SAMM Copilot: Bootstrapping Semantic Models with the
Eclipse Semantic Modeling Framework from Domain Data
in JSON Using Large Language Models

Nazanin Mashhaditafreshi®®, Andreas Textor?*, Pascal Riibel?, Nastaran Moarefvand® and
Achim Wagner’

"metaphacts GmbH. Walldorf, Germany.
2Bosch Connected Industry. Stuttgart, Germany.
3German Research Center for Artificial Intelligence (DFKI). Kaiserslautern, Germany.

Abstract

The Semantic Aspect Meta Model (SAMM) is a modeling formalism for describing semantic models of parts of a
Digital Twin — so-called Aspect Models. It is an open specification developed as part of the Eclipse Semantic
Modeling Framework (ESMF). With SAMM being based on the Resource Description Framework (RDF) and
Shapes Constraint Language (SHACL), Aspect Models are usually created and edited manually using a suitable
textual editor or the graphical Aspect Model Editor. A well-defined mapping exists between Aspect Models and
the JSON data they describe, enabling new bottom-up modeling approaches. In this way, instead of having a
manual process for semantic modeling, Aspect Models can be automatically or semi-automatically derived from
existing domain data in JSON format, making the modeling process more accessible and reducing manual effort.
The proposed workflow translates JSON data into Aspect Models automatically using Large Language Models
(LLMs). Our results demonstrate that LLMs can effectively bootstrap semantic models, and preliminary human
evaluation suggests the feasibility and usefulness of this method in practice.
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1. Introduction

In recent years, the concept of digital twin [1] has emerged as a transformative approach to connect the
physical and digital worlds. A digital twin is a virtual representation of a physical asset, enhanced by
real-time data flow between the two realms. This technology supports a wide range of applications
across industries, including manufacturing, healthcare, urban planning, and automotive, enabling
optimization of processes, resource management, and personalized services [2, 3, 4, 5].

Digital twins and semantic models enable smarter, more connected systems by providing a common
language that aids integration with other tools and systems. This is crucial in industries like manu-
facturing, healthcare, and logistics, where clear communication and data sharing are key. Semantic
models ensure interoperability across systems by offering a shared framework for information exchange,
allowing seamless communication. They are typically based on frameworks like RDF and OWL, defining
relationships and concepts within specific domains.

LLMs have gained popularity for generating human-like text, but they sometimes produce factually
incorrect outputs. Semantic models and ontologies help by linking LLM outputs to structured knowl-
edge, ensuring accuracy and domain-specific alignment. This integration mitigates hallucinations and
enhances reliability in specialized domains. While creating and maintaining semantic models can be
time-consuming, LLMs can automate repetitive tasks in semantic modeling, speeding up the process
and allowing experts to focus on higher-level tasks.
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This work explores the intersection of digital twins, semantic modeling, and LLMs, aiming to minimize
effort on repetitive tasks and allowing experts to focus on creative and intellectual work. The Semantic
Aspect Meta Model (SAMM) is a metamodel designed for the semantic modeling of domain data.
SAMM is a critical component of the Eclipse Semantic Modeling Framework (ESMF)!, a sub-project of
the broader Eclipse Digital Twin initiative. Historically, SAMM originated within the Semantic Data
Structuring Working Group of the Open Manufacturing Platform?, which was officially launched in
September 2020 under the name BAMM [6].

This work examines how Aspect Models’ structure and semantic descriptions can be automatically
or semi-automatically derived from domain data in JSON format for the first time. All artifacts are
available for reproducibility®. The research aims to address the following questions:

« RQ1: How can existing domain data in JSON format be leveraged to automatically or semi-
automatically derive the basic structure of Aspect Models within SAMM?

« RQ2: How do open-source models compare to commercial solutions, such as OpenAI’s models,
in generating Aspect Models?

« RQ3: What automated methods can be developed to evaluate the Aspect Models generated by
LLMs?

« RQ4: To what extent can data augmentation techniques improve the accuracy of LLMs when
creating Aspect Models from domain data?

« RQ5: How can an LLM be integrated into various end-user tools and workflows, including but
not limited to an Aspect Model Editor, to help domain experts?

2. Related Work

While related studies have explored the use of LLMs in ontology learning, semantic modeling, and
schema generation, to the best of our knowledge, this is the first work to generate SAMM Aspect Models
directly from structured JSON data using LLMs.

Babaei et al. [7] explored the use of LLMs for Ontology Learning (OL). In this work, the authors
developed the LLMs4OL framework, which evaluates the potential of LLMs to automatically create
complex ontologies, focusing on tasks such as term typing, taxonomy discovery, and relationship
extraction. The authors found that while LLMs show promising potential for OL, they require fine-
tuning for specific tasks to be practical and effective solutions.

The paper by [8] presents a semi-automatic approach to ontology learning based on the NeOn
methodology framework [9] using LLMs. The authors guide LLMs through the NeOn methodology
to build a structured ontology step by step using a prompt pipeline, while utilizing the Stanford
wine ontology as a benchmark for their experiments. A prompt pipeline provided to GPT-3.5 was
used to generate the output, which was then refined through syntax verification, consistency checks,
and error resolution, using various tools and APIs to improve the initially created ontology. The
authors determined that combining proper prompt engineering strategies with well-established ontology
development practices can significantly enhance the consistency of ontologies generated by LLMs.

The study in [10] investigates the capability of LLMs to generate capability ontologies from natural
language descriptions, focusing on GPT-4 Turbo, Claude 3, and Gemini Pro (which was excluded due
to token limitations). The authors experimented with zero-shot, one-shot, and few-shot prompting
techniques to generate ontologies of varying complexity, using a structured prompt template with the
CaSk ontology as context. They evaluated the outputs through syntax validation in Protégé, consistency
checks via Pellet OWL reasoner, and hallucination detection using SHACL shapes. Results showed that
LLMs performed well, with Claude outperforming GPT-4 Turbo, and few-shot prompting yielding the
best results. Limitations include the fixed examples in few-shot prompting and the high token cost of
providing ontology context, suggesting future improvements through embedding techniques.
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Mior et al. [11] examined the challenges associated with analyzing JSON documents, which, unlike
relational databases, lack predefined schemas. This absence necessitates a trial-and-error approach,
wherein analysts inspect a subset of documents, formulate assumptions, and subsequently validate
them across the dataset. To mitigate these inefficiencies, prior research has explored automatic schema
discovery. Notably, Baazizi et al. [12] proposed a method that derives individual document schemas
and subsequently merges them into a unified representation. Building on this, the authors investigate
the enhancement of JSON schema generation using large language models (LLMs), specifically com-
paring Code Llama and T5. Furthermore, they fine-tuned Code Llama using LoRA for a single epoch,
demonstrating that the fine-tuned model outperformed others in generating more useful schemas.
These findings suggest that integrating LLM-derived schemas into existing schema discovery tools can
facilitate the generation of schemas that closely align with those produced by domain experts.

Ghanem et al. [13] investigates Text-to-Knowledge Graph (T2KG) construction using Large Language
Models (LLMs), evaluating Zero-Shot Prompting, Few-Shot Prompting, and Fine-Tuning. The study
compares Llama2, Mistral, and Starling, highlighting Fine-Tuning’s superior performance, particularly
when dataset size increases. Results indicate that fine-tuned models, particularly Mistral and Starling,
outperform Zero-Shot and Few-Shot prompting in T2KG tasks, with Fine-Tuning leading to more
accurate and structured knowledge graphs.

3. Methodology

The goal is to create a semantic model based on the domain data in JSON format. An example of JSON
data from a device (in this example, a Bosch Smart Plug) is shown in Snippet 1. Normally, a domain
expert would start from scratch and manually pick the correct modeling elements from SAMM to create
an Aspect Model.

Similar to how the ESMF SDK generates JSON payloads from Aspect Models, it is possible to write a
heuristic-based approach to evaluate a JSON structure and generate the corresponding Aspect Model,
without using machine learning or LLMs. However, this heuristic approach has several limitations.
For example, it cannot generate meaningful descriptions for elements like 'energyConsumption'. In
contrast, LLMs can produce relevant and useful descriptions, especially when given the right context.
Furthermore, domain experts could simply provide requirements such as “the phone number should
include a country code and follow a specific regular expression,” and LLMs could handle these instructions
effectively. This makes LLMs a more capable and generalizable solution compared to other approaches.

For the above-mentioned reasons, our goal is to explore how LLMs can create the first draft of an
Aspect Model based on the input data. This automated approach saves time and reduces manual effort
for domain experts.

{ "powerConsumption": 3.0,
"energyConsumption": 7590.0,
"energyConsumptionStartDate": "2024-10-25T15:25:24Z" }

Snippet 1: Example of domain data in JSON format.

SAMM is used to describe the structure of the data, but it does not store runtime data. The data can
stay in its current format as provided by the device. If compatibility with Asset Administration Shell
(AAS) is needed, AAS Submodel Template can be generated from Aspect Model. This AAS Submodel
Template can later be instantiated and filled with runtime data, yielding an AAS Submodel Instance.
Also, ESMF SDK supports the generation of other artifacts like Java Code, OpenAPI, and documentation
pages. Since both SAMM and AAS can be represented in RDF format, they can be described using an
RDF-based graph. This creates an interoperable knowledge graph. Figure 1 shows this workflow.

Figure 2 depicts the main steps in our research. First, we need a dataset to fine-tune the LLMs. We
evaluate the output of the models using automatic methods and compare open-source and commercial
LLMs. We also test different fine-tuning and prompting techniques. Finally, we deliver the solution to
target users and collect feedback from domain experts through human evaluation.
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Figure 1: General workflow of the proposed solution.
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Figure 2: High-level steps of this research.

3.1. Data Collection, Preparation, and Augmentation

Semantic models created in Eclipse Tractus-X* were used as a data source for training and fine-tuning
models. This is the only publicly available high-quality dataset with an open license, containing both
complex and simple Aspect Models. Additionally, other data sources, such as the examples provided on
the ESMF modeling guideline page® and the BatteryPassport model®, can be considered for evaluation
purposes, but they do not have a sufficient number of models, quality, and complexity to be considered
for training.

In Figure 3, the structure of semantic models used in the Tractus-X project is shown. Each model is
given a unique identifier, such as 'io.catenax.batch', and can have multiple versions. These versions
are displayed in the left sidebar of Figure 3. For each version, a Uniform Resource Name (URN) identifier
is generated following the SAMM schema, for example, 'urn:samm:io.catenax.batch:3.0.04'. The
model is saved in a . tt1 file, organized within a structured folder hierarchy:.

Generated artifacts, such as sample JSON payloads (used as input for our LLMs) or AAS Submodel files,
are stored in the 'gen' folder. Some cleanup steps were necessary to prepare the data. This involved
removing unnecessary information, such as extra comments, and fixing inconsistencies, modeling
errors, and outdated artifacts. Since the number of collected models was not sufficient for training, we
applied data augmentation techniques to increase the number of samples.

After completing the data cleanup, we retained a total of 155 Aspect Models. By applying various
data augmentation techniques, we modified the original Aspect Models to create new ones, resulting
in a total of 364 models. For data augmentation, Property names in the SAMM model were modified,
altering the resulting JSON keys. Moreover, the ' samm: examplevalue' attribute was removed to make
the values random. Lastly, elements were randomly eliminated from the Aspect Models to simplify the
model. The dataset was then divided into training, validation, and test sets. The training and validation
sets were utilized during the model training process, while the test set was reserved exclusively for
evaluation purposes. Table 1 summarizes the dataset sizes for both the original and augmented datasets.
In this research, 20% of the data was allocated as the test set, 10% of the remaining data was used for
validation, and the rest was utilized for training.

*https://github.com/eclipse-tractusx/sldt-semantic-models (retrieved on 18 September 2024)
Shttps://eclipse-esmf.github.io/samm-specification/snapshot/modeling-guidelines.html
®https://github.com/batterypass/BatteryPassDataModel
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. . . -
4 io.catenaxassembly_part_relationship sldt-semantic-models / io.catenax.batch / 3.0.0 / Batch.ttl

> io.catenax.asset_tracker_links 23 # SPDX-License-Identifier: CC-BY-4.0
) 24 AR R R R
v io.catenax.batch -
25
> 1.0.2 26 X samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.84>.
27 X samm-c: <urn:samm:org.eclipse.esmf.samm:characteristic:2.1.8%>.
> 200 28 % samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0%>.
N 201 29 x unit: <urn:samm:org.eclipse.esmf.samm:unit:2.1.0%>.
30 % rdf: <http: w3.0rg/1999/02/22-rdf-syntax-ns#>.
v 3.00 31 org/2000/01/rdf-schema#>.
32 .org/2001/XMLSchemati>.
v gen
33 .catenax.batch:3.0.84#>.
[ Batch-aasxml 34 @prefix ext-built: <urn:samm:io.catenax.shared.part_site_information_as_built:2.8.0%>.
35 @prefix ext-classification: <urn:samm:io.catenax.shared.part_classification:1.8.6#>.
[0 Batch-schema json 36 @prefix ext-uuid: <urn:samm:io.catenax.shared.uuid:2.0.@%>.
[ Batch.aasx 37
38 :Batch a samm:Aspect;
[3 Batch.html 39 samm:preferredName “"Batch”@en;
[ Batchj 20 samm:description “A batch is a quantity of(semi-)finished products or(raw)material
atch.json
J 21 samm:properties( :catenaXld :localldentifiers :manufacturingInformation :partTypeln
3 Batch.yml 42 samm:operations();
43 samm:events().
I [ Batch.ttl "
Y metadatajson 45 :catenaXId a samm:Property;
26 samm:preferredame “Catena-X Identifier"@en;
[ RELEASE_NOTES.md 47 samm:description "The fully anonymous Catena-X ID of the batch, valid for the Caten
) a8 samm:characteristic ext-uuid:UuidVATrait;
> io.catenax battery.battery_pass
49 samm:exampleValue "580d3adf-1981-44a0-2214-13d6ceedI379" .

Figure 3: Semantic models in Tractus-x project.

Dataset Train | Validation | Test | Total
Original Data 110 13 32 155
Augmented Data | 241 27 96 364

Table 1
The size of the training, validation, and test sets.

3.2. LLM Selection, Configuration, and Benchmarking

In this study, we evaluate a range of LLMs, including both commercial and open-source options, to iden-
tify suitable candidates for fine-tuning. Our primary goal is to assess models that can operate efficiently
on consumer-grade laptops equipped with GPUs, ensuring that the process remains accessible and
practical for a wider range of users. This consideration reflects our intention to balance computational
feasibility with model performance, enabling experimentation without requiring expensive high-end
server infrastructure.

For commercial models, we focus on OpenAlI’s GPT series, specifically GPT-40-mini and GPT-4o.
These models are well-regarded for their robust performance across diverse tasks and provide a strong
benchmark for comparison with open-source alternatives. Leveraging commercial models allows us to
evaluate cutting-edge capabilities while considering trade-offs such as accessibility, cost, and scalability.

In the open-source category, we prioritize smaller models that are compatible with our hardware con-
straints based on benchmarks and the availability of models for fine-tuning in the Unsloth library’[14].
We limited our options to Unsloth, because it provides faster and more efficient fine-tuning compared to
other available libraries. We selected Llama 3.1[15], Llama 3.2, Qwen2.5-Coder[16], and CodeLlama[17]
for this study. To ensure compatibility with laptops equipped with GPUs, we limit our selection to
smaller versions of these models, which range from 3 billion to 8 billion parameters. This size range
keeps a practical balance between computational feasibility and performance, making these models
suitable for experimentation on such hardware.

To identify the most promising models for fine-tuning, we evaluate them using zero-shot, one-shot,
and two-shot prompting techniques. These methods test the models’ ability to generate accurate and
coherent responses with minimal task-specific data. Since we do not have access to a large dataset for
fine-tuning, it is particularly important to focus on models that perform well in few-shot scenarios.
Models that perform poorly in few-shot evaluations are unlikely to benefit significantly from fine-

"https://github.com/unslothai/unsloth
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tuning. This is because few-shot performance often serves as an indicator of a model’s inherent ability
to generalize to new tasks. If a model struggles to generate meaningful outputs with limited examples,
it suggests that the underlying pre-trained representations are either weak or not well-suited to the
target tasks. Fine-tuning such models on a small dataset may fail to overcome these shortcomings and
could lead to overfitting, where the model memorizes the small dataset instead of learning generalizable
patterns. Consequently, investing resources in fine-tuning these models would not be promising, as the
expected improvements in performance are minimal. By focusing on models that already demonstrate
competence in few-shot prompting, we increase the likelihood of achieving meaningful gains through
fine-tuning while making efficient use of our limited data and computational resources.

The fine-tuning approach included leveraging cloud services such as Azure OpenAl and OpenATI’s
APIL We also performed local fine-tuning of open-source models, specifically Qwen2.5-Coder, using
the Unsloth library on Google Colab with T4 GPU instances. The local fine-tuning utilized PEFT with
LoRA configuration and the Supervised Fine-Tuning (SFT) Trainer.

Prompting Techniques

Zero-shot and few-shot prompting templates are shown in Snippet 2, 3 and 4. Iterative prompting is
done by passing the previous output along with the discovered exception in the next iteration, depicted
in Snippet 5. Moreover, extra hints are provided to help the model solve the issue, which contain
documentation details or some generic instructions.

Figure 4 provides an example of the iterative approach. On the left side, at the top, the result of the
second attempt is shown, which is stored in °2-result.txt’. At the bottom left, it can be seen that there
is a missing element in the JSON, and some guidelines are provided in the prompt. For example, the
model is instructed to add a Property or Entity with a specific name. On the right side, the addition of
this top-level entity to the model is shown. This highlights the effectiveness of this approach.

[H 2-resutt.oxt E!‘ (= 3-result.txt ﬂ‘
T Gprefix samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.0%> . ~| T @prefixz samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.0%> . B
2 @prefix samm-c: <urn:samm:org.eclipse.esmf.samm:characteristic:2.l.0#> 0 @prefix samm-c: <urn:samm:org.eclipse.esmf.samm:characteristici2.l.0#>
i @prefix samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0#> . @prefix samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0#> .
@prefix unit: <urn:samm:org.eclipse.esmf.samm:iunit:2.1.0%> . 4 @prefix unit: <urn:samm:org.eclipse.esmf.sammiunit:2.1.0#> .
@prefix rdf: <http://www.w3.orq/1999/02/22-rdf-syntax-ns#> . @prefix rdf: <http://www.w3.orq/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rqg/2000/01/rdf-schema#> . @prefix rdfs: <http://www.w3.0rq/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> . @prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix : <urn:samm:io.catenax.determination_load data_source:1.0.0#> . @prefix : <urn:samm:io.catenax.determination_load data_source:1.0.0#> .

:DeterminationLoadDataSource a samm:Aspect ;
samm:preferredName "Determination Load Data Source"@en ;
samm:description "The determination of the load data source is based

10  :DeterminationLoadDataSource a samm:Aspect ; 10
samm:preferredName "Determination Load Data Source"@en ;
samm:description "The determination of the load data source is based 12
samm:properties ( :sourceLoadSpectrum ) ; 3 samm:properties ( :DETERMINATIONLOADDATASOURCE ) ;
14 samm:operations ( ) ; 14 samm:operations () ;

5 samm:events () . 15 samm:events () .

17 :sourceLoadSpectrum a samm:Property ; 17 :DETERMINATIONLOADDATASOURCE a samm:Property ;
samm:preferredName "Source Load Spectrum"@en ; samm:preferredName "Determination Load Data Source"@en ;

samm:description "The source load spectrum is the URI to the load sp
samm:characteristic samm-c:ResourcePath . v

| 3-prompt.txt - Notepad - a X
File Edit Format View Help
java.lang.Exception: JSONs are not similar: ~
JSONs are not similar: ground truth has key “DETERMINATIONLOADDATASOURCE" but it is missing i
Add a SAMM "DETERMINATIONLOADDATASOURCE" as a Property or Entity to the Aspect Model.|
Required Ground truth JSON should be like:

"DETERMINATIONLOADDATASOURCE" :
"sourceLoadSpectrum” : "telnet://192.0.2.16:80/"
}
However, the generated Aspect Model corresponds to the following JSON structure:
“sourceLoadSpectrum” : “"telnet://192.0.2.16:80/"

Try to fix the error and generate the whole corrected SAMM Aspect Model without any extra exp

>

For understanding the construction rules, we define the following terms:
<

Figure 4: An example of iterative prompting.

samm:description "The determination load data source is the aspect t
samm:characteristic :DeterminationLoadDataSourceCharacteristic .

:DeterminationLoadDataSourceCharacteristic a samm:Characteristic ;
samm:preferredName "Determination Load Data Source Characteristic"@e
samm:description "The determination load data source characteristic
samm:dataType :DeterminationLoadDataSourceEntity .

:DeterminationLoadDataSourceEntity a samm:Entity ;
samm:preferredName "Determination Load Data Source Entity"@en ;
samm:description "The determination load data source entity represen
samm:properties ( :sourceLoadSpectrum ) .

:sourceLoadSpectrum a samm:Property ;
samm:preferredName "Source Load Spectrum"@en ;

samm:description "The source load spectrum is the URI to the load sp

samm:characteristic samm-c:ResourcePath .

< SAMM model based on the following JSON:
2 | JSON:
3 | <JSON EXAMPLE>

< Turtle format.

1|You are a bot to help people create Semantic Aspect Meta Model (SAMM) from given JSON data. Create

4 | Provide only the SAMM model without any extra explanation. Make sure that the output is a valid RDF

Snippet 2: Zero-shot prompt template.




—

This is an example SAMM model:

<EXAMPLE SAMM ASPECT MODEL>

This is its corresponding JSON example:

<JSON PAYLOAD OF EXAMPLE SAMM ASPECT MODEL>

Your task is to create a SAMM model from a JSON Example.

Json Example:

7 | <JSON EXAMPLE>

8 | Provide only the SAMM model without any extra explanation. Make sure that the output is a valid RDF
< Turtle format.

oW N

NI}

Snippet 3: One-shot prompt template.

—

This is an example SAMM model:

<EXAMPLE SAMM ASPECT MODEL 1>

This is its corresponding JSON example:

<JSON PAYLOAD OF EXAMPLE SAMM ASPECT MODEL 1>

This is an example SAMM model:

6 | <EXAMPLE SAMM ASPECT MODEL 2>

7 | This is its corresponding JSON example:

8 | <JSON PAYLOAD OF EXAMPLE SAMM ASPECT MODEL 2>

9 | Your task is to create a SAMM model from a JSON Example.
10 | Json Example:

11 | <JSON EXAMPLE>

12 | Provide only the SAMM model without any extra explanation. Make sure that the output is a valid RDF
< Turtle format.

(S BN

Snippet 4: Two-shot prompt template.

1| In your previous attempt you created this Semantic Aspect Meta Model SAMM Aspect Model

2 | <PREVIOUS SAMM ASPECT MODEL OUTPUT>

3 |But it has the following error:

4 | <PREVIOUS EXCEPTION>

5 | Try to fix the error and generate the whole corrected SAMM Aspect Model without any extra
< explanation.

6 | <EXTRA HINTS>

Snippet 5: Prompt template with feedbacks.

LLM Evaluation

To evaluate the generated output of the LLM, we introduce three automated mechanisms. In the first
step, the generated model must be a valid RDF Turtle format. Apache Jena® was used for RDF Turtle
validation. In the second step, we ensure that the model is a valid Aspect Model. In the third step, we
utilize the ESMF SDK to generate a sample JSON payload from the Aspect Model generated with LLM.
The generated JSON payload should structurally be similar to the original input provided. To determine
if two JSON objects are similar, it is first checked that both have the same number of keys. For keys
with primitive values, such as integers, the values are not considered. However, for keys with complex
objects or arrays, their similarity is checked recursively. For arrays, their sizes must be equal, and all
elements within the arrays must also be similar.

The three evaluation methods are referred to as *Valid Turtle’, *Valid SAMM’, and "Correct’, respectively.
For each input, these methods produce three boolean values. Ideally, all three values would be ’true’.

However, it is challenging to measure the completeness of models. SAMM contains various modeling
elements. In its most basic form, an Aspect Model consists of one Aspect and multiple Properties
with Characteristics. Characteristics can include elements such as Measurement, Enumeration, and
Duration, among others. A model is considered more complex if it contains diverse elements such as
Characteristics, Entities, Traits, Constraints, and so on. Another indicator of complexity is the length of
the model, measured by the number of triples it contains. A complete model typically includes more

8https://github.com/apache/jena
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constraints, unit information, detailed descriptions, and precise components. If the LLM generates a
more complex model for the same task, it may indicate a higher degree of completeness. Nevertheless,
since the input provided to the model is only a JSON file, it is not expected to produce a fully complete
model, as our goal is to create only the first draft.

3.3. Integration and Deployment

There are several ways to integrate LLMs to assist experts in modeling Aspect Models. One approach is
to provide a user interface similar to ChatGPT, where the user can simply input their data. However,
this method does not allow us to automatically verify whether the model generates an Aspect Model
that actually corresponds to the provided input. Unless we use tool-calling functionalities to invoke a
custom application.

A custom application takes user input and performs all necessary steps in the background. This
approach ensures that the generated output is always a valid SAMM Aspect Model, and that the correct
Aspect Model is produced. If an error occurs, it can be fed back into the LLM for correction using
appropriate prompt engineering methods. Although this approach is less interactive, it guarantees
higher quality responses. The generated model can then be manually or automatically transferred to
other tools like Aspect Model Editor.

As shown in Figure 6, LibreChat can serve as a user interface similar to ChatGPT. A screenshot of
this platform, called SAMM Copilot’, with an example input is depicted in Figure 5. The Aspect Model
Editor can use a library such as LangChain4j'° to connect to various LLM models, including commercial
models from Azure, OpenAl, and AWS, as well as locally hosted models via Ollama'’.

© Newchat (A OpenAl v . P @ n e &
Q Search messages © tests
You are a bot to help people create Semantic Aspect Meta Model (SAMM) from given JSON
R) Bookmarks data. Create SAMM model based on the following JSON:
vious 7 days {
"powerConsumption”: 3.0,
© Create SAMM Model fron ==« “energyConsumption”: 7590.0,
"energyConsumptionStartDate": "2024-10-25T15:25:242"
}
Provide only the SAMM model without explanation. Make sure you always give a valid RDF
turtle as the SAMM model
(G2 I 4
GPT-40

(3 Copy code

O Message GPT-40

©

Q-

Figure 5: SAMM Copilot platform user interface.

In order to further enhance the user experience, the solution can be integrated directly into the
Aspect Model Editor. As shown in Figure 7, user can provide an example domain data directly in the
Aspect Model Editor and then get the first version of the Aspect Model. In this way, the domain expert
would not need to start from scratch and perform repetitive tasks.

In future scenarios, users will also be able to provide their requirements in natural language, as the
process is depicted in Figure 8. As shown in Figure 8a, when the user clicks on the magic wand icon,
a dialog box will open. The user can describe the required changes in natural language, as shown in
Figure 8b. For example, they could ask the Al to add a regular expression constraint to a property. In

*https://sammcopilot.studio/
Whttps://github.com/langchain4j
https://ollama.com/
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Figure 6: Overall architecture and components of the end-solution.

File View Edit Validate Generate Search

4+ New. 3 L nxn
B a <«
New Window b .

(24} Bootstrap from JSON

C3 Import Package e e X

Copy to Clipboard
pfile.

<

Save to Workspace
Export Model
Export Package x.batch:4.0.2

@ satch.tl I

< [« B D

Figure 7: Bootstrap Aspect Model from JSON example in the Aspect Model Editor.

the background, the Al will apply the necessary changes to further enhance the Aspect Model, such as
adding descriptions or performing more complex operations like adding constraints.

3.4. Human Evaluation

We conducted human evaluations to gather feedback on our tool, which is a user interface like ChatGPT.
Participants were asked to create a model for the Bosch Smart Plug manually, and an example JSON
payload was provided to them. Then, they were instructed to perform the same task using SAMM
Copilot. After performing both tasks, they were asked to complete a short evaluation form. This would
give a better indication of the real-world applicability of the developed solution.

The evaluation form consisted of the following sections and questions:

1. Introduction: Participants were welcomed to the evaluation with the following note: “Thank you
for participating in this user evaluation. Filling this form only takes 5 minutes.”

2. User Familiarity with SAMM: Participants were asked to indicate their familiarity with the SAMM
by choosing one of the following options:
a) No Experience
b) I have created a few models (1-5 models).
c) I am an experienced modeler (more than 5 models).
3. Manual Modeling Duration: Participants were asked: "How long did it take to manually model?”
4. Use of External Sources: Participants were requested: “Did you use any external sources? If yes,
please name them.” (An open-ended response is provided to the participants.)
5. SAMM Copilot Usage Duration: Participants were questioned: "How long did it take to use SAMM
Copilot?”
6. Satisfaction with SAMM Copilot Results: Participants were inquired to evaluate their satisfaction
with the model produced by SAMM Copilot by selecting one of the following options:
a) Yes, it is a valid and complete model.
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Figure 8: Enhance an element of the Aspect Model by Al using natural language specification.

b) Yes, it is a valid model, but it is not complete.
¢) No, it is a valid model, but it is wrong.
d) No, it is not a valid model.

4. Experiments and Results

Experiment 1: Effect of Temperature

The aim of this experiment is to examine the effect of the temperature on the quality of the output
in the inference mode. Temperature introduces randomness in the generated results and may lead to
hallucinations when higher values are used. For each model, the optimal temperature value varies.
Typically, lower temperature values are preferred when deterministic output is required. In this
experiment, we focus exclusively on the GPT-40-mini model.

Table 2 presents the results, where at a temperature of T = 0.7, the fine-tuned GPT-40-mini model
produced 41 "Valid SAMM” outputs, and 32 "Correct” outputs. With a temperature of T = 0.0, the
model generated the same results, with 41 "Valid SAMM?” outputs, and 32 "Correct” outputs.

The fact that the temperature setting has minimal impact on the model’s performance suggests that
the structural aspects of the output are well-learned and remain stable. Changes in descriptive outputs



Table 2

Effect of temperature on the performance of fine-tuned GPT-40-mini model (one-shot prompting) trained on the

original data.

Model Valid Turtle | Valid SAMM | Correct
Fine-tuned GPT-40-mini (temperature 0.7) 85 (88%) 41 (42%) 32 (33%)
Fine-tuned GPT-40-mini (temperature 0.0) 79 (82%) 41 (42%) 32 (33%)

such as samm:description might become more apparent with varied temperature settings, as they are
more sensitive to next-token probability distributions.

Experiment 2: Effect of Examples and Number of Attempts

For few-shot prompting, we provide the model with one or two example SAMM Aspect Models along
with their corresponding JSON payloads in the prompt. This helps the model learn from the provided
examples. A well-chosen example that encapsulates the essence of the data and is sufficiently complex
can enhance the model’s performance. Therefore, we select one complex Aspect Model that includes
most of the elements of SAMM and one simpler Aspect Model.

Additionally, since the output of an LLM is non-deterministic and varies with each execution, we aim
to investigate the effect of repeating the same prompt multiple times. Specifically, we examine whether
providing the same prompt repeatedly influences the results and if this repetition improves the model’s
performance. Both experiments are conducted using the GPT-40-mini model.

Table 3 shows the results of this experiment. Using 'Waste''? as a simpler Aspect Model example led
to 34 "Valid SAMM?”, and 28 "Correct” outputs. The model produced 41 "Valid SAMM?”, and 32 "Correct”
outputs using 'SecondaryMaterialContent''? as a more complete Aspect Model example. A more
complex Aspect Model example, which contains more elements, increased the number of valid and
correct outputs.

Table 3
Effect of example complexity on the performance of fine-tuned GPT-40-mini in one-shot prompting after three
attempts (pass@3).

Model Valid Turtle | Valid SAMM | Correct
Waste as a simple example 84 (87%) 34 (35%) 28 (29%)
SecondaryMaterialContent as a complex example 85 (88%) 41 (42%) 32 (33%)

The effect of multiple attempts is shown in Table 4, where with 'waste' as an example, "Cor-
rect” outputs increased from 21 in the first attempt to 25 in the second and 28 in the third. When
'SecondaryMaterialContent' was used, the "Correct” outputs increased from 27 in the first attempt
to 31 in the second and 32 in the third.

Table 4
Effect of multiple attempts on the performance of the fine-tuned GPT-40-mini (pass@3 metric) in one-shot
prompting.

Model Attempt 1 | Attempt 2 Attempt 3

Waste as a simple example 21 (21%) 25 (26%) (+4) | 28 (29%) (+3)

SecondaryMaterialContent as a complex example 27 (28%) 31 (32%) (+4) | 32 (33%) (+1)
The better performance observed when using a more complex example

'SecondaryMaterialContent' highlights the advantage of using examples with richer struc-
tures and more elements for one-shot inference. The incremental improvements with repeated attempts

https://github.com/eclipse-tractusx/sldt-semantic-models/blob/main/io.catenax.waste/2.0.0/Waste.ttl
Bhttps://github.com/eclipse-tractusx/sldt-semantic-models/blob/main/io.catenax.shared.secondary_material_content/1.0.0/
SecondaryMaterialContent.tt]
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demonstrate that the model can refine its outputs with multiple tries. However, after a certain point,
the performance seems to plateau.

Experiment 3: Comparison of Llama3.1-8b, Qwen2.5-coder-7b, Llama3.2-3b, and
CodeLlama-7b without Fine-Tuning

Four open-source LLMs were selected and evaluated without any fine-tuning. Using our one-shot
prompt template, which includes an example in the prompt, we compared the performance of these
models. The model with the best performance will be considered for the next experiments.

As seen in Table 5, Qwen2.5-Coder 7B generated 39 "Valid Turtle” outputs. CodeLlama 7B yielded
31 "Valid Turtle” outputs. Also, Llama 3.1 8B produced 29 *Valid Turtle” outputs. Lastly, Llama 3.2 3B
resulted in 5 "Valid Turtle” outputs. None of the models were capable of generating a valid Aspect
Model using one example of an Aspect Model in the prompt.

Table 5

Performance of open-source models without fine-tuning (one-shot prompting).
Model Valid Turtle | Valid SAMM | Correct
Qwen2.5-Coder 7B 39 (40%) 0 0
CodelLlama 7B 31 (32%) 0 0
Llama 3.1 8B 29 (30%) 0 0
Llama 3.2 3B 5 (5%) 0 0

The results indicate that smaller LLMs perform poorly, underscoring the limitations of smaller models
in tasks requiring detailed and complex output generation. While code-specific models show some
improvement, they still do not produce "Valid SAMM?” outputs. This highlights the gap between smaller
and larger LLMs in handling complex tasks, and the need for fine-tuning these models.

Experiment 4: Effect of More Shots on Qwen2.5-coder-7b and Llama3.1-8b

We also aim to investigate whether two-shot prompts improve the performance of LLMs. This exper-
iment is conducted only on the top two open-source models. The model that demonstrates the best
performance will be fine-tuned in the subsequent experiments.

The impact of using more shots on Qwen2.5-Coder-7b and Llama 3.1 8B is presented in Table 6. For
Qwen2.5-Coder 7B, the two-shot setting resulted in 3 "Correct” outputs. For Llama, using two-shot
prompt produced 4 "Valid SAMM?”. For other cases, no "Correct” SAMM was generated.

Table 6

Comparison of one-shot and two-shot prompting on the Qwen2.5-Coder and Llama 3.1 base models.
Model Valid Turtle | Valid SAMM | Correct
Qwen2.5-Coder 7B (two-shot) 38 (39%) 12 (12%) 3
Qwen2.5-Coder 7B (one-shot) 39 (40%) 0 0
Llama 3.1 8B (two-shot) 24 (25%) 4 (4%) 0
Llama 3.1 8B (one-shot) 29 (30%) 0 0

The introduction of a second example in the prompt improves the models’ ability to produce valid
SAMM Aspect Models. This suggests that more examples can help LLM to learn the general rules
of creating an Aspect Model, but the lack of improvements in the "Correct” output indicates that
models are not able to capture the complex relation between Aspect Model and its JSON mapping. The
Qwen2.5-Coder model demonstrates a stronger ability to generalize in this regard.

Experiment 5: Batch Size Effect on Fine-Tuning GPT-40-mini

While fine-tuning GPT-40-mini, we aim to investigate how batch size affects the quality of the model.
Typically, larger datasets require larger batch sizes. In one scenario, we use a batch size of 8, a learning



rate of 0.2, and train for 3 epochs. In another scenario, we use a batch size of 2, a learning rate of 0.2,
and also train for 3 epochs.

As shown in Table 7, with a batch size of 8, the model had 13 "Valid SAMM” outputs, and 5 *Correct”
outputs. With a batch size of 2, the model had better performance with 14 "Valid SAMM” outputs, and
12 "Correct” outputs.

Table 7

Effect of batch size on model performance with one-shot prompting trained on original data.
Model Valid Turtle | Valid SAMM | Correct
GPT-40-mini (batch size = 8) 84 (87%) 13 (13%) 5(5%)
GPT-40-mini (batch size = 2) 79 (82%) 14 (14%) 12 (12%)

The results indicate that smaller batch sizes improve the quality of outputs. This highlights the
importance of tailoring batch sizes to the task and dataset size to achieve optimal performance. Small
batch sizes enable the model to focus on individual examples more effectively.

Experiment 6 : Comparison of GPT-40-mini Base, Fine-Tuned on Original Data, and
Fine-Tuned on Augmented Data

In this experiment, different aspects were considered. One of the aims of this experiment is to evaluate
the performance of the model without any fine-tuning. We do not expect to obtain any valid Aspect
Models using a zero-shot prompt, as this domain was not part of the LLM’s pretraining. However,
GPT-40 or GPT-40-mini might be capable of learning from examples in few-shot prompting. We use
one-shot and two-shot prompts and compare the performance of the models.

The second goal of this experiment is to compare the performance of GPT-40 and GPT-40-mini on
our task to determine if the larger GPT-40 model outperforms the mini version. Typically, larger models
are expected to perform better.

The third aspect is to observe the effect of data augmentation. We have two datasets. The aug-
mented dataset contains more samples. However, we are interested in seeing if our approach in data
augmentation helps the LLM or not.

Table 8 shows the results of the GPT-40-mini model under different fine-tuning and prompting
strategies. The base model showed low performance in zero-shot, with improvements in one-shot and
two-shot prompting. Fine-tuning on the original dataset improved results, especially in "Valid SAMM”
and “Correct” Fine-tuning on the augmented dataset led to mixed results, with a drop in zero-shot
performance but better outcomes in one-shot and two-shot scenarios.

Table 8

Performance of GPT-40-mini under various prompting and fine-tuning scenarios.
Model Valid Turtle | Valid SAMM | Correct
GPT-40-mini (zero-shot) 75 (78%) 0 0
GPT-40-mini (one-shot) 88 (91%) 24 (25%) 4 (4%)
GPT-40-mini (two-shot) 83 (86%) 34 (35%) 9(9%)
GPT-40-mini fine-tuned on original data (zero-shot) 79 (82%) 20 (20%) 21 (21%)
GPT-40-mini fine-tuned on original data (one-shot) 85 (88%) 41 (42%) 32 (33%)
GPT-40-mini fine-tuned on original data (two-shot) 80 (83%) 39 (40%) 31 (32%)
GPT-40-mini fine-tuned on augmented data (zero-shot) 67 (69%) 25 (26%) 22 (22%)
GPT-40-mini fine-tuned on augmented data (one-shot) 82 (85%) 43 (44%) 35 (36%)
GPT-40-mini fine-tuned on augmented data (two-shot) 75 (78%) 36 (37%) 28 (29%)

The results demonstrate that fine-tuning significantly improves the performance of the GPT-40-mini
model over its base configuration. The augmented dataset does not lead to substantial improvements,
indicating that the data augmentation methods are not sufficient to improve the fine-tuned model. This
emphasizes the importance of dataset quality and diversity, which might have been negatively impacted
by the augmentation process.



Experiment 7: Iterative Prompting on Fine-Tuned GPT-40-mini

Using error messages and general guidelines after the first attempt may help the model correct itself.
An effective exception message is crucial for success, as it guides the model in the right direction. Since
the previous output is part of the prompt, the context window plays an important role. The aim of this
experiment is to investigate whether iterative prompting improves the performance of the LLM or not.

The comparison of iterative prompting on fine-tuned GPT-40-mini is shown in Table 9. With simple
retries using one-shot prompting on the model, fine-tuned on the original data, the correct answers
increased from 27 in the first attempt to 31 in the second and 32 in the third one. With iterative feedback
prompts, the correct answers increased from 33 in the first attempt to 41 in the second and 42 in the
third one.

Table 9

Performance of fine-tuned GPT-40-mini using simple retries versus iterative feedback.
Model Attempt 1 | Attempt 2 Attempt 3
GPT-40-mini (one-shot) using simple retry 27 (28%) 31 (32%) (+4) | 32 (33%) (+1)
GPT-40-mini (one-shot) using iterative feedback 33 (34%) 41 (42%) (+8) | 42 (43%) (+1)

The iterative feedback with updated prompts based on LLM previous errors demonstrates a more
substantial improvement over simple retries. This indicates that dynamic prompt adjustment is key
in maximizing the model’s potential for complex tasks. Using simple retries only resulted in adding
4 more "Correct” Aspect Models, however, with iterative prompting, it increased to 8 in the second
attempt. The final result has 10 more "Correct” Aspect Models. This indicates that investing time on
generating proper exceptions and guidelines for the model would be a rewarding path.

Experiment 8: Comparison of Qwen2.5-Coder Base and Fine-Tuned Models

This experiment compares the performance of the Qwen2.5-Coder 7B base model and its fine-tuned

counterpart across zero-shot, one-shot, and two-shot prompting. The fine-tuning process was expected

to enhance the model’s ability to align with SAMM constraints and generate structurally correct outputs.
The results for one-shot and two-shot for fine-tuned Qwen2.5-Coder are described in Table 10.

Table 10

Performance comparison of Qwen2.5-Coder 7B base and fine-tuned models.
Model Valid Turtle | Valid SAMM | Correct
Base Qwen2.5-Coder 7B (zero-shot) 40 (41%) 0 0
Fine-tuned Qwen2.5-Coder 7B (zero-shot) 53 (55%) 5(5%) 1(1%)
Base Qwen2.5-Coder 7B (one-shot) 39 (40%) 0 0
Fine-tuned Qwen2.5-Coder 7B (one-shot) 43 (44%) 10 (10%) 6 (6%)
Base Qwen2.5-Coder 7B (two-shot) 38 (39%) 12 (12%) 3 (3%)
Fine-tuned Qwen2.5-Coder 7B (two-shot) 38 (39%) 6 (6%) 2 (2%)

The results in Table 10 indicate that fine-tuning improves the model’s performance across most
metrics but shows varying degrees of effectiveness depending on the prompting strategy. For zero-shot
prompting, the fine-tuned model is able to create 1 "Correct” Aspect Model. These results suggest that
fine-tuning helps the model better adhere to the SAMM constraints even without example guidance.
Similarly, in one-shot prompting, the fine-tuned model shows improvement over the base model. This
highlights that fine-tuning enhances the model’s ability to generalize from a single example. For
two-shot prompting, the fine-tuned model performs similarly to the base model. This suggests that
additional examples in the prompt may offer limited benefit as the fine-tuned model is already trained
on task-specific patterns. Too many examples can introduce redundancy or complexity, leading to
overfitting and reduced performance on new inputs.



Human Evaluation

The evaluation was conducted with six experienced modelers who provided feedback on the SAMM
Copilot tool. Table 11 summarizes the quantitative and qualitative responses collected.

Partici- Manual Model- | SAMM Copilot | Satisfaction with SAMM Copilot
pant ing Time Time
1 11 minutes 2 minutes Yes, valid and complete model
2 7 minutes >10 minutes No, invalid model
3 5 minutes 8 minutes Yes, valid but incomplete model
4 7 minutes 4 minutes Yes, valid but incomplete model
5 60 minutes 45 minutes No, valid but incorrect model
6 10 minutes Less than 3 minutes No, invalid model
Table 11

Summary of human evaluation results.

The evaluation results reveal valuable insights into the strengths and limitations of SAMM Copilot.
One of the most significant advantages of SAMM Copilot is its ability to reduce the time required for
modeling compared to manual methods. For most participants, the tool enabled faster model generation,
with times ranging from 2 to 8 minutes, as opposed to 5 to 60 minutes for manual modeling. Despite its
potential for efficiency, the validity and completeness of the generated Aspect Models were inconsistent.
While one participant was satisfied with the generated Aspect Models, finding them both valid and
complete, others identified significant shortcomings. Two participants noted that the models were
valid but incomplete, requiring additional manual effort to meet their expectations. Furthermore, two
participants considered the models either invalid or incorrect, highlighting a critical limitation in SAMM
Copilot’s ability to generate reliable outputs consistently. Participants also provided constructive
feedback for future improvements. Many appreciated the detailed descriptions generated by SAMM
Copilot, which they found useful compared to the brief descriptions typically added during manual
modeling. Overall, while SAMM Copilot demonstrates clear potential to streamline the modeling
process and reduce manual effort, its current limitations hinder its reliability and usability. Addressing
the issues of model validity, error handling, and integration will be critical to improving the tool and
ensuring broader user satisfaction and adoption.

5. Conclusion and Future Work

Our work examined the potential of automating the creation of semantic models by transforming JSON
data into SAMM Aspect Models using LLMs. Both commercial and open-source LLMs were analyzed,
and evaluation methods were introduced to measure their effectiveness in various setups. In addition to
automated evaluations, human evaluations of the generated outputs were conducted. These evaluations
demonstrated a significant improvement in efficiency, with the process achieving speeds up to four
times faster than manual modeling. One of the main contributions of this work was the collection and
curation of a dataset for fine-tuning, which is openly available. This work also outlined how LLMs can
be used by end-users and integrated with existing tools for generating semantic models.
We addressed several research questions through experiments and analyses, as outlined below:

« RQ1: The ability to automatically derive basic Aspect Model structures from JSON data.
The capability of LLMs to generate basic Aspect Model structures from JSON data was successfully
demonstrated through multiple experiments. Human evaluation further confirmed the LLMs’
success in fulfilling this task, providing evidence that bottom-up semantic modeling with LLMs is
both feasible and efficient.

« RQ2: Comparative analysis of open-source and commercial LLMs. A comparative analysis
revealed key differences in performance between open-source and commercial LLMs. Open-source
models, while advantageous due to lower costs, enhanced privacy, and local usage, struggled



with the complexity of generating semantic models without fine-tuning. On the other hand,
commercial models like GPT-40-mini demonstrated superior performance, even in their baseline
state, effectively handling complex tasks. This analysis underscored the importance of model size
and sophistication in achieving high-quality results.

« RQ3: Implementation of automatic evaluation methods. An automatic evaluation pipeline
was developed to ensure the accuracy and consistency of LLM outputs. This pipeline included
validation of RDF Turtle syntax using Apache Jena, checking SAMM Aspect Model conformity
with the ESMF SDK, and assessing JSON structural similarity between input and generated
Aspect Models. These methods provided a robust framework for evaluating correctness, although
assessing completeness remains a subjective task requiring expert judgment. This framework
ensures that outputs align with expected standards, facilitating reliable automation of semantic
modeling.

+ RQ4: Techniques to improve accuracy of LLMs in deriving Aspect Models. Data aug-
mentation techniques were employed to simplify Aspect Models and make minor modifications
to JSON payload values, enabling easier processing by LLMs. While these augmentations did
not significantly enhance the LLMs’ learning capabilities, they proved to be valuable for evalua-
tion. Simplified models were easier to process and served as effective inputs for testing iterative
feedback mechanisms. Refining model outputs through successive prompts improved accuracy,
showing their value in generating correct Aspect Models.

« RQ5: Integration of trained LLM models in practical tools. The integration of LLMs
into practical tools is crucial for real-world adoption. This research showcased how LLMs
can be accessed through diverse interfaces, including chat-based systems and visual modeling
tools. Prototypes and approaches for the integration into tools such as the Aspect Model Editor,
illustrating how LLMs can be seamlessly integrated into user workflows.

It was indicated by this work that the performance of small open-source models was not promising
for the tasks at hand. One aspect is due to the small amount of available training data. To address
this limitation, model distillation techniques could be explored. These techniques involve generating
synthetic data using larger, more capable LLMs, such as GPT-40, and then using this synthetic data to
train smaller models. Qwen2.5-Coder was identified as the most capable open-source model among
those tested.

Models like DeepSeekCoder were not evaluated, as they were unavailable for fine-tuning within the
Unsloth library. In the future, as more advanced models become compatible with libraries like Unsloth,
they can be included in similar studies to enhance outcomes and broaden the scope of comparisons.
Due to a lack of resources and time, open-source models with more parameters were not fine-tuned.

In addition, the human evaluation did not focus on an in-depth comparison of the quality of outputs
generated by different LLMs. In future studies, once more stable models are available, a comprehensive
evaluation of the results across various models could yield valuable insights.

Another limitation of the proposed workflow is that, in some cases, a single JSON example may not
be sufficient to represent the full range of data, as the structure of the data can vary. In such scenarios,
multiple examples may be required to capture the diversity of the data. More targeted and focused
evaluations were not conducted to determine whether the approach would work effectively in these
cases. However, in general, LLMs are capable of understanding and processing the structure of various
JSON formats. For the dataset, it would be necessary to develop a method for generating multiple
variants of JSON payloads to account for different data structures. This would help to ensure that the
LLMs are exposed to a broader range of examples, improving their ability to generate accurate Aspect
Models for more diverse datasets.

The scope of commercial LLMs in this study was limited to OpenAI’s GPT models due to budget
constraints. Future research could extend the analysis to other providers, such as Claude (Anthropic)
and Google Gemini. Additionally, a comprehensive exploration of hyperparameters, such as the learning
rate multiplier, could be addressed in subsequent studies.
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