categorical response. By default, the number of knots is k = 10, with positions equally spaced 
across an interval 0.1% wider than the range of the data.

For all of the condition groups, the Made was markedly lower than the Madm, suggesting that the penalised 
spline models capture some of the variability in pain (see Table 4). However, the amount of variability that could 

Group

Time Effect

None Linear Non-linear

No condition reported 24 7 69

RA only 12 9 79

OA only 25 8 67

Other arthritis only 16 7 77

CWP only 25 7 68

CWP plus anything else 21 7 72

Table 3.  Percentage of subjects with each of the three types of variation of pain with time (none, linear, non-
linear) for subjects with different conditions in the Cloudy data.

 

Group N Median Madm

RA only 253 2.35 0.51

OA only 302 2.50 0.52

Other arthritis only 428 2.48 0.51

CWP only 217 3.07 0.55

CWP plus anything else 323 3.15 0.53

None of the above 368 2.48 0.54

p-value for differences < 0.0001 0.03

Table 2.  Time-insensitive parameters for subjects with different conditions in the Cloudy data, with results of 
Kruskall–Wallis test for differences between groups.
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be explained by the models varied between the conditions, with more being explained in RA only and other 
arthritis. This is not entirely due the greater proportion of subjects in these groups showing significantly non-
linear trajectories, since the deviance explained in these groups is still higher when restricting attention to those 
with non-linear trajectories (see Table 5).

The relative reduction in mean absolute deviation correlated well with the deviance explained (Spearman 
correlation coefficient = 0.75, p < 0.00001). The values are also numerically similar, as shown in Table 6.

For subjects showing no significant pattern of changes in pain over time, the only graphic needed is to show 
the proportion of time spent at each pain level. Figure 3 show stacked bar charts for 9 typical subjects from the 
Cloudy data. The left hand three all have a median pain level of 1, the middle three have a median pain level of 
3 and the right hand three have a median pain level of 5. In each group of 3 subjects, the Madm increases from 
left to right.

Figure 4 shows heatmaps for three subjects from the Cloudy data with significant changes in pain over time, 
but no evidence of non-linearity and different amounts of deviance explained. The first subject had an expected 
pain level of 3 throughout the follow-up except at the end. The latent ordinal spline model explained about 1% of 
the reported variation in pain. The second subject had an expected pain of 3 for the first half of their follow-up, 
and 2 for the second half: this model explained about 5% of the variation in pain. The third had an expected pain 
of 2 at the beginning of their follow-up, but soon settled to a consistent expected (and observed) pain level of 1: 
this model explained 38% of the variation in pain.

If the model suggests a non-linear pain trajectory, larger differences between the heatmaps are possible. 
Figure  5 shows heatmaps for 9 randomly selected Cloudy subjects. The left hand column contains subjects 
selected from the lowest tertile of deviance explained, the middle column contains subjects from the middle 
tertile, and the right column contains subjects from the highest tertile. Similarly, the top row contains subjects 

Condition

Time-Effect

None Linear Non-linear

RA only 1% 9% 21%

OA only 1% 4% 17%

Other arthritis only 1% 9% 20%

CWP only 1% 7% 16%

CWP plus anything else 2% 6% 16%

None of the above 1% 9% 19%

p-value for between group differences 0.7 0.07 0.0001

Table 6.  Variation in relative reduction in mean absolute deviation by model type and reported condition in 
the Cloudy data.

 

Condition

Time effect

None Linear Non-linear

No condition reported 1% 7% 16%

RA only 1% 9% 19%

OA only 1% 5% 15%

Other arthritis only 1% 7% 17%

CWP only 1% 6% 14%

CWP plus anything else 1% 6% 15%

p-value for between group differences 0.7 0.07 0.0001

Table 5.  Variation in deviance explained by model type and reported condition in the Cloudy data.

 

Condition Madm Made Dev. Expl. 1 − Made
Madm

No condition reported 0.54 0.46 0.12 0.14

RA only 0.51 0.41 0.16 0.18

OA only 0.52 0.45 0.10 0.12

Other arthritis only 0.51 0.42 0.14 0.16

CWP only 0.55 0.48 0.10 0.11

CWP plus anything else 0.53 0.45 0.11 0.12

Table 4.  Time sensitive parameters for subjects with different conditions in the Cloudy data.
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from the lowest tertile of EDF (simplest trajectories), the middle row contains subjects from the middle tertile 
and the bottom row subjects from the top tertile (most complex trajectories).

Discussion
Summary
In this paper, we have highlighted the challenges associated with summarising ordinal, irregular time series 
data of the kind typically collected in longitudinal mobile health studies. Such measurements are subjective, not 
necessarily comparable between patients, replete with missing values or irregular intervals and likely to exhibit 
temporal patterns. We have proposed alternative graphical and numerical summaries describe the subject’s 
experience, depending on whether the typical pain level varies over time for that subject or not. The proposed 
solution for those subjects whose pain does change over time can be fitted in standard statistical software and 
require minimal data preprocessing, imputation or hyperparameter tuning. Unlike many methods commonly 
used for such data, the methods we propose respect the ordinal nature of the data. We have shown that the 
proposed parameters vary between groups of subjects with different conditions in the way that they might have 
been expected to, providing some initial validity.

The latent penalised spline model allows for systematic changes in typical pain level over time. Not only does 
this make it possible to visualise smooth changes underlying discrete pain measurements, but it also reduces 
the amount of unexplained variation in the data. This increases the power with which it is possible to identify 
predictors of pain, since current pain levels are compared to the time-varying predictions for pain, rather than 
the overall mean or median for that subject.

Having an expected pain level that varies over time also improves statistical power to detect times at which 
pain is either higher or lower than expected. Conventionally, to detect a pain flare, the current level of pain is 
compared to the previous pain level: if the change is an increase greater than a pre-specified threshold, a flare 
is said to have occurred. However, both measurements are made with error, so the error in the change will 
be greater than the error in either measurement separately. The error in the differences between the current 
measurement and the current expected measurement will be smaller, due to the smoothing applied to the 
expected measurements.

Limitations
There are, however, some additional challenges that the methods proposed do not overcome. Firstly, there is 
the subjective nature of pain. What one patient reports as a 3, another (or the same patient the following year) 
may consider a 2 or a 4, based on their individual experiences. The ordinal regression model used allows for 
a different scale for each subject, since it models the value that that individual would report, through random 
effects or simply fitting a separate model to every participant. Hence comparisons within a subject may be valid, 
but comparisons between subjects are less reliable. Modelling the effect of a predictor involves estimating its 
average effect on all of the different scales within the sample. However, this is true of all ordinal regression 
models.

The Madm may be criticised as assuming an interval scale, since it counts how many steps apart two 
measurements are. It may be that going from level 4 to level 5 is a greater increase in pain than going from level 1 

Fig. 3.  Stacked bar charts for varying median and Madm.
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to level 3, despite being fewer steps. In addition, a given change in pain level may be treated as a different number 
of steps by different individuals. Nonetheless, our approach is far less restrictive than treating pain as an interval 
measurement, which assumes not only that pain levels are the same distance apart for each subject, but also that 
each pain level has the same meaning for each subject. The interpretation of the Madm and Made as the ‘mean 
number of levels’ of deviation relies on the numerical encoding of the ordinal categories as consecutive integers 
(e.g. 1, 2, 3, 4, 5). While the measures are mathematically robust to a linear shift in this coding, for any other 
numerical labels, an implicit recoding to consecutive integers is required. The assumption about counting steps 
between ranks remains far less restricting than treating the ordinal outcome as a true interval-scale variable.

Conclusion
The proposed methods have been selected to be intuitive and interpretable such that they can be used by patients 
and clinicians in discussing a patient’s pain (or other symptomatic) experience. These tools should also provide 
an extensible framework for identifying predictors of ordinal outcomes.

A statistically valid procedure for summarising and describing variation in patient-reported symptom data, 
as described here, may be further extended for ætiological questions, such as the effects of interventions or time-
varying lifestyle factors on day-to-day experiences of long-term conditions. Future work may extend these tools 
to improve the design of mobile health studies and adaptive interventions.

Fig. 4.  Ordinal Regression Models: Linear Trend. Blue curve is the fitted latent spline; red is the most likely 
pain level.
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Fig. 5.  Ordinal Regression Models: Non-linear trend.
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Fig. 6.  Histograms of pain levels.

 

Subject

Time Interval

1 2 3 4 5 6 7 8 9 10

1 A A A A A A A A A A

2 B B B B B B B B B B

3 C C C C C C C C C C

4 D D E E F F G G H H

5 H H G G F F E E D D

6 F F E E F F G G F F

7 F E F G F F E F G F

8 F E D E F F G H G F

Table 8.  Pain states for each individual at each time period.

 

State

Probability of being in pain 
state:

1 2 3 4 5

A 0.00 0.00 1.00 0.00 0.00

B 0.00 0.33 0.34 0.33 0.00

C 0.20 0.20 0.20 0.20 0.20

D 0.50 0.50 0.00 0.00 0.00

E 0.33 0.34 0.33 0.00 0.00

F 0.00 0.33 0.34 0.33 0.00

G 0.00 0.00 0.33 0.34 0.33

H 0.00 0.00 0.00 0.50 0.50

Table 7.  Probability of reporting each pain level in each state.
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Data availability
Simulated data may be reproduced using the supplementary R code. The data from the Cloudy with a Chance of 
Pain study is available from the corresponding author on reasonable request.

Appendix A: Simulation of example subjects
Observations were simulated based on “states”, with each state having a fixed probablility of producing each 
possible pain level listed in Table 7. Each individual’s simulated data consists of 100 observations in 10 groups 
of 10. The states for each subject at each time point are listed in Table 8 Since the ability to handle missing data 
is important, having generated 100 observations, each observation was set to missing with a probability of 0.1.

Appendix B: Robustness of median compared to mode
Compare the two graphs in Figure 6, each showing 100 observations on a 5-level ordinal scale. The median in 
both cases is 3, but the mode is 1 in the first case and 5 in the second, despite the fact that only one observation 
differs between them.

Appendix C: Estimating median and Madm from stacked bar chart
Alternatively, we can show graphically the proportion of time spent at each pain level via a stacked bar chart, 
such as Figure 7, and use this to estimate the Madm for each subject. Clearly, there is no variation for subject 1, 
and the Madm is 0. Subject 2 spends approximately equal times at pain levels 2, 3, and 4. The median pain level 
is 3, and pain levels 2 and 4 are one step away from the median. So the Madm for this subject is approximately 
1/3 × 1 + 1/3 × 0 + 1/3 × 1 = 0.67. Subjects 3, 4 and 5 all appear to spend approximately equal amounts of 
time at each pain level, to give a Madm of 2/5 × 2 + 2/5 × 1 + 1/5 × 0 = 1.2. Subjects 6 and 7 spend a little 
time at pain levels 1 and 5, so their Madms are roughly 1/10 × 2 + 6/10 × 1 + 3/10 × 0 = 0.8
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